
Frontiers in Plant Science | www.frontiersin.org 1 April 2022 | Volume 13 | Article 837726

ORIGINAL RESEARCH
published: 28 April 2022

doi: 10.3389/fpls.2022.837726

Edited by: 
Ian Stavness,  

University of Saskatchewan,  
Canada

Reviewed by: 
Xin Zhang,  

Mississippi State University,  
United States

Thiago Teixeira Santos,  
Brazilian Agricultural Research 

Corporation (EMBRAPA), Brazil

*Correspondence: 
Muthukumar V. Bagavathiannan  

muthu@tamu.edu

Specialty section: 
This article was submitted to  

Technical Advances in Plant Science,  
a section of the journal  

Frontiers in Plant Science

Received: 17 December 2021
Accepted: 30 March 2022

Published: 28 April 2022

Citation:
Sapkota BB, Hu C and 

Bagavathiannan MV (2022) 
Evaluating Cross-Applicability of 
Weed Detection Models Across 

Different Crops in Similar Production 
Environments.

Front. Plant Sci. 13:837726.
doi: 10.3389/fpls.2022.837726

Evaluating Cross-Applicability of 
Weed Detection Models Across 
Different Crops in Similar Production 
Environments
Bishwa B. Sapkota 1, Chengsong Hu 1,2 and Muthukumar V. Bagavathiannan 1*

1 Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States, 2 Department of Biological 
and Agricultural Engineering, College Station, TX, United States

Convolutional neural networks (CNNs) have revolutionized the weed detection process with 
tremendous improvements in precision and accuracy. However, training these models is 
time-consuming and computationally demanding; thus, training weed detection models for 
every crop-weed environment may not be  feasible. It is imperative to evaluate how a 
CNN-based weed detection model trained for a specific crop may perform in other crops. In 
this study, a CNN model was trained to detect morningglories and grasses in cotton. 
Assessments were made to gauge the potential of the very model in detecting the same 
weed species in soybean and corn under two levels of detection complexity (levels 1 and 2). 
Two popular object detection frameworks, YOLOv4 and Faster R-CNN, were trained to detect 
weeds under two schemes: Detect_Weed (detecting at weed/crop level) and Detect_Species 
(detecting at weed species level). In addition, the main cotton dataset was supplemented 
with different amounts of non-cotton crop images to see if cross-crop applicability can 
be improved. Both frameworks achieved reasonably high accuracy levels for the cotton test 
datasets under both schemes (Average Precision-AP: 0.83–0.88 and Mean Average 
Precision-mAP: 0.65–0.79). The same models performed differently over other crops under 
both frameworks (AP: 0.33–0.83 and mAP: 0.40–0.85). In particular, relatively higher accuracies 
were observed for soybean than for corn, and also for complexity level 1 than for level 2. 
Significant improvements in cross-crop applicability were further observed when additional 
corn and soybean images were added to the model training. These findings provide valuable 
insights into improving global applicability of weed detection models.

Keywords: deep learning, CNNs, digital technologies, precision weed control, site-specific weed management, 
precision agriculture

INTRODUCTION

Weeds are major pests in agricultural landscapes that can cause serious crop yield losses (Buchanan 
and Burns, 1970; Nave and Wax, 1971). A multi-tactic approach to weed management has become 
vital to thwart herbicide-resistant weed issues in global cropping systems (Bagavathiannan and 
Davis, 2018), and site-specificity is expected to improve control outcomes and conserve management 
inputs (Beckie et  al., 2019). Injudicious use of agrochemicals has been linked to negative effects 
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on non-target organisms and the broader environment (Liu and 
Bruch, 2020). Under the conventional broadcast approach, weed 
control tactics are applied without any regard to weed distribution 
and densities in the field. Weeds that escape the pre-emergent 
herbicides or mechanical tillage typically occur sparsely across 
the field. In such situations, weed control tactics can instead 
be strictly focused on areas of weed occurrence to save resources 
(Berge et  al., 2012). In recent years, great efforts have been 
placed for developing and utilizing ground robots (Kargar and 
Shirzadifar, 2013; Aravind et  al., 2015; Sujaritha et  al., 2017; 
Lottes et  al., 2019) and unmanned aerial systems (UAS) for 
site-specific weed control (Ahmad et al., 2020; Martin et al., 2020).

The precision weed control platforms ranging from ground 
robots to UAS-based selective spraying systems depend greatly 
on weed detection using computer vision techniques (Liu and 
Bruch, 2020; Machleb et  al., 2020). The overall approach is 
to detect weeds in digital images and use the local or real 
world coordinates of the detected objects for site-specific control 
operations (López-Granados, 2011). In addition to weed control, 
these techniques offer tremendous opportunities for advancing 
weed ecology and biology research. Several image-based weed 
detection techniques have been proposed and implemented. 
Based on developments made so far, these techniques can 
be  broadly categorized into two main groups: (1) traditional 
segmentation and machine learning-based techniques (Wu et al., 
2011; Ahmed et al., 2012; Rumpf et  al., 2012; García-Santillán 
and Pajares, 2018; Sabzi et  al., 2018; Sapkota et  al., 2020) and 
(2) advanced computer vision using convolution neural networks 
(CNNs; Adhikari et  al., 2019; Ma et  al., 2019; Sharpe et  al., 
2020; Hu et  al., 2021; Xie et  al., 2021).

