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Genomic copy number variations (CNVs) are among the most important structural

variations of genes found to be related to the risk of individual cancer and therefore

they can be utilized to provide a clue to the research on the formation and progression of

cancer. In this paper, an improved computational gene selection algorithm called CRIA

(correlation-redundancy and interaction analysis based on gene selection algorithm) is

introduced to screen genes that are closely related to cancer from the whole genome

based on the value of gene CNVs. The CRIA algorithm mainly consists of two parts.

Firstly, the main effect feature is selected out from the original feature set that has the

largest correlation with the class label. Secondly, after the analysis involving correlation,

redundancy and interaction for each feature in the candidate feature set, we choose

the feature that maximizes the value of the custom selection criterion and add it into

the selected feature set and then remove it from the candidate feature set in each

selection round. Based on the real datasets, CRIA selects the top 200 genes to predict

the type of cancer. The experiments’ results of our research show that, compared with the

state-of-the-art relatedmethods, the CRIA algorithm can extract the key features of CNVs

and a better classification performance can be achieved based on them. In addition, the

interpretable genes highly related to cancer can be known, which may provide new clues

at the genetic level for the treatment of the cancer.

Keywords: gene selection, correlation-redundancy analysis, interaction analysis, copula entropy, copy number

variations (CNVs), cancers prediction

INTRODUCTION

The occurrence of many diseases is associated with genome structural variations. Human genome
variations include single nucleotide polymorphisms (SNPs), copy number variations (CNVs), etc.
The copy number variations refer to the amplification, deletion, andmore complexmutations in the
genome of DNA fragments longer than 1 kb in length (Redon et al., 2006). SNPs account for 0.5% of
the human genome, and nearly 12% of the human genome often undergoes copy number variations
(Redon et al., 2006). Copy number variations have become an important genomic variation, and
their role in the pathogenesis of complex human diseases is still being revealed.

The close relationship between CNVs and diseases has been widely recognized. Numerous
studies have demonstrated that not a few human diseases involved copy number variations
that could change the diploid status of particular locus of the genome (Zhang et al., 2016).
The Flierl research team found that the higher vulnerability of Parkinson’s disease and stress
sensitivity of neuronal precursor cells carry an α-synuclein gene triplication (Flierl et al., 2014).
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Grangeon et al. (2021) discovered that early-onset cerebral
amyloid angiopathy and Alzheimer Disease (AD) were related
to an amyloid precursor protein (App) gene triple amplification.
Breunis et al. (2008) reported that the copy number variations of
FCGR2C gene promoted idiopathic thrombocytopenic purpura.
Zheng et al. (2017) found that the low copy number of FCGR3B
was associated with lupus nephritis in a Chinese population.
And Pandey et al. (2015) revealed that there was both direct
and indirect evidence suggesting abnormalities of glycogen
synthase kinase (GSK)-3β and β-catenin in the pathophysiology
of bipolar illness and possibly schizophrenia (SZ). Moreover,
several neuro-developmental relevant genes, such as A2BP1,
IMMP2, and AUTS2, were reported with mutational CNVs (Elia
et al., 2010). In 2006, a research team composed of researchers
from the United Kingdom, Japan, the United States, Canada
and other countries studied 270 individuals in 4 groups of
the HapMap project, and constructed the first-generation copy
number variations map of the human genome, and obtained 144
CNVs region (about 12% of the size of the human genome).
Among them, 285 CNVs regions were related to the occurrence
of known diseases (Redon et al., 2006). Compared with SNPs,
CNVs regions contained more DNA sequences, disease sites and
functional elements, which could provide more clues for disease
research. The publication of this map has become an important
tool for studying the complex structural variations of the human
genome and human diseases.

Cancer is a kind of diseases which involves uncontrolled
abnormal cell growth and can spread to other tissues (Du and
Elemento, 2015). The formation and development of cancer
are also associated with copy number variations (Frank et al.,
2007). Van Bockstal et al. (2020) discovered that HER2 gene
amplification had a relationship with a bad result in invasive
breast cancer and the amplification of heterogeneous HER2 had
been described in 5–41% of breast cancer. The experimental
results of Buchynska et al. (2019) shown that assessment of copy
number variations of HER-2/neu, c-MYC and CCNE1 genes
revealed their amplification in the tumors of 18.8, 25.0 and
14.3% of endometrial cancer patients, respectively. Heo et al.
(2020) pointed out that CNVs were related to the mechanism
of lung cancer development through a comparative experiment.
Moreover, Tian et al. (2020) found that CNVs of CYLD,
USP9X and USP11 were significantly associated with the risk
of colorectal cancer. A latest global cancer burden data released
by the International Agency for Research on Cancer(IARC)
of the WHO showed that the number of patients with new
cancer and cancer deaths in China ranked first around the
world with 4.57 million patients with new cancer and 3 million
cancer deaths, accounting for 23.7 and 30%, respectively. It is of
great significance to investigate cancer causes and its treatment.
Because the gene expression patterns in cancer tumor have
high specificity (Liang et al., 2020), studying the relationship
between these genetic information and cancer can provide a
new idea for investigating the causes of cancer and help in early
cancer diagnosis.

However, few studies have utilized machine learning (ML)
or deep learning (DL) methods to use copy number variations
data for the prediction of various cancer types. Zhang et al.

(2016) used the mRMR and IFS methods to select 19 features
from the 24,174 gene features of the copy number variations
data set, which contained a total of 3,480 samples of 6
cancer types. They applied the Dagging algorithm with ten-
fold cross-validation to classify cancer. But the accuracy of final
result only reached 75%. Liang et al. (2020) used CNA_origin
for cancer classification on the same data set. CNA_origin
was an intelligent combined deep learning network, which
was composed of two parts—a stacked autoencoder and a
one-dimensional convolutional neural network with multiscale
convolutional kernels. CNA_origin eventually had an overall
accuracy of 83.81% on ten-fold cross-validation. But it could
not identify which gene features were more important and more
closely associated with cancer classification.

Here, we present an improved novel computational algorithm
named CRIA, which can successfully classify cancer based on
the information of gene CNVs levels from the same dataset.
CRIA can not only effectively perform dimensionality reduction
operation on high-dimensional gene CNVs data, which can
improve the efficiency of the experiment, but also selects specific
gene features closely related to cancer, making it clear which
genes are more important in cancer classification. And the final
results had higher classification accuracy than the state-of-the-
art methods.

