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Vernalization is the promotion of flowering after prolonged exposure to cold. In
Arabidopsis thaliana, vernalization induces epigenetic silencing of the floral repressor
gene FLOWERING LOCUS C (FLC). Among the repressive epigenetic marks, the
trimethylation of lysine 27 on histone H3 proteins (H3K27me3) is a critical contributor to
the epigenetic silencing of FLC. The deposition of H3K27me3 is mediated by Polycomb
Repressive Complex 2 (PRC2). Conversely, the elimination of H3K27me3 is mediated
by histone demethylases, Jumonji-C domain-containing protein JMJ30 and its homolog
JMJ32. However, the role of JMJ30 and JMJ32 in vernalization is largely unknown.
In this study, we found that cold treatment dramatically reduced the expression levels
of JMJ30 and did not reduce those of JMJ32. Next, by using the genetic approach,
we found that the flowering of jmj30 jmj32 was accelerated under moderate vernalized
conditions. Under moderate vernalized conditions, the silencing of FLC occurred more
quickly in jmj30 jmj32 than in the wild type. These results suggested that the histone
demethylases JMJ30 and JMJ32 brake vernalization through the activation of FLC.
Our study suggested that PRC2 and Jumonji histone demethylases act in an opposing
manner to regulate flowering time via epigenetic modifications.

Keywords: Arabidopsis, devernalization, epigenetics, FLC, histone demethylase, H3K27me3, JMJ30, vernalization

INTRODUCTION

Flowering is a transition from vegetative growth to reproductive growth in the plant life cycle. Many
annual plants flower after being exposed to warm conditions in spring following prolonged winter
coldness (Chouard, 1960; Simpson and Dean, 2002). Acquisition of the ability to undergo flower-
bud formation induced by the cold is referred to as vernalization. In a model plant, Arabidopsis
thaliana, flowering is promoted by two pathways: (1) the vernalization pathway and (2) the
autonomous pathway (Sheldon et al., 2000; Simpson and Dean, 2002; Michaels et al., 2005), and
flowering is inhibited by the activity of a super transcriptional complex including the zinc finger
protein FRIGIDA (FRI; Li et al., 2018). The vernalization pathway and autonomous pathway
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repress the expression levels of the floral repressor gene
FLOWERING LOCUS C (FLC; Michaels and Amasino, 1999;
Sheldon et al., 1999, 2000; Simpson and Dean, 2002), and
they counteract FRI, which activates the expression of FLC
during the development of plants (Johanson et al., 2000). FLC
represses the two floral inducers FLOWERING LOCUS T (FT)
and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1
(SOC1; Hepworth et al., 2002; Michaels et al., 2005; Helliwell
et al., 2006; Searle et al., 2006). Therefore, stable silencing of FLC
is essential during the induction of floral buds.

The vernalization pathway has a primary role in the regulation
of FLC. First, cold treatment inactivates FRI by translocating
from an active FLC locus to nuclear condensates, resulting in
the downregulation of FLC (Whittaker and Dean, 2017; Zhu
et al., 2021). Second, the vernalization pathway triggers a key
repressive epigenetic modification of the FLC locus, including
the trimethylation of lysine 27 of histone H3 (H3K27me3), in
a stepwise fashion (Bastow et al., 2004; Whittaker and Dean,
2017). First, H3K27me3 is deposited at the nucleation region
of FLC by Polycomb Repressive Complex 2 (PRC2) during
vernalization. Second, after the transition from cold conditions
to warm and long-day conditions, the repressive mark spreads
to the entire FLC locus, and epigenetic marks are inherited
after DNA replication/cell cycle progression. The spreading and
maintenance of H3K27me3 on the FLC locus are dependent on
LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) and CURLY
LEAF (CLF; Yang et al., 2017). In contrast to the deposition of
H3K27me3 by PRC2, the elimination of H3K27me3 is regulated
by histone demethylases. Five Jumonji-C-domain containing
proteins (JMJs), JMJ11, JMJ12, JMJ13, JMJ30, and JMJ32, are
reported to have H3K27me3 removal activity (Lu F. et al., 2011;
Crevillen et al., 2014; Gan et al., 2014; Cui et al., 2016; Yan et al.,
2018). Among them, we previously discovered that JMJ30 and
JMJ32 are redundantly required for the prevention of extreme
early flowering under high-temperature conditions (Gan et al.,
2014). Under high-temperature conditions, JMJ30 and JMJ32
remove H3K27me3 from the FLC locus, resulting in upregulation
of the expression levels of FLC. However, the roles of JMJ30 and
JMJ32 in vernalization are still unclear.

