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Crop pests are a major agricultural problem worldwide because the severity and extent
of their occurrence threaten crop yield. However, traditional pest image segmentation
methods are limited, ineffective and time-consuming, which causes difficulty in their
promotion and application. Deep learning methods have become the main methods to
address the technical challenges related to pest recognition. We propose an improved
deep convolution neural network to better recognize crop pests in a real agricultural
environment. The proposed network includes parallel attention mechanism module and
residual blocks, and it has significant advantages in terms of accuracy and real-time
performance compared with other models. Extensive comparative experiment results
show that the proposed model achieves up to 98.17% accuracy for crop pest images.
Moreover, the proposed method also achieves a better performance on the other public
dataset. This study has the potential to be applied in real-world applications and further
motivate research on pest recognition.

Keywords: crop, pest recognition, deep learning, convolution neural network, attention mechanism

INTRODUCTION

Agriculture is an important basic industry worldwide, and pests can cause huge losses to crop
production in every country (Santangelo, 2018). According to research, nearly half of global crop
production will be impacted to varying degrees due to pests every year, which seriously affects the
regional economy and people’s daily lives (King, 2017). Pest detection has become an important task
for the development of agricultural precision because pests have a wide distribution, cause great
damage, and reproduce quickly (Wang et al., 2020). Traditional pest detection methods mainly
include manual inspection and light trapping, but these methods need manual intervention and
experience problems related to insufficient automation and intelligence, such as a large workload,
low efficiency, and poor real-time performance (Lim et al., 2018). Due to the diversity of pests,
manual identification relies on a large amount of expert knowledge, and it is difficult to obtain
accurate and timely information on the number and species of pests in orchards, so it is difficult
to widely implement (Li Y. et al., 2020). The automatic recognition of pests can provide a better
growth environment for crops and increase the level of agricultural production.
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With the rapid development of computer vision and pattern
recognition technology, machine learning and deep learning
have become the main research directions of agricultural pest
detection (Albanese et al., 2021; Liu and Wang, 2021). For
example, Fina et al. (2013) proposed a pest identification
method using k-means clustering segmentation, but it takes
a long time to label features manually in the case of a large
dataset. Zhong et al. (2018) used a Prewitt operator and
Canny edge detection algorithms to extract the morphological
features of pests. Then, a support vector machine (SVM) was
used to automatically recognize whiteflies and thrips, and the
experimental results showed that the recognition rate was
nearly 90%. Liu T. et al. (2016) proposed a method for the
detection of wheat aphids based on genetic algorithms, which
can accurately identify and count in the complex environment
of the field. Yaakob and Jain (2012) used six invariant matrices
to extract the shape features of pests, then combined the
ARTMAP neural network algorithm and achieved an 85%
recognition accuracy in a specific background. Barbedo (2014)
developed a soybean whitefly monitoring system based on
digital image processing, which can realize the automatic
identification and counting of whiteflies and greatly improves
work efficiency compared with manual inspection. Although
the traditional machine learning recognition algorithm has
achieved better results when the number of crop pest species
is small, when there are many kinds of pests and the
input parameters are limited, the machine learning method
has difficulty effectively extracting key feature information,
resulting in poor performance of the model robustness
(Roy and Bhaduri, 2021).

Deep learning is an autonomous machine learning method
that uses multilevel neural networks, and computers can
automatically extract key features from a large number
of images (Brahimi et al., 2017). Saleh et al. (2021) has
demonstrated convolutional neural network (CNN) is a high
performance deep learning network, and the CNN has the
best performance compared to multiple models (DT, RF, SVM,
NB, LR, KNN, RNN, and LSTM). CNN abandons complex
preprocessing and feature extraction operations, and uses an
end-to-end architecture that effectively combines global and
local features and greatly simplify the recognition process.
Thus, CNNs have been widely used in crop information
recognition for real agricultural environments, and the automatic
recognition of pests combined with CNNs is conducive to
improving the accuracy of detection and reducing labor costs
(Cheng et al., 2017).

Many studies have been carried out on the use of deep
learning technology for crop key informations detection to
provide accurate information for subsequent spray management,
effectively improving the survival rate and yield of vegetables,
fruits and field crops. A model of classification of tomato leaf
diseases and pests with 89% accuracy was designed (Shijie et al.,
2017), but this method can be applied in simple background
pest classification and is impossible to integrate into practical
applications. Chen et al. (2019) improved the residual network
structure, added a high-resolution convolutional layer and the
corresponding number of channels, and the accuracy of pest