The rest sections of this paper are structured as follows:
Section Background describes the theoretical background and
related work. Section The Proposed Method-CRIA introduces
the collection of CNVs dataset, the implementation details
and performance of the proposed algorithm. Section Results
and Discussions demonstrates the experimental results on
CNVs dataset and the performance comparison with the recent
methods. In section Conclusions, we summarize the conclusions
and point out our future work.

BACKGROUND

In section Information Theory, we introduce some basic
information theory knowledge, which is the core of our proposed
algorithm. Before proposing our algorithm, we summarize some
related work on gene selection methods and point out their
drawbacks in section Related Work.

Information Theory
As early as 1948, Shannon’s information theory had been
proposed (Shannon, 2001), providing an effective method for
measuring random variables’ information. The entropy can be
understood as a measure of the uncertainty of a random variable
(Cover and Thomas, 1991). The greater the entropy of a random
variable, the greater its uncertainty. If X = {x1, x2, ..., xl} is a
discrete random variable, its probability distribution is p(x) =

P(X = x), x ∈ X. The entropy of X is defined as:

H(X) = −

l
∑

i=1

p(xi) logp(xi) (1)

where p(xi) is the probability of xi. Here the base of log is 2 and
specified that 0 log 0 = 0.
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If Y = {y1, y2, ..., ym} is a discrete random variable, p(xi, yj)
is the joint probability of X and Y . Then, their joint entropy is
defined as:

H(X,Y) = −

l
∑

i=1

m
∑

j=1

p(xi, yj) log p(xi, yj) (2)

If the random variable X is in a given situation, the uncertainty
measure of the variable Y can be defined by conditional entropy
as follows:

H(Y|X) = H(X,Y)−H(X) = −

l
∑

i=1

m
∑

j=1

p(xi, yj) log p(yj|xi) (3)

where p(yj|xi) is the conditional probability of Y under the
condition of X.

Definition 1: Mutual information (MI) (Cover and Thomas,
1991) is a measure of useful information in information theory.
It can be regarded as the amount of information shared by two
random variables. MI can be defined as:

I(X;Y) =

l
∑

i=1

m
∑

j=1

p(xi, yj) log
p(xi, yj)

p(xi)p(yj)

= H(X)+H(Y)−H(X,Y) = H(X)−H(X|Y) (4)

Definition 2:Conditional mutual information (CMI) (Cover and
Thomas, 1991) can be defined as the amount of information
that shared by variables X and Y , if a discrete random variable
Z = {z1, z2, ..., zn} is known.

I(X;Y |Z ) =
l

∑

i=1

m
∑

j=1

n
∑

k=1

p(zk)p(xi, yj|zk) log
p(xi ,yj|zk)

p(xi|zk)p(yj|zk)

= H(Y|Z)−H(Y |X,Z )

(5)

Definition 3: Joint mutual information (JMI) (Cover and
Thomas, 1991) measures the amount of information shared by
a joint random variable (X1,X2, · · ·Xq) and Y and it can be
defined as:

I(X1,X2, ...,Xq;Y) =
∑

x1∈X1

∑

x2∈X2

· · ·
∑

xq∈Xq

∑

y∈Y
p(x1, x2, ..., xq, y)

log
p(x1 ,x2 ,...,xq ,y)

p(x1 ,x2 ,...,xq)p(y)

= H(X1,X2, ...,Xq)−H(X1,X2, ...,Xq|Y)

(6)

Definition 4: Interaction gain (IG) had been introduced by
Jakulin (2003), Jakulin and Bratko (2004) to measure the
amount of information shared by three random variables at the
same time. Mutual information can be regarded as a two-way
interaction gain. IG is defined as follows:

IG(X;Y;Z) = I(X;Y;Z) = I(X,Y;Z)− I(X;Z)− I(Y;Z) (7)

Related Work
The irrelevant features and redundant features existed in high-
dimensional data will damage the performance of the learning
algorithm and reduce the efficiency of the learning algorithm.
Therefore, the dimensionality reduction of features is one of
the most common methods of data preprocessing (Orsenigo
and Vercellis, 2013) and its purpose is to reduce the training
time of the algorithm and improve the accuracy of final results
(Bennasar et al., 2015). In recent years, the research of gene
selection methods based on mutual information has received
wide attention from scholars. Best individual gene selection (BIF)
(Chandrashekar and Sahin, 2014) is the simplest and fastest
filtering gene selection algorithm, especially suitable for high-
dimensional data.

Battiti utilized the mutual information (MI) between features
and class labels [I(fi; c)] to measure the relevance and the
mutual information between features [I(fi; fs)] to measure the
redundancy (Battiti, 1994). He proposed the Mutual Information
Gene selection (MIFS) criterion and it is defined as:

JMIFS(fi) = I(fi; c)− β
∑

fs∈�S

I(fi; fs), fi ∈ F − �S (8)

where F is the original feature set, �S is the selected feature
subset, F − �S is the candidate feature subset and c is the
class label. β is a configurable parameter to determine the
trade–off between relevance and redundancy. However, β is set
experimentally, which results in an unstable performance.

Peng et al. (2005) proposed the Minimum-Redundancy
Maximum-Relevance (MRMR) criterion and its evaluation
function is defined as:

JmRMR(fi) = I(fi; c)−
1

|ns|

∑

fs∈�S

I(fi; fs), fi ∈ F − �S (9)

where |ns| is the number of selected features.
Similarly, other gene selection methods that consider

relevance between features and the class label and redundancy
between features are concluded, such as Normalized Mutual
Information Gene selection (NMIFS) and Conditional Mutual
Information (CMI), and they were proposed by Estévez et al.
(2009) and Liang et al. (2019) respectively. Their evaluation
function are defined as follows:

JNMIFS(fi) = I(fi; c)−
1

|ns|

∑

fs∈�S

I(fi; fs)

min(H(fi),H(fs))
, fi ∈ F − �S

(10)

JCMI(fi) = I(fi; c)−
H(fi |c )

H(fi)

∑

fs∈�S

I(fs; c)I(fi; fs)

H(fs)H(c)
, fi ∈ F − �S

(11)

where H(fi) is the information entropy and H(fi |c ) is the
conditional entropy.

Many gene selection algorithms based on information theory
tend to use mutual information as a measure of relevance,
which will bring a disadvantage that mutual information tends
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to select features with more discrete values (Foithong et al.,
2012). Thus, the symmetrical uncertainty (Witten and Frank,
2002) (a normalized form of mutual information, SU) is adopted
to solve this problem. The symmetrical uncertainty can be
described as:

SU(fi; c) =
2I(fi; c)

H(fi)+H(c)
(12)

The SU can redress the bias of mutual information as much as
possible and scale its values to [0,1] by penalizing inputs with
large entropies. It will make the performance of gene selection
better. Same as MI, for any two features fi1 and fi2, if SU(fi1; c) >

SU(fi2; c), due to more information can be provided by the
former, fi1 and c are more relevant. If SU(fi1; fs) > SU(fi2; fs),
owing to the information shared by fi1 and fs being more and
providing less information, fi1 and fs have greater redundancy.