Interestingly, we previously found that high temperature
induced the expression of JMJ30 and stabilized JMJ30 (Gan et al.,
2014). In addition, the vernalized state can be canceled by short-
term exposure to a high temperature. This is referred to as
devernalization (Purvis and Gregory, 1945; Gregory and Purvis,
1948). In the model plant Arabidopsis thaliana, the expression
levels of FLC are partially recovered after devernalization
(Périlleux et al., 2013). H3K27me3 is erased at the FLC locus
during devernalization (Bouché et al., 2015). We hypothesized
that high temperature might erase H3K27me3 from the FLC locus
via JMJ30. In this study, we tested this hypothesis by applying a
genetic approach.

In this study, we examined whether JMJ30 and JMJ32 are
involved in vernalization and devernalization in Arabidopsis
thaliana. We found that JMJ30 and JMJ32 play a role in
the molecular brake for vernalization and are not involved in
devernalization. This study provides novel insights into the role
of repressive histone marks in environmental responses in plants.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
All Arabidopsis thaliana seed stocks used in this study were in
the FRIsf−2 (Lee et al., 1993) background except pEstro:JMJ30
(Yamaguchi et al., 2021), which generated a Columbia (Col-
0) background. jmj30 jmj32 (Gan et al., 2014), flc-3 (Michaels
and Amasino, 1999), and the reporter line FLC-GUS (Noh and
Amasino, 2003; Michaels et al., 2005) were reported previously.
To generate multiple mutants and mutants harboring the
reporters, we performed crossings and genotyping. Arabidopsis
seeds were grown on 0.5% gellan gum or 1% agar with Murashige
and Skoog (MS). The plates were cultivated under constant light
conditions. To examine the flowering phenotypes, the plants were
cultivated in pots containing vermiculite and Metro-Mix (Sun
Gro Horticulture).

Experimental Conditions for the
Devernalization
We vernalized seeds 1 month after water absorption and sowed
them on a plate. After vernalization, we transferred the plates to
an incubator at 30◦ in the dark, cultivated them for 1 week, and
then transferred them to a plate at 22◦. For high reproducibility,
incubation at 30◦ should be performed in the dark under our
cultivation conditions.

Reverse-Transcription Polymerase Chain
Reaction and Quantitative
Reverse-Transcription–Polymerase
Chain Reaction
Samples were frozen in liquid nitrogen immediately. The
RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) was used
to extract total RNA. The RNase-Free DNase Set (Qiagen,
Germany) was used to eliminate the contamination of genomic
DNA from the RNA samples. Reverse-transcription PCR was
performed using PrimeScript RT Master Mix (Takara, Shiga,
Japan). Quantitative RT–PCR was applied as described previously
(Wang et al., 2020). Arabidopsis PP2A (for FLC) and EIF4A
(for JMJ30 and JMJ32) were used as the internal references.
Each experiment was repeated at least three times. The relative
expression level of each gene was calculated using the 2−11CT

method (Livak and Schmittgen, 2001). The primers are listed in
Supplementary Table 1.

β-glucuronidase Staining
Seedlings were fixed in 90% acetone for 30 min at room
temperature and subsequently stained with β-glucuronidase
(GUS) staining solution. The staining method was as described
previously (Gan et al., 2014; Shirakawa et al., 2014). After
GUS staining, samples were transparentized as described
previously (Shirakawa et al., 2009). Representative images were
photographed under an AXIO Zoom V16 (ZEISS) microscope.

Flowering Phenotype Analysis
To test the timing of flowering, including the number of
rosette or cauline leaves produced, we vernalized plants and
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then transferred them into soil cultivation conditions. We
cultivated plants until the boltings of the primary stems and
then counted the number of leaves, as described previously
(Shirakawa et al., 2021).