identification reached 91.5%. Wang et al. (2020) fused pest
context information into a CNN, which improved the accuracy
of pest detection and recognition in complex environments. Liu
et al. (2019) proposed an effective multiscale data enhancement
method for pest images. This method combines different
scale image enhancements into the recognition model, which
solves the problem that the traditional single image scale
algorithm cannot be applied to the detection and recognition
of small target pests. A method using CNN architecture for
fruit fly recognition was proposed and achieved an accuracy
of 95.68% (Leonardo et al., 2018). Generative Adversarial
Networks (GAN) were applied to extend the dataset, and the
extended dataset was fed into a pre-trained CNN model, which
achieved an accuracy of 92% for plant disease classification
(Gandhi et al., 2018). Dawei et al. (2019) designed a diagnostic
system based on transfer learning for pest detection, and
this approach to train and test 10 types of pests and
achieves an average accuracy of 93.84%.Chen et al. (2021)
proposed to classify tea pests by fine-tuning the VGG-16
network, and the results showed that the classification has
accuracy up to 97.75%.

In recent years, due to the characteristic of extracting
discriminative features of the area of interest, the attention
mechanism has begun to be widely used in machine translation,
generative adversarial and so on (Dong et al., 2019; Xiang et al.,
2020). Researchers used the attention mechanism to quickly scan
a global image to obtain the region of interest. However, it is
still in the exploratory stage in the field of crop pest recognition.
Liu et al. (2019) proposed a pest identification method based on
CNN technology. This method combined the channel attention
mechanism into the CNN. Through experiments on 16 types of
field pests, the average accuracy reached 75.46%, and the accuracy
was significantly improved. Guo et al. (2020) designed a self-
attention mechanism and incorporated it into the CNN structure,
which achieved the optimal F1-scores of 93.21% for 11 types
of crop diseases and pests. Zhang and Liu (2021) proposed a
method based on DenseNet and an attention mechanism, and
the model could identify 7 types of navel orange diseases and
pests on the test set with 96.90% accuracy. The results in this
study are compared with on other studies as summarized in
Table 1.

By analyzing current work, deep learning methods have been
proven to significantly improve pest recognition performance,
providing a reference for the recognition of crop pests. However,
these studies mostly focus on the improvement and optimization
of the diseases and pests recognition model. On the application
of deep learning models, Alsamhi et al. (2021) combination of
neural networks and IoT devices plays a vital role in improving
feedback control efficiency with automatic operation and
reductions of fertilizer and pesticides consumption. Agricultural
UAVs are a modern agricultural technology with remarkable
efficiency in quickly identifying and locating areas of outbreaks
of pests and diseases through aerial imaging. And combining
UAVs with high-performance IoT sensors enables efficient
tasks such as remote crop growth monitoring, soil moisture
monitoring, and water quality monitoring (Almalki et al., 2021).
Meanwhile, UGVs have also been widely used for crop planting
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TABLE 1 | Summary of the comparison of the existing work.

Paper Object Model Types Accuracy

Shijie et al. (2017) Diseases and
pests

VGG-16 + Transfer
learning

9 89.00%

Chen et al. (2019) Pests ResNet + Block-cg 38 91.50%

Wang et al. (2020) Pests ResNet-50 3 72.30%

Liu et al. (2019) Pests CNN + Attention 16 75.46%

Leonardo et al. (2018) Pests SVM + VGG-16 10 95.68%

Dawei et al. (2019) Pests AlexNet + Transfer
learning

10 93.84%

Chen et al. (2021) Pests VGGNet-16 14 97.75%

Guo et al. (2020) Diseases and
pests

CNN + Self-
attention

11 92.78%

Zhang and Liu (2021) Diseases and
pests

DenseNet + Attention 7 96.90%

Our model Pests ResNet-
50 + Parallel-
attention

10 98.17%

monitoring, and by deploying a crop information detection
model on the controller, it has been achieved soil moisture,
pH, fertility monitoring and climate conditions monitoring, crop
plant diseases and insect pests monitoring, growth and yield
monitoring, etc. (Jin et al., 2021).

In the recognition task, pest pixels only occupy a small part
of the whole image, and the attention mechanism can improve
the learning of important feature channels of pests. The proposed
model added a parallel attention module with a CNN structure
to automatically extract pest feature information from a real
agricultural environment. Feature extraction is focused on the
pest feature channel, and invalid feature channel information
is eliminated. Thus, the proposed model in this paper can
automatically accurately recognize ten types of crop pests.

The main contributions of this paper are summarized as
follows:

(1) To meet the recognition requirements of crop pests, this
paper collects 10 types of pest images in a real agricultural
environment. Thus, data enhancement improves the
robustness and accuracy of the model performance in
the detection task.

(2) This paper proposes an improved CNN model for the
recognition of crop pests. Based on the original residual
structure, spatial attention is combined with channel
attention to obtain a parallel attention mechanism module.
The parallel attention module is deeply integrated into the
ResNet-50 network model.