Additionally, these gene selection algorithms mentioned
above fail to take the feature interaction into consideration.
After relevance and redundancy analysis, one feature deemed
useless may interact with other features to provide more
useful information. Especially in complicated biology systems,
molecules interacting with each other, they work together to
express physiological and pathological changes. If we only
consider relevance and redundancy but ignore the feature
interaction in data analysis, wemaymiss some useful features and
affect the analysis results (Chen et al., 2015).

Sun et al. (2013), Zeng et al. (2015), and Gu et al. (2020),
respectively proposed a gene selection method using dynamic
feature weights: Dynamic Weighting-based Gene selection
algorithm (DWFS), Interaction Weight based Gene selection
algorithm (IWFS) and Redundancy Analysis and Interaction
Weight-based gene selection algorithm (RAIW). All of them
employ the symmetric uncertainty to measure the relevance
between features and the class label, and exploit the three-
dimensional interaction information (mentioned at Information

Theory Definition 4) to measure the interaction between two
features and the class label. The evaluation functions are defined
as follow:

JDWFS(fi) = SU(fi; c)× wDWFS(fi), fi ∈ −�S (13)

JIWFS(fi) = wIWFS(fi)× [1+ SU(fi; c)], fi ∈ F − �S (14)

JRAIW(fi) = SU(fi; c)× [1− αSU(fi; fs)]

×wRAIW(fi), fiǫF − �s (15)

where w(fi) is the weight of each feature and its initial value is set
to 1, α is a redundancy coefficient and the value is relevant to the
number of dataset’s features, fs is one of features in the selected
feature subset. In each round, the feature weight w(fi) is updated
by their interaction weight factors.

wDWFS(fi) = wDWFS(fi
′)× [1+ CR(fi, fs)] = wDWFS(fi

′)

×[1+ 2
I(fi;c|fs )−I(fi;c)
H(fi)+H(c) ]

= wDWFS(f
′

i )× [1+ 2
I(fi;fs;c)

H(fi)+H(c) ]

(16)

wIWFS(fi) = wIWFS(f
′

i )× IW(fi, fs)

= wIWFS(fi
′)× [1+

I(fi; fs; c)

H(fi)+H(fs)
] (17)

wRAIW(fi) = wRAIW(f
′

i )× [1+ If (fi, fs, c)]

= wRAIW(fi
′)× [1+

2I(fi; fs; c)

H(fi)+H(fs)+H(c)
] (18)

where w(fi
′) denotes the feature weight of the previous round,

I(fi; c
∣

∣fs ) is the conditional mutual information of fi and cwhen fs
is given. I(fi; fs; c) is three-dimensional interaction information.
However, we can find that although DWFS and IWFS take into
account relevance and interaction, they ignore the redundancy
between features. Correlation, redundancy and interaction are all
taken into account by RAIW, but there is a no reasonable value
for α in a specific dataset.

Furthermore, some other gene selection methods about
three-way mutual information are listed and their evaluation
function are defined as follows, such as Composition of Feature
Relevance (CFR) (Gao et al., 2018a), Joint Mutual Information
Maximization (JMIM) (Bennasar et al., 2015), Dynamic Change
of Selected Feature with the class (DCSF) (Gao et al., 2018b)
and Max-Relevance and Max-Independence (MRI) (Wang et al.,
2017).

JCFR(fi) =
∑

fs∈�S

I(fi; c
∣

∣fs )+
∑

fs∈�S

I(fi; fs; c), fi ∈ F − �S

(19)

JJMIM(fi) = max[min
fs∈�S

(I(fi, fs; c))], fi ∈ F − �S (20)

JDCSF(fi) =
∑

fs∈�S

I(fi; c
∣

∣fs )+
∑

fs∈�S

I(fs; c
∣

∣fi )

−
∑

fs∈�S

I(fi; fs), fi ∈ F − �S (21)

JMRI(fi) = I(fi; c)+
∑

fs∈�S

I(fi; c
∣

∣fs )

+
∑

fs∈�S

I(fs; c
∣

∣fi ), fi ∈ F − �S (22)

where I(fi, fs; c) is the joint mutual information of fi, fs and c.
I(fs; c

∣

∣fi ) is the conditional mutual information of fs and c when
fi is given. However, these algorithms only take into account
three-waymutual information among features and the class label,
and none of them considers relevance, redundancy and three-
dimensional mutual information between features at the same
time, which will affect the performance of these algorithms.

THE PROPOSED METHOD-CRIA

In section CNVs Dataset, we firstly introduce the collection
of datasets and the process of data processing specifically.
Subsequently, we redress other methods’ shortcomings and
propose an improved gene selection algorithm called CRIA
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TABLE 1 | The number of samples for each cancer type in this dataset.

Class label Histology Samples Percentage

1 UCEC (Uterine corpus endometrial

carcinoma)

443 12.73%

2 KIRC (Kidney renal clear cell carcinoma) 490 14.08%

3 OV (Ovarian serous cystadenocarcinoma) 562 16.15%

4 GBM (Glioblastoma multiforme) 563 16.18%

5 COAD/READ (Colon

adenocarcinoma/Rect-um

adenocarcinoma)

575 16.52%

6 BRCA (Breast invasive carcinoma) 847 24.34%

Total 3,480 100%

in section The Proposed Algorithm and give it a specific
implementation in section Algorithm Implementation. Finally,
in section Verify the Performance of CRIA, we verify the
performance of CRIA by comparing the experimental results of
CRIA and other 8 algorithms on 5 datasets.

CNVs Dataset
The datasets of copy number variations in different cancer
types used in this paper comes from the cBioPortal for Cancer
Genomics (http://cbio.mskcc.org/cancergenomics/pancan_tcga/,
Release 2/4/2013) (Cerami et al., 2012; Ciriello et al., 2013;
Gao et al., 2013). The copy number values in the dataset are
generated by Affymetrix SNP 6.0 arrays for the set of samples
in the cancer genome atlas (TCGA) study (Liang et al., 2020).
The preprocessing analysis of the dataset is performed with
GISTIC (Beroukhim et al., 2007). There are 11 cancer types in
the cBioPortal database with the largest sample number was 847
and the smallest sample was 135. In order to avoid affecting the
experimental results due to the large difference in the number
of samples of cancer types, we only select six cancer types with
more than 400 samples as our experimental data. The details of
six cancer types are listed in Table 1, and totally there are 3480
samples in our experimental dataset.