Chromatin
Immunoprecipitation-Quantitative
Polymerase Chain Reaction
Chromatin immunoprecipitation experiments were performed
as previously described with minor modifications (Gan
et al., 2014; Yamaguchi et al., 2014; Shirakawa et al., 2021).
Briefly, total chromatin was extracted from the seedlings and
immunoprecipitated using anti-H3K27me3 (Abcam, Cat. No.
ab6002). The DNA fragments were recovered by QIAquick
PCR Purification Kit (QIAGEN, Cat. No. 28106). qPCR with
gene-specific primers (Supplementary Table 1) was performed
on a LightCycler 480 System II (Roche) using a FastStart Essential
DNA Green Master (Roche, Cat. No. 06924204001). Values of
percent input of target loci were calibrated by values of percent
input of AGAMOUS loci. The experiments were repeated three
and six times for NV and V2W, respectively. The statistical
significance was evaluated by two-tailed Student’s t-test.

Data Statistics and Availability
In this study, one-way ANOVA followed by the Tukey–Kramer
test or two-tailed Student’s t-test was performed to detect the
differences as required.

RESULTS

The Expression Levels of JMJ30, Not
JMJ32, Were Gradually Reduced by Cold
Treatment
First, we examined whether the expression levels of JMJ30 and
JMJ32 were changed during vernalization. After water absorption
by the seeds, we incubated them under various periods of cold
treatment (from 0 h to 4 weeks) in the dark. Then, we germinated
them on gellan gum plates and compared the expression levels
of two genes, JMJ30, and JMJ32, in the seedlings at 3 days after
germination (Figure 1). Interestingly, the expression levels of
JMJ30 started to decrease after 6 h of cold treatment, and they
reached their minimum level after 1 week of cold treatment and
were maintained at the minimum level for 4 weeks (Figure 1A;
labeled “f” in one-way ANOVA followed by the Tukey–Kramer
test). Unlike JMJ30, the expression levels of JMJ32 were not
changed by cold treatment (Figure 1B). These results suggested
that a reduction of the expression levels of JMJ30 occurred
quickly after cold treatment; however, the activities of JMJ30 and
32 remained after cold treatments.

jmj30 jmj32 Exhibited an Early Flowering
Phenotype Under Partial Vernalized
Conditions
To clarify the roles of JMJ30 and JMJ32 in vernalization, we
compared the flowering time between wild-type and jmj30

jmj32 doublemutants harboring the active FRIGIDA gene
(hereafter, wild-type and jmj30 jmj32) (Figure 2). We did
not test single mutants of jmj30 and jmj32 because they
are redundantly required for the prevention of heat-induced
extreme early flowering (Gan et al., 2014). In the non-
vernalized conditions, jmj30 jmj32 showed a slightly early
flowering phenotype [Figure 2B; the total number of leaves:
85.45 (wild type) vs. 80.45 (jmj30 jmj32)]. Under the vernalized
conditions of 2 weeks, jmj30 jmj32 showed a clear early
flowering phenotype [Figure 2B; the total number of leaves:
75.5 (wild type) vs. 62.35 (jmj30 jmj32)] because the difference
in the total number of leaves was larger than that in the
non-vernalized condition. Under the vernalized conditions of
4 weeks, jmj30 jmj32 showed an early flowering phenotype
[Figure 2B; the total number of leaves: 41.1 (wild type)
vs. 33.5 (jmj30 jmj32)]; however, the difference in the total
number of leaves was smaller than that under the vernalized
conditions of 2 weeks. Finally, under the fully vernalized
conditions of 6 weeks, jmj30 jmj32 showed a similar timing
of flowering as the wild type (Figure 2B). Collectively, these
results suggested that JMJ30 and JMJ32 modulate the speed
of vernalization.