(3) The attention module can establish a multidimensional
dependency relationship of the extracted crop pest feature
map, is lightweight and can be easily added into
the network. Using this method, we achieved highly
accurate recognition of crop pests in complex agricultural
environments.

This paper is divided into five sections. The model
improvement methods are shown in section “The Proposed
Approach.” Section “Experiment” shows the dataset collection

and experiment setup. The performance of the deep learning
method is discussed in section “Experimental Results and
Discussion,” and conclusions and future work are described in
section “Conclusion.”

THE PROPOSED APPROACH

Spatial/Channelwise Attention
Mechanism
Spatial Attention Mechanism
Researchers have proposed a variety of attention mechanisms and
applied them to the training tasks of CNN models. At the cost
of smaller calculations and parameters, the network performance
can be greatly improved (Fukui et al., 2019). The attention
mechanism mainly includes the channel attention mechanism
and spatial attention mechanism. The spatial attention mainly
extracts important regions in the feature and judges the
importance of the corresponding feature by the dependence
between different positions in the feature. The corresponding
weight parameters are assigned to improve the feature expression
of the key area. Therefore, spatial attention enables the network
to better evaluate the effect of each feature position during the
classification feature extraction process and further enhances the
modeling ability of the network.

As shown in Figure 1, average pooling and maximum pooling
operations are performed on the input feature map F, and
information is gathered separately into two different feature maps
and used convolutional layers are applied to generate spatial
attention maps Ms. Then, feature fusion is realized through a
7× 7 convolution operation, and the sigmoid activation function
is used to generate a weight map and superimpose it on the
original input feature map. Finally, the features of the target pixel
area are enhanced.

Channel Attention Mechanism
Channel attention mainly performs correlation modeling on
the feature maps of different channels, adaptively obtains the
importance of each feature channel through back-propagation
parameter learning, and assigns different weight coefficients
to each channel.

SENet is one of the classic channel attention modules,
as shown in Figure 2. Hu et al. (2018) mentioned it in a
CVPR ImageNet Workshop speech. The weights of different
channels are trained through the cost function, and the weight
coefficients of each feature channel are automatically obtained.
Then, according to the size of the weight coefficient of each
feature channel, the effective feature channel is enhanced, and the
invalid feature channel is suppressed.

Parallel Attention Mechanism Design
Based on pest recognition, we know that features from
the spatial attention module are highlighted in pest regions
from the perspective of spatial position, while features from
the channelwise attention module are highlighted from the
perspective of channels, which carry more important information
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FIGURE 1 | The structure of the spatial attention mechanism.

FIGURE 2 | The structure of the channel attention mechanism.

at the channel level. It is necessary to combine multi-
attention features together to obtain enhanced attention
features. Therefore, this paper proposed a parallel attention
mechanism, namely, PCSA, that effectively combines the spatial
attention module and the channel attention module in series
as that used for pest recognition. In Figure 3, the PCSA
consists of three parts: channel attention, spatial attention
and feature map fusion. It can be directly applied to existing
network architectures.

(1) The channel attention mainly redistributes the channel
weights in the feature map through one-dimensional
convolution, increases the weight of pest-related channels
and reduces the weight of the remaining channels. First, the
global average pooling calculation is performed on the feature
map with input size C × H ×W through the squeeze operation
(Fsq) to obtain a 1 × 1 × C feature vector and it is input into the
two fully connected layers. The ReLU activation function is used
between the two fully connected layers, generated feature maps
are first downscaled by FC-1 and then upscaled by FC-2, and the

feature channel dimensions of the input and output are the same.
The squeeze process can be expressed as follows:

Fsq(uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j)

Where uc(i,j) is the element in row i and column j of the input
data. Then, the input feature map F generates a 1 × 1 × C
global feature map. In the excitation operation (Fex), the sigmoid
activation function is used to calculate the weight of each feature
channel, which is the core of the entire channel attention module.
These weights are allocated to the input feature maps. The
excitation process can be expressed as follows:

Fex (z,W) = σ
(
g (z,W)

)
= σ (W2σ (W1z))

Where σ is the ReLU function, z is the result of the compression
process. The parameter W1 reduces the dimension of channels to
1/r of the original in the FC-1, restore the dimension of channels

FIGURE 3 | The structure of the parallel attention mechanism.
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to the original dimension of channels with parameter W2 in the
FC-2, and W1 and W2 are inverse relationships. W1∈R

C
r
∗C and

W2∈RC∗ C
r are the downgrading and upgrading parameters of

the FC-1 and FC-2, r is the scaling parameter to balance model
performance and computational complexity. Finally, the output
feature channel weight vector is multiplied by the original input
feature map through the scale operation (Fscale) to complete the
original feature calibration in the channel dimension. Therefore,
the extracted features have stronger directivity and improved
classification performance. The scale process can be expressed as
follows:

Fscale (uc, sc) = uc � sc

Where Fscale(uc, sc) refers to the channelwise multiplication
between the scalar sc and the feature map uc∈RH×W .