In this dataset, each sample consists of labels for 24174 genetic
cytobands. The CNV spectrum is divided into five regions/labels
by setting four thresholds in cancer algorithm (Mermel et al.,
2011). Then, the CNV values are discretized into 5 different
values—“-2,” “-1,” “0,” “1,” “2,” where “-2” denotes the deletion
of both copies (possibly homozygous deletion), “−1” means
the deletion of one copy (possibly heterozygous deletion), “0”
corresponds to exactly two copies, i.e., no gain/loss (diploid), “1”
denotes a low-level copy number gain and “2” means a high-level
copy number amplification (Ciriello et al., 2013).

The CNVs values are preprocessed to the range of [−1,1] with
Equation (23).

val′ =
val

∣

∣val
∣

∣

max

(23)

where val is the value of gene copy number variations of each
sample,

∣

∣val
∣

∣

max
is the maximum absolute value of gene CNVs

among samples and val′ is the recalculated value.

The Proposed Algorithm
In section Related Work, we analyze the 11 gene selection
methods and point out their shortcomings. In view of the
defects of these algorithms, we propose an improved gene
selection algorithm to redress their shortcomings: Correlation-
Redundancy and Interaction Analysis based gene selection
algorithm (CRIA). This method uses the symmetric uncertainty
(SU) to measure the correlation between features and the
class label and the redundancy among features. In addition,
copula entropy is introduced to measure the feature interaction
information. Different from the three-way interaction of DWFS,
IWFS and RAIW, the proposed algorithm considers the
interaction between the candidate feature and the entire set
of selected features, instead of being limited to the three-
dimensional interaction.

As we know, Shannon’s definition of mutual information aims
at a pair of random variables, and it measures the correlation
between two random variables. Therefore, naturally, many
researchers have tried to study how to extend the definition of
mutual information from two variables to multivariate situations.
In 2011, Ma and Sun published a paper (Ma and Sun, 2011),
which contributed to the entropy of information theory. They
defined a new concept of entropy in that paper, called Copula
Entropy. Copula Entropy is defined on a set of random variables
and conformed to symmetry. Therefore, it is a multivariate
extension of mutual information, which can be utilized to
measure the full-order, non-linear correlation among random
variables. They proved the equivalence between copula entropy
and the concept of mutual information, which was, mutual
information was equal to negative copula entropy (Ma and Sun,
2011).

The copula entropy of
→
x = (x1, x2, ..., xN) ∈ RN is defined as:

Hc(
→
x ) = −

∫

c(
→
u ) log c(

→
u )d

→
u (24)

where
→
x are random variables with marginal functions

→
u =

[F1, F2, ..., FN] and copula density c(
→
u ) = dNC(

→
u )

du1du2 ...duN
.

Thus, we can use interaction factor IFCRIA, which is defined in
Equation (25) to measure the interaction between the candidate
feature and the selected feature subset. The meaning of IFCRIA
is that, after adding a random candidate feature fi into the
selected feature subset�S, the amount of interaction information
increased relative to the original selected feature subset. So, the
bigger value of IFCRIA, the bigger value of interaction between fi
and �S. In each round of calculation, we are supposed to choose
the variable that maximizes the IFCRIA value.

IFCRIA =
Hc(�S, fi, c)

Hc(�S, c)
(25)

Where c is the target class label.
Integrating the correlation between the features and the class

label and the redundancy between features that we improved, and
the interaction factor we proposed, we can define the evaluation
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FIGURE 1 | General flow chart of the proposed algorithm.

criterion of a candidate feature as follows:

JCRIA(fi) = max
fi∈F−�S

{[SU(fi, c)−
1
ns

∑

fs∈�S

SU(fi, fs)]× IFCRIA}

= max
fi∈F−�S

{[SU(fi, c)−
1
ns

∑

fs∈�S

SU(fi, fs)]×
Hc(�S ,fi ,c)
Hc(�S ,c)

}
(26)

For the equation (26), we can see that the proposed algorithm can
take into account the relevance between the candidate feature and
the class label, redundancy and multi-dimensional interaction
among the candidate feature and the selected features at the
same time. The formula SU(fi, c) can denote the relevance and
1
ns

∑

fs∈�S

SU(fi, fs) calculates the redundancy. Also, the formula

Hc(�S ,fi ,c)
Hc(�S ,c)

denotes the interaction among the features.

According to the definition of copula entropy and Equation
(24), there is a theorem.

Theorem 1: The mutual information of random variables is
equivalent to their negative copula entropy (Ma and Sun, 2011):

I(
→
x ) = −Hc(

→
x ) (27)

According to Theorem 1, the value of copula entropy can be
calculated by the MI of multivariates. The definition of mutual
information extended from two variables to multivariate is
described as follows:

I(Xm, c) =
∫∫

p(Xm, c) log
p(Xm ,c)
p(Xm)p(c)

dXmdc

=
∫∫

p(Xm−1, xm, c) log
p(Xm−1 ,xm ,c)
p(Xm−1 ,xm)p(c)

dXm−1dxmdc

=
∫

. . .
∫

p(x1, . . . , , xm, c) log
p(x1 ,...,xm ,c)
p(x1 ,...,xm)p(c)

dx1, . . . , dxmdc

(28)

TABLE 2 | Datasets for comparison between CRIA algorithm and other

algorithms.