jmj30 jmj32 Showed Reduced Expression
Levels of FLC in the Partial Vernalized
Conditions
Next, we examined whether JMJ30 and JMJ32 modulate the
speed of vernalization through the expression levels of FLC. By
quantitative polymerase chain reaction (qPCR) analysis, in the
partially vernalized conditions (V2W and V4W), we found a
significant reduction in FLC expression in jmj30 jmj32 compared
with the wild type (Figure 3A). In addition, we compared the
spatiotemporal expression patterns of FLC::GUS between wild
type and jmj30 jmj32 (Figure 3B and Supplementary Figure 1).
Under V2W and V4W conditions, the expression levels of
FLC in both cotyledons and rosette leaves of jmj30 jmj32 were
lower than those in wild type. These results suggested that
lower expression levels of FLC triggered the early flowering
phenotype of jmj30 jmj32 in the partially vernalized conditions.
To clarify the genetic pathway between JMJs and FLC, we
generated triple mutants, flc jmj30 jmj32. Under non-vernalized
conditions, flc exhibited the extreme early flowering phenotype
[Figures 3C,D; the total number of leaves: 85.45 (wild type)
vs. 13.8 (flc)]. flc jmj30 jmj32 also showed the extreme early
flowering phenotype [Figures 3C,D; the total number of leaves:
13.85 (flc jmj30 jmj32)]. These results suggested that FLC is
genetically epistatic to JMJ30 and JMJ32 in flowering. Combined
with the data in Figures 3A,B, we concluded that JMJ30 and
JMJ32 act upstream of FLC. Under high-temperature conditions,
JMJ30 and JMJ32 are required for the elimination of H3K27me3
from the FLC locus. We examined whether the accumulation
levels of H3K27me3 on the FLC locus were changed in jmj30
jmj32 under partial vernalized conditions. We found that the
accumulation levels of H3K27me3 on the nucleation region
of the FLC locus were slightly but statistically significantly
increased in jmj30 jmj32 under partially vernalized conditions
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FIGURE 1 | The gradual reduction in the expression levels of JMJ30 during vernalization. The expression levels of endogenous JMJ30 (A) and JMJ32 (B) in
seedlings at 3 days after germination. Seeds were treated with different lengths of cold (h, hour; D, day; W, week) in the dark after water absorption. Error bars
represent SD. One-way ANOVA followed by the Tukey–Kramer test was performed (p < 0.05). Different letters indicate significant differences, while the same letters
indicate non-significant differences.

FIGURE 2 | jmj30 jmj32 exhibited the early flowering phenotype under the partial vernalized conditions. (A) Photographs of wild type and jmj30 jmj32 under different
vernalized conditions (NV, non-vernalization; V2/4/6W, vernalization at 2/4/6 weeks). (B) Number of leaves, including cauline (gray) and rosette (black) leaves. Error
bars represent SD. One-way ANOVA followed by the Tukey–Kramer test was performed (p < 0.05). Different letters indicate significant differences, while the same
letters indicate non-significant differences.

(V2W), while no clear changes were observed under non-
vernalized conditions (NV) in multiple biological replicates
(Figure 3E). Taken together, these results suggested that JMJ30
and JMJ32 modulate flowering time through the regulation of
FLC during vernalization.

Overexpression of JMJ30 Can Confer the
Late-Flowering Phenotype
We generated transgenic plants, pEstro:JMJ30 (Yamaguchi
et al., 2021), in which JMJ30 was overexpressed when we
treated them with estrogen (Figure 4). In contrast to jmj30
jmj32, pEstro:JMJ30 with estrogen treatment showed a slight
late-flowering phenotype compared with the line without
estrogen treatment (Figures 4A,B). Estrogen treatment induced
upregulation of FLC (Figure 4C). These results suggest that
overexpression of JMJ30 may be able to confer the late-flowering

phenotype through the regulation of FLC. JMJ30 is one of the key
factors regulating flowering time in Arabidopsis.