(2) Spatial attention performs average pooling and maximum
pooling operations on the feature map F in the channel
dimension and generates two single-channel feature maps Fs

avg
and Fs

max. Then, the Fs
avg and Fs

max feature maps are combined
to generate a weight map M, and the feature map F is weighted
by the weight map M to generate a feature map P. Finally, in
the feature map P, the areas related to the pests are given higher
weights, while the other areas have lower weights. The calculation
process of the spatial attention module can be expressed as
follows:

Ms =
([

Avgpool (F)⊗ maxpool (F)
])
= σ

([
Fs

avg ⊗ Fs
max

])
Where σ is the ReLU function, s is the 2D feature maps and
is the dot product of position data corresponding to Fs

avg and
Fs

max feature maps.
(3) The feature map Q is dot-producted with the feature

map P and the feature map G is obtained using the ReLu
activation function. The feature map G combines the weight
distribution of the channel dimension and the weight distribution
of the spatial dimension, thereby obtaining complementary key
features, which can highlight the pest feature area and suppress
various interferences, so that the model can identify pests
more accurately.

Crop Pest Recognition Model of
ResNet-50 Fused to PSCA
Feature extraction is the key part of deep learning models, and the
convolutional layer of the CNN has powerful feature extraction
capabilities. Recently, AlexNet, VGGNet and GoogLeNet have
been widely used in face recognition, disease diagnosis, text
classification and other tasks and have achieved good results
(Ballester and Araujo, 2016). However, these CNNs increase the
feature extraction ability by adding to the number of network
layers, which will increase the number of model parameters and
the computational cost (Tang et al., 2020b). More seriously, it will
cause the problems of network redundancy, gradient explosion
and disappearance.

The residual network proposed by He et al. (2016) won
the championship in the 2015 ImageNet large-scale visual
recognition competition. The residual block in the model can
avoid the problem of network degradation caused by the

deepening of the number of network layers. Compared with
AlexNet, VGGNet, and GoogLeNet, ResNet has less computation
and higher performance. Compared with ResNet-101 and
ResNet-18, ResNet-50 has the advantages of higher accuracy,
fewer parameters and faster speed (Li X. et al., 2020). Thus, this
study chose ResNet-50 as the feature extraction network.

In Figure 4, identity mapping uses the jump connection
method to directly add feature X that the network originally
wants to learn from the shortcut branch and feature F(X)
learned from the weighted layer through the ReLU activation
function. The bottleneck structure in the ResNet network can
effectively reduce the network parameters and computational
complexity. The bottleneck structure is composed of two 1 × 1
convolutional layers and one 3× 3 convolutional layer. The input
feature vector is reduced from 256 dimensions to 64 dimensions
through a 1 × 1 convolution, a 3 × 3 convolutional layer is
used to learn features, and the feature vector is restored to
256 dimensions through a 1 × 1 convolutional layer. Finally,
the identity map and output are added through the ReLU
activation function. In this paper, a PCSA is added to the original
model structure of ResNet-50 to obtain the ResNet-50-PCSA
model. The network architectures of the improved ResNet-50 are
depicted in Figure 5.

The model mainly includes four stage processes, and each
stage is composed of a residual module. The proposed model
embeds the PCSA module after the residual module and
constitutes 4 bottleneck-PCSA modules, the numbers of which
are 3, 6, 6, and 3. The size of the convolution kernels of
bottleneck-PCSA is the same. The main difference between
models is the number of convolution kernels and the output
dimensions of the fully connected layer in the PCSA module.
The crop pest images are input into the ResNet-50-PCSA
network structure, first through the convolutional layer, BN
layer, activation layer and max pool. Then, the pest feature
map was obtained through 4 bottleneck-PCSA modules. Finally,
the obtained feature map is calculated by AVG pooling,
and the number of output feature layers is changed from
multidimensional to one-dimensional through the flattened
layer and output through the fully connected layer. When
deepening the number of network layers, if the internal features
of the network have reached the optimal level in a certain
layer, the subsequent superimposed network layers will not
change the features.

The above is the complete structure and operation process of
the ResNet-50-PCSA model. The PCSA subnetwork structure is
embedded in ResNet-50. The combination of the feature channel
recalibration strategy and residual network can effectively
improve network performance and thus does not need to greatly
increase the computational cost. Through feature refinement, the
learning ability of complex pest features is enhanced.

EXPERIMENT

Dataset Acquisition
The development of deep learning in recent years has proven
that the detection and classification tasks of target objects can
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FIGURE 4 | The residual block (left) and the bottleneck structure (right).