Datasets type No. Datasets Samples Features Classes Types

Biological data 1 leukemia 72 7,070 2 Discrete

2 Carcinoma 174 9,182 11 Continuous

3 colon 62 2,000 2 Discrete

4 TOX_171 171 5,748 4 Continuous

Digit recognition 5 Gisette 7,000 5,000 2 Continuous

where Xm = {x1, x2, ..., xm−1, xm} = {Xm−1, xm}.
According to the Equation (28), we have:

H(Xm−1, xm) = H(Xm) =
m
∑

i=1
H(xi)− I(Xm)

H(Xm−1, xm, c) = H(Xm, c) = H(c)+
m
∑

i=1
H(xi)− I(Xm, c)

(29)

Therefore,

I(Xm, c) = H(x1)+ . . . +H(xm)+H(c)−H(x1, . . . , xm, c)

I(Xm, X̂s, c) = H(x1)+ . . . +H(xm)+H(X̂s)+H(c)

−H(x1, . . . , xm, X̂s, c)

(30)

According to Equation (26), (27) and (30), we have:

JCRIA(fi) = max
fi∈F−�S

{[SU(fi, c)−
1
ns

∑

fs∈�S

SU(fi, fs)]× IFCRIA}

= max
fi∈F−�S

{[SU(fi, c)−
1
ns

∑

fs∈�S

SU(fi, fs)]×
I(�S,fi ,c)
I(�S ,c)

}
(31)
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Let �S = {f1, f2, ..., fm}, Since,

I(�S, fi, c)

I(�S, c)
=

m
∑

k=1

H(fk)+H(fi)+H(c)−H(�S, fi, c)

m
∑

k=1

H(fk)+H(c)−H(�S, c)

(32)

Therefore,

JCRIA(fi) = max
fi∈F−�S

{[SU(fi, c)−
1
ns

∑

fs∈�S

SU(fi, fs)]×

m
∑

k=1

H(fk)+H(fi)+H(c)−H(�S,fi ,c)

m
∑

k=1

H(fk)+H(c)−H(�S,c)
}

(33)

The general flow chart of the proposed algorithm is presented in
Figure 1 we can see that an original feature set F is first given,
from which we select the main effect feature that maximizes the
value of (12). Then the main feature is put into the selected
feature subset �S. For each feature in the candidate feature set,
after conducting correlation and redundancy analysis, we are
next supposed to use (25) to perform interaction analysis on it.
Choose the feature that maximizes the value of (33), which then
is put into the selected feature set. If the number of the selected
features meets the threshold condition, the above steps will be
executed again, otherwise the program ends directly.

Algorithm Implementation
We propose a gene selection method based on correlation-
redundancy and interaction analysis. The pseudo code of CRIA
algorithm is described as follows.

Here, for the CNVs dataset, we set the value of the threshold
M to be 200 to reduce the calculation time and avoid curse of
dimensionality. In addition, we need to control the number of
selected features to be same as the method proposed by Zhang
et al. (2016).

The CRIA algorithm consists of two stages:
Stage 1 (lines 1–7): In this part, the selected feature subset �S

and the original feature set F are first initialized. For each feature
in the original feature set fi, the symmetrical uncertainty SU(fi; c)
between fi and class label c is calculated. The feature whose value
of symmetrical uncertainty with class label is the maximum is
selected out and added into the selected features subset�S, which
we name “the main effect feature.”

Stage 2 (lines 8-18): The second stage mainly calculates
the correlation measure SU(fi; c) and the redundancy measure
1
ns

∑

fs∈�S

SU(fi, fs). Then the interaction value IFCRIA between �S,

fi and c is updated. JCRIA(fi) is calculated and the feature with the
maximum value is added into the selected feature subset�S. This
procedure terminates until the number of selected features is no
less than predefined thresholdM.

According to Algorithm 1, when the size of the feature subset
reaches the set threshold M, the procedure will be terminated.
The value of the threshold setting should be determined by
different datasets. A small M can reduce the amount of
calculation but may also lose many effective features that are T
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TABLE 4 | Comparision (mean ± std.dev.) of performance between CRIA and other 8 algorithms with IB1 classifier.

Datasets CRIA

(proposed)

RAIW mRMR DWFS IWFS JMIM MRI CFR DCFS

leukemia 99.44 ± 0.97

(1)

97.03 ± 0.87

(2)

96.16 ± 0.43

(4)

95.56 ± 0.90

(7)

88.75 ± 1.88

(9)

96.61 ± 0.78

(3)

96.13 ± 0.90

(5)

95.73 ± 0.95

(6)

94.22 ± 0.80

(8)

Carcinoma 86.84 ± 0.50

(1)

82.45 ± 1.33

(2)

81.39 ± 1.02

(4.5)

82.32 ± 1.07

(3)

76.88 ± 1.97

(9)

81.10 ± 1.06

(7)

81.39 ± 1.16

(4.5)

81.35 ± 1.08

(6)

80.96 ± 1.18

(8)

colon 86.77 ± 1.27

(1)

78.60 ± 2.10

(2)

78.22 ± 1.54

(3)

75.94 ± 2.32

(5)

70.87 ± 1.97

(9)

76.69 ± 2.35

(4)

71.77 ± 3.41

(8)

72.24 ± 2.17

(7)

74.87 ± 1.80

(6)

TOX_171 84.56 ± 0.52

(3)

85.13 ± 1.26

(2)

78.14 ± 1.36

(8)

85.19 ± 1.30

(1)

82.59 ± 1.78

(5)

76.68 ± 1.68

(9)

81.69 ± 1.64

(7)

82.05 ± 1.28

(6)

84.04 ± 1.48

(4)

gisette 93.75 ± 0.14

(1)

91.88 ± 0.08

(6)

91.26 ± 0.09

(7)

92.26 ± 0.07

(5)

91.05 ± 0.15

(8)

90.20 ± 0.10

(9)

92.70 ± 0.06

(3)

92.58 ± 0.05

(4)

93.13 ± 0.10

(2)

Avg.acc 90.27 87.02 85.03 86.25 82.03 84.26 84.74 84.79 85.44

Avg.rank 1.40 2.80 5.30 4.20 8.00 6.40 5.50 5.80 5.60

Improved rate – 3.73% 6.16% 4.66% 10.05% 7.13% 6.53% 6.46% 5.65%

The meaning of the bold values represent the best performance achieved on a certain dataset for the nine methods.

TABLE 5 | Comparision (mean ± std.dev.) of performance between CRIA and other 8 algorithms with Naïve Bayes classifier.