The Devernalization Occurred in jmj30
jmj32
Devernalization is a reversion of vernalized status to non-
vernalized status by heat. It was reported that H3K27me3 on
the FLC locus was reduced after heat treatment (Bouché et al.,
2015). In addition, we previously found that heat induced the
upregulation of JMJ30 and the stabilization of JMJ30 (Gan
et al., 2014). Combining these results, we hypothesized that
heat-activated JMJ30 might eliminate H3K27me3 from the
FLC locus during devernalization. First, we established the
experimental conditions for devernalization using Arabidopsis.
We vernalized the seeds at 4◦ in the dark and then transferred
them to 30◦ in the dark (Figure 5A). These plants showed
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FIGURE 3 | JMJ30 and JMJ32 modulate flowering time through the regulation of FLC during vernalization. (A) The expression levels of endogenous FLC of wild type
and jmj30 jmj32 in different vernalized conditions (NV, non-vernalization; V2/4/6W, vernalization at 2/4/6 weeks). Error bars represent SD. One-way ANOVA followed
by the Tukey–Kramer test was performed (p < 0.05). Different letters indicate significant differences, while the same letters indicate non-significant differences.
(B) GUS staining of seedlings of FLC::GUS and FLC::GUS jmj30 jmj32 after vernalization for 2 weeks. Arrows indicate cotyledons, and arrowheads indicate true
leaves. (C) Photographs of wild type, flc, and flc jmj30 jmj32 in non-vernalized conditions. (D) Quantification of the flowering time of wild type, flc, and flc jmj30 jmj32
under non-vernalized conditions. Number of leaves including cauline (gray) and rosette (black) leaves. Error bars represent SD. One-way ANOVA followed by the
Tukey–Kramer test was performed (p < 0.05). Different letters indicate significant differences, while the same letters indicate non-significant differences. Note that flc
and flc jmj30 jmj32 showed an extreme early flowering phenotype to a similar extent. (E) Accumulation levels of H3K27me3 in wild type (white) and jmj30 jmj32 (light
blue) in the FLC locus under NV (left) and V2W (right) conditions. A schematic image of FLC locus and a neighboring gene (NG), At5g10130 was shown. Gray box
indicates 5′-UTR and black box indicates first exon. N1 is located at the nucleation region of FLC. Note that in the V2W condition, higher levels of H3K27me3 were
detected at N1 region in jmj30 jmj32 than in the wild type. Values of percent input of target loci were calibrated by values of percent input of AGAMOUS loci. The
experiments were repeated three and six times for NV and V2W, respectively. ∗p < 0.01; ns, not significant (two-tailed Student’s t-test).

a late flowering phenotype compared with vernalized plants
[Figures 5B,C; the total number of leaves: 32.1 (V4W) vs.
59.3 (V4W + 30◦C)]. Upon heat treatment, jmj30 jmj32

showed a late flowering phenotype compared with vernalized
jmj30 jmj32 [Figures 5B,C; the total number of leaves: 24.3
(V4W) vs. 50.7 (V4W + 30◦C)]. These results suggested
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FIGURE 4 | Overexpression of JMJ30 conferred the late flowering phenotype.
(A) Photograph of pEstro:JMJ30 treated without (left) and with (right)
estrogen. Arrows indicate the flowers. (B) Quantification of the number of
cauline (gray) and rosette (black) leaves of pEstro:JMJ30 treated without (left)
and with (right) estrogen. Error bars represent SD. ∗p < 0.05 (Student’s t-test).
(C) Quantification of the expression levels of FLC in wild-type and
pEstro:JMJ30 treated without (left) and with (right) estrogen. Error bars
represent SD. One-way ANOVA followed by the Tukey–Kramer test was
performed (p < 0.05). Different letters indicate significant differences, while the
same letters indicate non-significant differences. Note that estrogen
treatments did not alter the expression levels of FLC in the wild type; however,
in pEstro:JMJ30, the same treatments upregulated the expression levels of
FLC.

that devernalization occurred even in jmj30 jmj32. Consistent
with this, heat-treated jmj30 jmj32 expressed 1.7-fold higher
levels of FLC than vernalized jmj30 jmj32, as the wild-type
did (Figure 5D). Taken together, these results suggested that
JMJ30 and JMJ32 were not key factors for devernalization in
Arabidopsis, although we could not exclude the possibility that
JMJ30 and JMJ32 work with other histone demethylases during
devernalization.

FIGURE 5 | Devernalization occurred in jmj30 jmj32. (A) Schematic diagram
of the experimental conditions. For the vernalized conditions (V4W), we
incubated the seeds at 4◦ (blue) after water absorption and then cultivated
them for a week at 22◦ (green) followed by sampling for RNA extraction. For
devernalized conditions (V4W + 30◦C), after vernalization, we transferred the
plate at 30◦ in the dark (red) and then cultivated it at 22◦. (B) Photographs of
wild type and jmj30 jmj32 in vernalized conditions (left) and devernalized
conditions (right). (C) Quantification of the number of cauline (gray) and rosette
(black) leaves of wild-type and jmj30 jmj32 plants under vernalized conditions
(left) and devernalized conditions (right). Error bars represent SD. One-way
ANOVA followed by the Tukey–Kramer test was performed (p < 0.05).
Different letters indicate significant differences, while the same letters indicate
non-significant differences. (D) The ratio of FLC expression between
V4W + 30◦C and V4W. ns, not significant (Student’s t-test).