FIGURE 5 | The structure of the crop pest recognition model.

be effectively achieved under high-quality and large-size datasets
(Liu W. et al., 2016). For crop pests, their active time and
distribution law are related to various environmental factors,

such as climate and season, and it is difficult to obtain large
images. Therefore, it is not feasible to obtain a large number of
pest images through the process of collecting and shooting. This
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paper makes use of abundant internet resources to compensate
for this deficiency and enriches the content of image data by
open-source dataset and web crawler methods.

In this paper, we selected 10 common classes of crop
pests, namely, Aphid, Cabbage butterfly, Drosophila, Gryllotalpa,
Leafhopper, Locust, Snail, Stinkbug, Weevil, and Whitefly, as
shown in Figure 6. Because these pests are prone to exist all over
the world, they reproduce very quickly and spread widely (Dawei
et al., 2019). They mainly feed on the leaves, stems and fruits
of crops. If they lay eggs on crops, they are difficult to handle
and will cause huge losses in crop yields. Therefore, effective
detection and timely control of these 10 types of pests have
great significance.

Most of the images in the pest dataset in this paper are
collected from the internet, and a few are from the open-
source dataset. The web crawler keywords for each type of
pest were divided into Chinese and English. Multithreaded
collection of the images of each type of pest is completed
using three major internet search engines: Google, Bing and
Baidu. The open source dataset mainly comes from Kaggle1

and Forestry2. Although the key information is defined in the
collection process, there are still many non-pest images and
redundant data. Several agricultural technology experts judged
and classified the collected images and removed incorrect pest
types and poor-quality images. The size of all images was
unified by means of image normalization (224 × 224), and
the format was JPG. Overall, there were more than 400 images
of each type of pest, and the number of snails and locusts
exceeded 800 images.

Data Augmentation
Data augmentation is an important data processing technology
in deep learning. It can effectively increase the amount and
diversity of training data and improve the generalization ability
and robustness of the model (Shorten and Khoshgoftaar, 2019).
Data enhancement is divided into online enhancement and
offline enhancement; online enhancement is suitable for large
datasets, and after the model obtains batch data, it can be
enhanced by rotation, translation and folding (Tang et al., 2020a).
Offline enhancement directly processes images and is suitable for
small datasets. Therefore, this paper used offline augmentation
techniques and enhanced images in combination with OpenCV
under the PyTorch framework.

a) Spin: Randomly rotating the picture by 0◦, 90◦, 180◦, and
270◦ will not change the relative position of the pest pixels,
simulating the randomness of the shooting angle under
natural conditions.

b) Zoom: The images are reduced according to a certain ratio,
which helps to identify pests on multiple scales. For the
scaled image, the resolution of the image is expanded to
224× 224 pixels by filling in fixed color pixels.

c) Gaussian noise is added to the image to simulate the
interference information in the natural environment.

1https://www.kaggle.com/
2https://www.forestryimages.org/index.cfm

d) Color jitter: Changed the image brightness and contrast to
simulate the image difference generated by the change of
light intensity in the environment of crop growing. The
color jitter can be expressed as follows:

g
(
i, j
)
= b∗ f

(
i, j
)
+ a; a ∈ [a1, a2]

where a is the image contrast, b is the image brightness, g(i,j)
is the output image, f(i,j) is the input image, a1 is the lowest
brightness factor in the field and a2 is the highest brightness
factor in the field.

Samples of the data enhancement is shown in Figure 7. By
using these image offline augmentation techniques, the number
of datasets is expanded four times. The total number of original
images was 5,245; after data augmentation, the number of images
increased to 26,225. The training set and validation set are divided
into 8:2 ratios, and detailed information on the dataset are
shown in Table 2. For the model testing, we collected 150 real
images of each pest and formed a testset. In the end, the testset
contained 1,500 images.

Experiment Setup
In this study, the weight parameters of the pretrained ResNet-
50 model on ImageNet are used for transfer learning to
accelerate the convergence speed of the model. The collected
dataset contains 10 kinds of pests, so the output layer must be
changed from 1,000 (ImageNet pretrained ResNet-50) to 10. The
operating platform for this experiment is a Dell T7920 graphics
workstation, the operating environment is Windows 10, the CPU
is Intel Xeon Gold 6248R, and the GPU is NVIDIA Quadro RTX
5000. The training environment is created by Anaconda3, and
the environment configuration is Python 3.6 and PyTorch 1.8.0,
torchvision 0.7.0 artificial neural network library. The model
parameters were selected as follows: the initial learning rate set
to 0.001, a weight decay of 0.00001 and momentum factor is
0.1. Set 100 epochs, after 2 epochs, the model performance does
not improve and the learning rate will decrease after that. At
the same time, the CUDA 10.2 deep neural network acceleration
library is used. The experiment uses a stochastic gradient descent
with momentum (SGDM), updates the parameters and optimizes
the training process. The parameter update can be expressed as
follows:

θi+1 = θi − α1LR (θi)+m (θi − θi−1)

where i is the number of iterations, θ is the network parameters,
1LR (θi) is the loss function gradient, m is the momentum
and α is the learning rate. Meanwhile, before the training and
validation of each epoch, the data was randomly shuffled. After
each training, the validation set is tested, and the model is saved.
Finally, the model with the highest accuracy is selected.