Datasets CRIA

(proposed)

RAIW mRMR DWFS IWFS JMIM MRI CFR DCFS

leukemia 99.58 ± 0.67

(1)

97.44 ± 0.66

(2)

96.27 ± 0.30

(7)

97.03 ± 0.70

(4)

95.48 ± 1.96

(9)

96.18 ± 0.39

(8)

97.15 ± 0.80

(3)

96.79 ± 0.71

(5)

96.70 ± 0.58

(6)

Carcinoma 81.61 ± 1.11

(2)

82.02 ± 0.83

(1)

80.23 ± 1.33

(7)

81.58 ± 0.95

(3)

76.38 ± 1.85

(9)

80.19 ± 1.28

(8)

80.41 ± 0.86

(5)

80.34 ± 0.87

(6)

80.46 ± 1.09

(4)

colon 88.71 ± 0.00

(1)

82.97 ± 1.34

(2)

82.70 ± 1.20

(3)

80.72 ± 1.47

(6)

74.39 ± 4.37

(9)

81.66 ± 1.45

(5)

79.84 ± 2.40

(7)

78.95 ± 1.72

(8)

82.32 ± 2.08

(4)

TOX_171 69.53 ± 0.70

(3)

70.74 ± 1.07

(1)

63.73 ± 1.61

(8)

68.68 ± 1.26

(4)

65.64 ± 1.63

(7)

60.41 ± 2.35

(9)

66.96 ± 1.56

(6)

67.04 ± 1.74

(5)

70.28 ± 1.60

(2)

gisette 93.16 ± 0.05

(1)

90.46 ± 0.13

(2)

88.26 ± 0.02

(4)

87.69 ± 0.08

(5)

86.23 ± 0.24

(8)

86.01 ± 0.05

(9)

87.60 ± 0.04

(6)

87.48 ± 0.03

(7)

89.46 ± 0.05

(3)

Avg.acc 86.52 84.73 82.24 83.14 79.62 80.89 82.39 82.12 83.84

Avg.rank 1.60 1.80 5.80 4.40 8.40 7.80 5.40 6.20 3.80

Improved rate – 2.11% 5.20% 4.07% 8.67% 6.96% 5.01% 5.36% 3.20%

The meaning of the bold values represent the best performance achieved on a certain dataset for the nine methods.
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Algorithm 1 | CRIA: correlation-redundancy and interaction
analysis based gene selection algorithm.

Input N: the number of original features, M: the number of
features to be selected, ns: the
number of selected features.
Output: the selected feature subset (�S ⊆ F).
1 First initializes �S = ∅, F = {f1, f2, ..., fN};
2 for each fi ∈ F do:
3 calculate SU(fi, c);
4 end for
5 select the feature fimax ∈ F with the largest value of SU(fi, c);
6 �S = �S ∪ {fimax};
7 F = F − {fimax};
8 while ns ≤ M do:
9 for fi ∈ F do:
10 calculate SU(fi, c)−

1
ns

∑

fs∈�S

SU(fi, fs);

11 calculate IFCRIA =
Hc(�S ,fi ,c)
Hc(�S ,c)

;

12 calculate JCRIA(fi) = [SU(fi, c) −
1
ns

∑

fs∈�S

SU(fi, fs)] × IFCRIA

and append it into a list;
13 end for
14 select the feature fkmax ∈ F with the largest value of JCRIA(fi)
from list;
15 �S = �S ∪ {fkmax};
16 F = F − {fkmax};
17 end while
18 output �S.

useful; a large M will increase the amount of calculation but
may improve the accuracy of final result (Foithong et al., 2012).
Actually, when the threshold exceeds a certain value, the accuracy
of the final result will not only not increase, but may decrease, and
it will bring computational complexity. The selected features are
ranked according to the value of the evaluation function JCRIA(fi)
from largest to smallest.

Verify the Performance of CRIA
Eight gene selection algorithms—JMIM (Bennasar et al., 2015),
mRMR (Peng et al., 2005), DWFS (Sun et al., 2013), IWFS (Zeng
et al., 2015), RAIW (Gu et al., 2020), CFR (Gao et al., 2018a),
DCSF (Gao et al., 2018b), and MRI (Wang et al., 2017) are
used to compare with CRIA to examine the performance of our
proposed method.

The datasets used in validation experiment come from
Arizona State University (ASU) datasets (Li et al., 2017), which
include four biological data and one other type of data (digit
recognition). They are all high-dimensional data. The smallest
feature number is 2000 and the largest feature number is 9182
among them. The specific details of these datasets are shown
in Table 2. We only use minimum description length method

(Fayyad and Irani, 1993) for gene selection and utilize it to
convert these numerical features.

The number of featuresN used in the experiment is reduced to
50 and three classifiers—IB1, J48 and Naïve Bayes are exploited.
The parameters of the classifiers are set to the default parameters
of Waikato Environment for Knowledge Analysis (WEKA) (Hall
et al., 2009). We use 10 times of ten-fold cross-validation to avoid
the influence of randomness on experimental results. Then mean
value and Standard Deviation (STD) are taken as the comparison
indices of performance of each algorithm and STD is defined
as follows:

STD =

√

√

√

√

1

nrun

N
∑

i=1

(ACCi − u) (34)

where nrun is the number of times of our experiments, here we
set nrun = 10, ACC is the classification accuracy, u represents
the average value of ACC, and N denotes the number of samples.
The bigger ACC, the better performance, and the smaller STD,
the higher stability.

The comparison results between the proposed algorithm and
other gene selection algorithms are shown in Tables 3–5. As
shown in Table 3, for the five data sets in the experiment, we
can see that the classification results of CRIA in four data sets
are better than other eight algorithms, which ranking first, except
TOX_171, ranking fourth. Compared with other algorithms,
the average accuracy of CRIA is increased by 2.42–5.08%. In
Table 4, CRIA also outperforms the other 8 algorithms on
four data sets except TOX_171, on which the experimental
results of CRIA ranking third. The biggest improved rate of the
proposed algorithm is 10.05% and the smallest one is 3.73%.
From Table 5, we can find that the results of CRIA on the
three data sets are superior to other algorithms, ranking first.
However, on the datasets of Carcinoma and TOX_171, compared
with the maximum values, the experimental accuracies of CRIA
are slightly decreased by 0.50 and 1.71%, ranking second and
third respectively. From the perspective of average accuracy,
CRIA’s result is better than other algorithms, and it is improved
by 2.11–8.67%.

RESULTS AND DISCUSSIONS

Evaluation Metrics of Experimental Results
Four evaluationmetrics—precision, recall, accuracy and F1-score
are utilized to evaluate the performance of the corresponding
method and values of these criteria are defined as equation (35).

precision =
TP

TP + FP
(35)

recall =
TP

TP + FN

accuracy =
TP + TN

TP + TN + FP + FN

F1− score =
2× precision× recall

precision+ recall
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TABLE 6 | The top 15 feature genes chosen by CRIA defined as equation (26).