DISCUSSION

JMJ30 and JMJ32 in the Vernalization
Process
Histone demethylases involved in the vernalization pathway
have not been identified. In this study, we showed that JMJ30
and JMJ32 act as molecular brakes for vernalization through
the regulation of FLC in Arabidopsis (Figures 1–4). First,
the loss-of-function mutants jmj30 jmj32 exhibited an early
flowering phenotype under partial vernalization conditions
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(Figure 2). Second, the levels of these early flowering phenotypes
under different vernalized conditions were fairly consistent
with the expression levels of FLC, and the genetic interaction
with FLC indicated that JMJ30 and JMJ32 were upstream
factors for FLC (Figure 3). Third, the deposition of H3K27me3
was enhanced in jmj30 jmj32 at the FLC locus in partial
vernalized conditions. Finally, the inducible overexpression of
JMJ30 caused the late-flowering phenotype via FLC regulation
(Figure 4). Similar results were obtained by using a constitutive
overexpression line of JMJ30 (Gan et al., 2014). We found a cold-
inducible reduction in JMJ30 (Figure 1). To reduce the levels of
JMJ30, plants may prepare for the start of vernalization. Future
work will identify upstream factors for the cold inducibility
of JMJ30.

Molecular Mechanisms of
Devernalization
In this study, we found that devernalization was triggered in
jmj30 jmj32 by heat, resulting in the upregulation of FLC and
delayed flowering (Figure 5). These results suggested that JMJ30
and JMJ32 were not essential factors for devernalization in
Arabidopsis, although we do not exclude the possibility that
the other three jumonji proteins, JMJ11, JMJ12, and JMJ13,
redundantly function in devernalization with JMJ30 and JMJ32
(Lu F. et al., 2011; Crevillen et al., 2014; Cui et al., 2016; Yan
et al., 2018). It was reported that devernalized plants exhibited
lower accumulation levels of H3K27me3 on the locus than
vernalized plants (Bouché et al., 2015). However, it is largely
unknown whether devernalization is induced by the active
demethylation of de novo deposited H3K27me3. There are two
additional targets of devernalization. For the stable silencing of
FLC after vernalization, the spreading of H3K27me3 to the whole
FLC genomic region and the maintenance of H3K27me3, de
novo deposition of H3K27me3 into newly incorporated histones
during cell division/DNA replication are required. Heat may
inhibit these processes. LHP1 and CLF are required for the
spreading and maintenance of H3K27me3 in the FLC locus
and are not required for the deposition of H3K27me3 in the
nucleation region of FLC, where H3K27me3 is deposited first
after cold treatment (Yang et al., 2017). Interestingly, it was
reported that FLC in lhp1 and clf was slightly and gradually
reactivated after vernalization. The levels of FLC reactivation
are very similar to those in heat-induced (Périlleux et al., 2013)
and chemical-induced reactivation (Shirakawa et al., 2021). It
is interesting to question whether heat affects the activity and
stability of LHP1 and CLF and whether devernalization responses
occur in mutants. Future works involving time course analysis
of H3K27me3 during devernalization will provide detailed
insights into the molecular mechanisms of devernalization. Other
epigenetic marks, such as H3K4me3 and H3K9me2 may be
involved in devernalization.

Multiple Roles of JMJ30 and JMJ32 in
Arabidopsis
In their roles in flowering, JMJ30 and JMJ32 are required
for abscisic acid (ABA) and brassinosteroid (BR) responses

(Wu et al., 2019a,b, 2020), acclimation to high temperature
(Yamaguchi, 2021a,b; Yamaguchi et al., 2021; Yamaguchi and Ito,
2021a,b), callus formation (Lee et al., 2018) and the regulation
of period length (Lu S. X. et al., 2011). In addition, it has been
reported that the expression of JMJ30 and the stability of JMJ30
are regulated by heat (Gan et al., 2014). However, the upstream
factors affecting JMJ30 expression and the stabilizer of JMJ30
are largely unknown. Future work will identify such factors. The
functions of JMJ30 and JMJ32 in other plant species are still open
questions to be addressed.
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