Model Evaluation Index
When evaluating the performance of a model, Precision (P),
Recall (R), F1 Score (F1) and Detection speed (Ta) are usually
selected as evaluation indices.

P =
TP

TP + FP
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FIGURE 6 | Sample images for 10 common pest classes.

FIGURE 7 | Samples for data augmentation. (A) Original image, (B) spin, (C) zoom, (D) Gaussian noise, and (E) color jitter.

TABLE 2 | Crop pest dataset detail information.

Pest Class Origin
images

Augmentation
images

Trainset Validation set

Aphid 0 415 2,075 1,660 415

Cabbage butterfly 1 430 2,150 1,720 430

Drosophila 2 440 2,200 1,760 440

Gryllotalpa 3 485 2,425 1,940 485

Leafhopper 4 455 2,275 1,820 455

Locust 5 820 4,100 3,280 820

Snail 6 850 4,250 3,400 850

Stinkbug 7 420 2,100 1,680 420

Weevil 8 480 2,400 1,920 480

Whitefly 9 450 2,250 1,800 450

Total 5,245 26,225 20,980 5,245

R =
TP

TP + FN

F1 = 2×
P × R
P + R

Where TP (true positive) is the number of positive
samples predicted as positive samples, FP (false-positive)
is the number of negative samples considered to be
positive samples, and FN (false negative) is the number
of positive samples considered to be negative samples.

Ta =
T
N

Where T is the total detection time for the
validation set, and N is the total number for
the validation set.

FIGURE 8 | The training accuracy curves.
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EXPERIMENTAL RESULTS AND
DISCUSSION

Comparison of the Performance of
Various Models
To evaluate the performance, the proposed network is compared
with several famous CNN networks, such as VGG-19, AlexNet,
ResNet-101 and GoogLeNet. These models were configured
to use the same optimizer (SGDM), classifier (softmax) and
learning rate (0.0001).

TABLE 3 | The evaluation results.

Model Input P R F1 Ta (ms) Accuracy
(%)

Size (Mb)

VGG-19 224 0.9137 0.9130 0.9133 41.81 92.62 482

AlexNet 224 0.8905 0.8891 0.8898 33.37 88.96 227

GoogLeNet 224 0.9331 0.9324 0.9327 33.64 93.35 45

ResNet-101 224 0.9537 0.9548 0.9542 39.05 94.48 167

ResNet-50-
PCSA

224 0.9798 0.9816 0.9807 32.29 98.17 91

TABLE 4 | The results of ResNet-50-PCSA compared with ResNet-50.

Model Input P R F1 Ta (ms) Accuracy
(%)

Size (Mb)

ResNet-50 224 0.9386 0.9391 0.9388 31.36 92.41 78

ResNet-50-
PCSA

224 0.9798 0.9816 0.9807 32.29 98.17 91

The comparison of various CNN model training curves is
shown in Figure 8. The training iteration epochs are plotted
on the x-axis, and the accuracy is plotted on the y-axis.
The ResNet-50-PCSA model proposed in this paper has the
highest accuracy, and except for the AlexNet model, the
accuracy of the other models exceeds 90% because AlexNet
is not deep enough compared to other models, and the
amount of feature information extracted by the network is less.
Meanwhile, the ResNet-50-PCSA model converges fastest, and
the model begins to converge after approximately 45 epochs.

TABLE 5 | The results of PCSA compared with SENet and CBAM.

Model Input P R F1 Ta (ms) Accuracy
(%)

Size (Mb)

ResNet-50-
SENet

224 0.9495 0.9496 0.9495 30.62 94.96 72

ResNet-50-
CBAM

224 0.9601 0.9603 0.9602 31.98 96.05 86

ResNet-50-
PCSA

224 0.9798 0.9816 0.9807 32.29 98.17 91

TABLE 6 | Accuracy for crop pest recognition with 10 classes.

Classes 0 1 2 3 4 5 6 7 8 9

Accuracy
(%)

97.08 98.37 97.15 99.34 97.53 98.52 99.15 98.43 98.01 97.10

Average
accuracy
(%)

98.17

FIGURE 9 | Recognition results for crop pests. (A) Image with a single pest. (B) Image with multiple pests.
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The VGG-19, AlexNet, ResNet-101, and GoogLeNet models
have larger fluctuations after convergence, and the ResNet-50-
PCSA model converges with the smallest fluctuation range,
reflecting good stability.