Ranked order Official name Official full gene name Category CRIA value

1 RPS15 ribosomal protein S15 Protein Coding 0.168

2 TBC1D5 TBC1 Domain Family Member 5 Protein Coding 0.089

3 CUL2 Cullin 2 Protein Coding 0.093

4 SMPD3 Sphingomyelin Phosphodiesterase 3 Protein Coding 0.089

5 CTAGE10P CTAGE Family Member 10, Pseudogene Pseudogene 0.071

6 C1orf98 Chromosome 1 Open Reading Frame 98 Protein Coding 0.043

7 ZNF281 Zinc Finger Protein 281 Protein Coding 0.061

8 CDKN2A Cyclin Dependent Kinase Inhibitor 2A Protein Coding 0.161

9 EGFR Epidermal Growth Factor Receptor Protein Coding 0.121

10 TMEM98 Transmembrane Protein 98 Protein Coding 0.103

11 CTBP2 C-Terminal Binding Protein 2 Protein Coding 0.083

12 SEMA6A Semaphorin 6A Protein Coding 0.081

13 MIR1208 MicroRNA 1208 RNA Gene 0.077

14 RBFOX1 RNA Binding Fox-1 Homolog 1 Protein Coding 0.069

15 CDC25A Cell Division Cycle 25A Protein Coding 0.066

FIGURE 2 | Classification accuracies of three classifiers (CatBoost, LightGBM and SVM) with different numbers of features during the IFS procedure. The top 200

feature genes are selected by CRIA method.

where TP, TN , FP, and FN denotes the numbers of
true positives, true negatives, false positives, and false
negatives respectively.

The CRIA and IFS Results
As mentioned in section Evaluation Metrics of Experimental
Results, each sample is represented by 24,174 features, each of
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TABLE 7 | Average performance of precision, recall and F1-score on 10 test datasets with three classifiers via ten-fold cross-validation (%).

Metrics UCEC KIRC OV GBM COAD/

READ

BRCA

Precision CRIA_CatBoost 74.31 93.74 84.59 94.63 89.67 84.48

CRIA_SVM 70.47 90.33 85.40 95.64 88.54 84.76

CRIA_LightGBM 71.46 93.37 82.84 95.72 90.23 84.71

Recall CRIA_CatBoost 73.14 91.63 87.90 90.76 86.09 88.67

CRIA_SVM 73.81 89.59 88.43 89.70 83.30 87.96

CRIA_LightGBM 72.91 92.04 89.32 91.30 83.48 87.01

F1-score CRIA_CatBoost 73.72 92.67 86.21 92.65 87.84 86.52

CRIA_SVM 72.13 89.96 86.89 92.57 85.84 86.33

CRIA_LightGBM 72.18 92.70 85.96 93.46 86.72 85.84

which indicates the expression level of genes. The 24174 feature
genes are sorted by CRIA value in descending order. However, we
only select the top 200 features in this work for the consideration
of computational time and curse of dimensionality. The top 15
key feature genes chosen by CRIA defined by equation (26) are
listed in Table 6.

We use the Incremental Gene selection (IFS) (Yang et al.,
2019) to determine the optimal feature set. The first 200 features
are added one by one to a feature subset in order. Each time
a feature is added, a classifier is trained and examined. So, 200
classifiers are constructed. We use the criteria of accuracy to
evaluate the performance of all the 200 classifiers and then we
choose the classifier with the highest accuracy as the final one.
The corresponding feature subset that the final classifier used is
deemed to be the optimal feature set.

In this paper, three commonly used classifiers are adopted
to verify the generalization performance of the proposed gene
selectionmethod on different classifiers. ten-fold cross-validation
is used to evaluate our algorithm with the selected features. The
complete data set is randomly split into 10 parts of approximately
equal size. The three classifiers are trained 10 times; nine of the
10 subsets are used as the training datasets, and the remaining
one is the test dataset. The average values of accuracy for each
classifier are calculated and the IFS results are shown in Figure 2.
Here, we name our methods as CRIA_CatBoost, CRIA_SVM
and CRIA_LightGBM. From Figure 2, it can be seen that the
highest accuracy of 86.90% for CRIA_CatBoost method followed
by 86.41% for CRIA_LightGBM and 85.98% for CRIA_SVM
method, with only using the CNVs of 131 genes, 138 genes and
122 genes respectively.

The Proposed Algorithm Performance
For the different classifiers used in this work, after determining
the optimal numbers of features according to the CRIA and IFS
results, the classification performance can be further analyzed.
The average values of three metrics-precision, recall and F1-score
defined in Equation (35) on 10 test datasets are listed in Table 7.

Performance Comparison With Other
Methods
After selecting important features, we use three common
classifiers—CatBoost, SVM and LightGBM to predict cancer

TABLE 8 | Performance comparison of the proposed algorithm predictions with

those of other methods (%).

Cancer Predictor Precision Recall F1-score

UCEC CRIA_CatBoost 74.31 73.14 73.72

CRIA_SVM 70.47 73.81 72.13

CRIA_LightGBM 71.46 72.91 72.18

CNA_origin 67.92 72.00 69.90

mRMR_Dagging 74.19 46.93 57.50

KIRC CRIA_CatBoost 93.74 91.63 92.67

CRIA_SVM 90.33 89.59 89.96

CRIA_LightGBM 93.37 92.04 92.70

CNA_origin 88.89 96.00 92.31

mRMR_Dagging 80.85 92.68 86.36

OV CRIA_CatBoost 84.59 87.90 86.21

CRIA_SVM 85.40 88.43 86.89

CRIA_LightGBM 82.84 89.32 85.96

CNA_origin 89.80 86.72 88.00

mRMR_Dagging 84.61 75.86 80.00

GBM CRIA_CatBoost 94.63 90.76 92.65

CRIA_SVM 95.64 89.70 92.57

CRIA_LightGBM 95.72 91.30 93.46

CNA_origin 93.10 84.38 88.52

mRMR_Dagging 88.70 85.93 87.30

COADREAD CRIA_CatBoost 89.67 86.09 87.84

CRIA_SVM 88.54 83.30 85.84

CRIA_LightGBM 90.23 83.48 86.72

CNA_origin 81.58 73.81 77.50

mRMR_Dagging 60.00 73.46 66.05

BRCA CRIA_CatBoost 84.48 88.67 86.52

CRIA_SVM 84.76 87.96 86.33

CRIA_LightGBM 84.71 87.01 85.84

CNA_origin 87.50 92.31 89.84

mRMR_Dagging 79.16 87.35 83.06

samples. The performance of our methods are compared
with other two classification methods published before whose
experimental dataset is the same as ours. Liang et al. (2020)
used a method called CNA_origin which was composed of
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FIGURE 3 | Performance comparison of 4 evaluation metrics: accuracy, precision, recall and F1-score among our methods and the other two algorithms (CNA_origin

and mRMR_Dagging).

a stacked autoencoder and an one-dimensional convolutional
neural network. The 24,174 gene features were extracted to 100
genes by the autoencoder, and then these 100 gene features were
put into the 1D CNN for classification (Liang et al., 2020). A
computationally method for cancer types classification proposed
by Zhang et al. (2016) was named as mRMR_Dagging here
because there was no specific method name given by authors.
It first used mRMR and IFS to select 19 of the 24,174 genes as
classification features, and then used the Dagging algorithm to
give the final results.