The detailed evaluation results of different models on crop
pests are obtained in Table 3. Under the same experimental
conditions, the ResNet-50-PCSA model proposed in this
paper has the highest precision, recall and F1 score. The

proposed model also has the highest average accuracy, with
an accuracy reaching 98.17%. Compared with the VGG-19,
AlexNet, GoogLeNet and ResNet-101 models, the average
accuracy is 5.55, 9.21, 4.82, and 3.69% higher, respectively,
and the proposed model is significantly ahead of the other
CNN networks. The ResNet-50-PCSA model has the fastest
recognition speed, and the average recognition time for
a single pest image is only 32.29 ms. Compared with

FIGURE 10 | Clustering results of the training set.

FIGURE 11 | Sample images of the rice leaf dataset.

Frontiers in Plant Science | www.frontiersin.org 10 February 2022 | Volume 13 | Article 839572

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-839572 February 15, 2022 Time: 15:41 # 11

Zhao et al. CNN-Based Crop Pest Recognition

the second-ranked AlexNet model, the time is reduced by
1.08 ms, which meets the needs of real-time recognition of
crop pests. Considering that the model will be deployed to
the inspection robot system, VGG-19, AlexNet and ResNet-
101 have a large model size, which cannot guarantee real-
time detection task requirements. Moreover, the size of the
ResNet-50-PCSA model is 91 Mb, which is 46 Mb larger
than GoogLeNet. However, ResNet-50-PCSA also meets the
requirements of lightweight deployment, and the accuracy is
higher than that of GoogLeNet. Synthesizing the above analysis,
the proposed model achieves the best performance in terms of
accuracy and speed.

Effectiveness of PCSA Module
To prove the effect of adding a parallel attention mechanism on
the performance of the original model, keeping the experimental
conditions and parameters consistent, a comparison experiment
of the performance of the ResNet-50-PCSA and ResNet-
50 models was carried out. The results of the comparative
experiment of the proposed model and the ResNet-50 model
without a parallel attention mechanism on crop pests are shown
in Table 4.

It can be seen from Table 4 that the results of the
model are improved after adding the parallel attention
mechanism. The accuracy of the model is increased by
5.76%, and the precision, recall and F1 score are all higher
than those of the original ResNet-50 model. The proposed
model can retain more image details due to important
feature reuse. However, the ResNet-50-PCSA model
average detection time of a single pest image is increased
by 0.93 ms, and the model size is increased by 13 Mb.
This explains why adding the parallel attention mechanism
can slightly increase the computational complexity and
complexity of the model.

To further verify the effectiveness of the parallel attention
mechanism proposed in this paper, we selected two widely used
attention mechanisms as comparative experiments: SENet (Hu
et al., 2018) and CBAM (Woo et al., 2018). The CBAM is
composed of a serial structure of channel attention and spatial
attention; it first learns the key features through the channel
attention module and then uses the spatial attention module to
learn the location of the key features.

The comparison results of the PCSA module with SENet
and CBAM are shown in Table 5. In the recognition accuracy
of the model, the ResNet-50-PCSA is 3.21 and 2.12% higher
than ResNet-50-SENet and ResNet-50-CBAM, respectively. In
terms of the average inspection time and model size, the
ResNet-50-PCSA is slightly insufficient. ResNet-50-SENet has
the fastest recognition speed and smallest model size. The
average detection time is only 1.67 ms faster than ResNet-
50-PCSA, but the recognition accuracy is significantly lower
than ResNet-50-PCSA. The recognition speed of ResNet-50-
PCSA still meets actual application requirements. At the
same time, the model size of ResNet-50-PCSA is 19 and
5 Mb larger than ResNet-50-SENet and ResNet-50-CBAM,
respectively, but it also confirms the requirements of lightweight
deployment in machine control panels. Synthesizing the above

analysis, the results show that the proposed parallel attention
mechanism is effective.

Crop Pest Classification Results
Table 6 shows the ResNet-50-PCSA model accuracy of each
pest on the validation set. The indices of 10 classes of pests
are represented as follows: 0. Aphid, 1. Cabbage butterfly, 2.
Drosophila, 3. Gryllotalpa, 4. Leafhopper, 5. Locust, 6. Snail, 7.
Stinkbug, 8. Weevil, 9. Whitefly.

The result suggests that the model correctly recognizes 10
classes of pests with an average accuracy of 98.17%. The model
recognition accuracy for aphid, Drosophila, leafhopper, and
whitefly is low, but the accuracy also exceeds 97%. The reason
is that the color features of aphids and leafhoppers are similar to
those of crop leaves, and Drosophila and whiteflies are smaller
in size and occupy only a few pixels in the whole image.
Furthermore, the model exceeded 99% accuracy on 2 classes of
pests (Gryllotalpa, and snail), while the other 4 classes of pests
had accuracies between 98.01 and 98.52%.