In Table 8, it can be seen that if the results of our methods
are superior to CNA_origin and mRMR_Dagging, they are
marked in bold. Similarly, if the largest of CNA_origin and
mRMR_Dagging results is better than our method, it is also
marked in bold. Table 8 demonstrated that the performance of
our methods is superior to CNA_origin and mRMR_Dagging for
UCEC, KIRC, GBM, and COADREAD. For UCEC, the recall
and F1-score of our methods (CRIA_Cat- Boost, CRIA_SVM
and CRIA_LightGBM) are all superior to CNA_origin and
mRMR_Dagging. The best precision of our methods is 0.12
percentage points higher than mRMR_Dagging. SVM and
LightGBM are slightly worse than mRMR_Dagging with
reductions of 5.28 and 3.82% in precision respectively. For KIRC,

the precision and F1-score are all superior to CNA_origin and
mRMR_Dagging except the F1-score of SVM, which performs
slightly worse than the CNA_origin with reductions of 2.61%.
Compared with the best, CNA_origin, the recall of our methods
are decreased by 4.77% for CatBoost, 7.15% for SVM and
4.30% for LightGBM. For OV, compared with CNA_origin,
the recall of our methods is at least increased by 1.36%. The
precision and F1-score are slightly worse than CNA_origin, with
reductions at most of 8.40, and 2.37%, respectively. For GBM
and COADREAD, our methods are better than CNA_origin and
mRMR_Dagging on all evaluation indicators. Compared with
the best of the other two algorithms, the worst precision of
our methods is increased by 1.64 and 8.53%, respectively, the
worst recall is increased by 4.39 and 12.86%, respectively, and
the worst F1-score is increased by 4.58 and 10.76%, respectively.
For BRCA, the worst among ourmethods performs slightly worse
than the best CNA_origin algorithm, with reductions of 3.57% in
precision, 6.09% in recall and 4.66% in F1-score respectively.

In addition, the macro-average results of four evaluation
metrics: accuracy, precision, recall and F1-score are used to
assess our methods and the other two algorithms on the
datasets of six types of cancers. The results can be seen in
Figure 3. For accuracy, our methods have mean values of
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FIGURE 4 | Confusion matrices on the test groups: (A) CRIA_CatBoost; (B) CRIA_SVM; (C) CRIA_LightGBM.

86.90% for CatBoost, 86.41% for LightGBM and 85.98% for
SVM respectively, which are increased by 3.69, 3.10, and 2.59%
compared with CNA_origin. For precision, the average values of
our methods are 86.61, 86.39, and 85.86%, which are increased by
3.49, 3.23, and 2.59%, respectively compared with the best among
CNA_origin and mRMR_Dagging. For recall, our methods’
mean values are 86.37, 86.01, and 85.47%, which are 2.92, 2.56
and 2.02 percentage points higher than CNA_origin, respectively.
For F1-score, compared with our methods, whose average values
are 86.60, 86.14, and 85.62%, CNA_origin is decreased by 3.71,
3.19, and 2.60%, respectively.

Further Discussion
In order to study the relationship between the classes, we
also summarize the confusion matrices in Figure 4 for class
predictions using our methods. From Figure 4, we can find that

there existed a high error rate when predicting the samples of
UCEC. Regardless of whether it is CRIA_CatBoost, CRIA_SVM
or CRIA_LightGBM, more than 10% of the UCEC samples
are incorrectly predicted as OV and BRCA. In Figure 4A,
14.00% of UCEC samples are predicted as OV, while 11.06%
of UCECsamples are predicted to be BRCA. In Figure 4B,
14.45 and 11.74% of UCEC samples are predicted as OV and
BRCA respectively. In Figure 4C, 13.32 and 12.42% of UCEC
samples are predicted as OV and BRCA respectively. The reasons
may be that UCEC, OV and BRCA are hormone-dependent
tumors and they relate closely in tumorigenesis. The 16 and
27 risk regions were identified by an independent genome-wide
association study (GWAS) on endometrial cancer and ovarian
cancer, respectively (Glubb et al., 2020). Studies have shown that
mutations in breast cancer susceptibility genes (BRCA1, BRCA2)
have a relationship in hereditary ovarian cancer. Mutations
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at either end of the BRCA1 gene increase a person’s risk of
breast cancer, and its probability is higher than ovarian cancer.
However, mutations in the middle of the BRCA1 gene put a
person at a higher risk of ovarian cancer than breast cancer (Shi
et al., 2017). In addition, there is also a study indicated that
UCEC, OV and BRCA all have a relationship with the changes
in estrogen and estrogen receptors (Rodriguez et al., 2019).

CONCLUSIONS

In this paper, we introduce a gene selection algorithm—CRIA.
We firstly apply this algorithm to 5 datasets and verify the
effective performance of CRIA through comparison with other
eight gene selection algorithms. The proposed algorithm can
select features which are closely related to the class label. Then,
we use this algorithm to select 200 genes that have a close
relationship with cancer types from 24,174 genes features based
on the value of copy number variations in the samples, and
then combine three common classifiers—CatBoost, SVM and
LightGBM to predict the type of cancer. Our experimental results
show that our methods have higher accuracies than the state-
of-the-art methods for solving this problem. Our research has
a certain degree of interpretability for cancer-related researches
at the genetic level. As we all know, cancer is closely related
to gene structural variations and the appearance of cancer is
often accompanied by abnormalities in the deoxyribonucleic
acid (DNA) sequence. Because CNVs is one of the most crucial
structural variations of genes, studying the relationship between
cancers and CNVs is of great significance. Many studies have
tried to utilize the genetic information of cancers to predict
cancer type, which can provide significant guidance for patient
care and cancer therapy in promptly.

The future direction of this work can continue to develop
from two aspects. First of all, because we only use the datasets
of six cancer types and the total number of samples is only 3,480
in this paper, by collecting data sets of other cancer types and
optimizing the proposed algorithm, we can continue to conduct
further research in the field of cancer classification based on copy
number variations. Moreover, integrating non-CNVs features
for the samples can be taken into consideration. In addition
to using CNVs for cancer prediction, we can also apply other
genetic information for cancer prediction, or combine several
biomarkers to reduce the error rate of classification as much
as possible.
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