Figure 9 shows the correct recognition results for randomly
selected images using the ResNet-50-PCSA model. The model
has a better recognition result of the 5 pest images in
Figure 9A, and the accuracies of cabbage butterflies and
snails are 100.00%. The accuracy of locust is the lowest,
but it is also as high as 98.39%, which meets the accuracy
requirements in real pest recognition tasks. In Figure 9B,
we stitch images of different pests into one image and
input it into the model. The model also obtained a better

TABLE 7 | The evaluation result of the rice leaf dataset.

Model Input P R F1 Ta (ms) Accuracy (%)

GoogLeNet 256 0.9365 0.9361 0.9363 33.07 93.68

Xception 256 0.9355 0.9353 0.9354 31.51 93.53

ResNet-50 256 0.9480 0.9478 0.9479 30.54 94.81

ResNet-50-PCSA 256 0.9933 0.9935 0.9934 31.39 99.35

FIGURE 12 | Confusion matrices for rice leaf diseases.
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performance and could accurately recognize each pest in
the stitched image.

To better show the classification performance of the model
on 10 classes of pests, we choose t-SNE clustering for feature
spatial distribution representation. The experiment extracts
the features of each image from the fully connected layer
of the ResNet-50-PCSA model, uses the t-SNE algorithm to
visualize the high-dimensional features in a two-dimensional
space of 10-class pests, and performs hierarchical clustering
analysis on the features. The 2048-dimensional feature clustering
results are shown in Figure 10. Each color represents the
category of different pests, for a total of 10 categories. On the
whole, the features reflected by different pests show a better
clustering effect, which is the key to accurately distinguishing
different pests. The distribution position of the feature clusters
of the same variety deviates, mainly because in the real
agricultural environment, the color and shape features of some
pests are similar.

Based on the above results, it can be seen that the ResNet-
50-PCSA model can complete the task of crop pest recognition
well and has a high robustness and accuracy. This model can be a
useful detection tool in the field of crop diseases.

ResNet-50-PCSA Adaptability on Other
Datasets
To further validate the practical application performance
of our model, we experiment with the proposed method
on other public datasets of rice leaf diseases, and the
disease images have real agricultural backgrounds. The
dataset contains 5,932 rice leaf disease images, which
include bacterial blight, blast, brown spot and tungro. All
the patches were treated as data samples and resized to
224 × 224 pixels, and Figure 11 shows the four varieties of
rice leaf diseases.

Under the same training environments, GoogLeNet, ResNet-
50 and Xception were selected for comparative experiments
on rice leaf diseases. As shown in Table 7, the proposed
model in this paper has an average detection accuracy of
99.35% for the 4 classes of rice leaf diseases. Compared
with the GoogLeNet, Xception and ResNet-50 models, the
accuracy is 5.67, 5.82, and 4.54% higher, respectively. The
ResNet-50-PCSA model has the fastest average detection time
for a rice leaf image, and the average detection time for a
single rice disease image is only 0.85 ms slower than ResNet-
50.

The detection result is represented by the confusion matrix
in Figure 12, and the detection accuracy of 4 classes of rice leaf
diseases exceeded 99%. Compared with crop pest recognition,
the accuracy of rice leaf disease diagnosis has increased by
1.18%. The main reason is that there are only 4-classes of
rice leaf diseases, which is 6-classes less than that of pest
recognition. It is proven that the proposed method has a wide
range of applicability and has better performance relative to
deep-based methods on public datasets. Moreover, it is certified
that our method is effective for datasets captured in real
agricultural environments.

CONCLUSION

In this work, a pest recognition model based on deep learning
was proposed using a manually collected dataset to classify 10
types of crop pests. A total of 5,245 images were downloaded
from different websites and manually validated. In the data
preparation phase, data augmentation was used to expand
the dataset. We successfully designed a parallel attention
mechanism and deeply integrated the original ResNet-50 model
and recognize the great performance of the proposed network
through various experiments. The added attention module
can suppress complex backgrounds and extract multiscale pest
features more accurately without increasing the number of model
parameters. Under the condition of ensuring high accuracy,
rapid recognition is realized on images with multiple pests
and complex backgrounds. It is verified that our method
is of great significance and provides accessible help for the
recognition of crop pests.

In this feature, we will use the proposed method to
implement a crop pest image recognition system and transplant
it into agricultural inspection robots. At the same time,
we will also expand a dataset of crop pests in a real
agricultural environment to improve the model performance
of the robot. It can help farmers accurately distinguish
pests, carry out pesticide works according to the types
of pests, and successfully realize agricultural modernization
and intelligence.
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