The CNNs are a specialized type of neural networks that are 
designed to extract multi-scale features and merge semantically 
similar features for better prediction and/or detection (LeCun 
et  al., 2015). The use of CNNs in weed detection tasks has 
gained great attention lately due to their ability to learn complex 
features through dense and rigorous feature representations (e.g., 
Xie et  al., 2021). The attention has been fostered by the transfer 
learning concept in CNN that allows the sharing of common 
model weights from pre-trained models across different tasks 
(Abdalla et  al., 2019; Fawakherji et  al., 2019). The CNN-based 
object detection models have witnessed remarkable breakthroughs 
recently, and some of the detectors that have been widely used 
today for various detection tasks are Fast R-CNN (Girshick, 
2015), Single-Shot Detector (Liu et  al., 2016), Faster R-CNN 
(Ren et  al., 2017), You  Only Look Once (YOLO; Redmon et  al., 
2016), YOLOv3 (Redmon and Farhadi, 2018), YOLOv4 
(Bochkovskiy et  al., 2020), and more recently YOLOv5.

With respect to weed detection, different CNN-based detection 
frameworks have been successfully applied for various tasks. Gao 
et al. (2020) used YOLOv3 and Tiny YOLO models for detection 
of Convolvulus sepium (hedge bindweed) in Beta vulgaris (sugar 
beets) using field-collected and synthetic images. Using the same 
models, Jiang et al. (2020) also detected both grass and broadleaf 
weed species, including Cirsium setosum, Descurainia sophia, 
Euphorbia helioscopia, Veronica didyma, and Avena fatua in 
UAS-based Red-Green-Blue (RGB) imageries. Sharpe et al. (2020) 
detected goosegrass [Eleusine indica (L.) Gaertn.] in handheld 

digital camera-derived images obtained from two different 
horticultural crops, strawberry, and tomato, using YOLOv3-tiny 
model. Using YOLOv3, Partel et  al. (2019) detected Portulaca 
spp. in pepper (Capsicum annum) for a precision spraying system. 
Yu et al. (2019) employed DetectNet to detect dandelion (Taraxacum 
officinale), ground ivy (Glechoma hederacea), and spotted spurge 
(Euphorbia maculata) in perennial ryegrass. Hu et  al. (2021) 
tested Faster R-CNN, DeepLabv3, and Mask R-CNN for broadleaf 
and grass weed detection in cotton (Gossypium hirsutum) and 
soybean (Glycine max) using UAS-borne high-resolution images.

Cross-applicability of the deep learning models for weed 
detection across different crops is vital for two important reasons. 
First, several weed species continuously occur in the rotational 
crops in a given production field [e.g., Amaranthus palmeri 
(Palmer amaranth) occurring in both soybean and corn (Zea 
mays) grown in rotation], and computer vision models should 
be  able to detect these weeds in all crops in the production 
system. Second, it is likely that the dominant weed species might 
be  similar across production fields within a locality, and the 
ability to use these models across multiple production fields 
might be  beneficial from efficiency and economic standpoint. 
This is because CNN models usually require a large set of 
annotated training images for better performance (Oquab et  al., 
2014; Gao et al., 2020), which can be  difficult to obtain at times.

When only the weeds are annotated in the images and trained 
for detection, the model considers the crops in the same images 
as part of the background during the training process. Therefore, 
during inference, different crops may mimic different backgrounds 
for the same trained weeds in the images. It is therefore unclear 
how changes in the background (crop species in our case) may 
affect weed detection accuracies for different object detection 
frameworks under different detection scenarios. To the best of 
our knowledge, no study has looked at the cross-applicability of 
weed detection models across three of the most popular row 
crops in the United  States: cotton, corn, and soybean. Such an 
investigation can further advance our understanding of weed 
detection models and help unleash their full potential.

The main goal of the study was to build a model for weed 
detection in cotton and investigate the use of the same model 
for detection of the same weed spectrum in corn and soybean. 
This study has two specific objectives: (1) build and evaluate 
models for weed detection in cotton under two weed detection 
schemes (detection of weeds at the meta-level, and detection 
at the individual weed species level), and (2) evaluate the 
performance of the cotton-based model on corn and soybean 
at different levels of detection complexity.

MATERIALS AND METHODS

Study Area and Experimental Setup
The study was conducted during the summers of 2020 and 2021 
at the Texas A&M AgriLife Research farm (30°32′15″N, 96°25′35″W; 
elevation: 60 m). The location is characterized by a sub-tropical 
climate, with an average monthly maximum and minimum air 
temperatures during the study period (May–June) of 32.3 and 
21.3°C, respectively. Glyphosate-resistant (Roundup Ready®) cotton 
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and glufosinate-resistant (Liberty Link®) soybean were planted 
in two separate strips (Figure  1) adjacent to each other on May 
1, 2020, and April 20, 2021, at the seeding rates of 100,000 and 
312,500 per hectare, respectively. Each crop was planted using 
a 4-row seed drill (row spacing: 1 m), with strip sizes of 16 m × 30 m 
(2020) or 8 m × 40 m (2021). In 2021, corn (Roundup Ready®) 
was also planted (8 m × 40 m) adjacent to these crops at a seeding 
rate of 150,000 ha−1. The fields were irrigated and fertilized as 
needed. The crops were grown following the recommended 
production practices for the region.

In this study, weeds that escaped preemergence and early 
postemergence herbicide applications were targeted for building 

and testing models. To this effect, postemergence applications 
of appropriate herbicides were made in all three crops following 
standard application procedures, resulting in random escapes 
at sufficient densities for imaging (Table  1). The dominant 
weed species in the study area were a mix of morningglories 
(Ipomoea spp.) that composed of tall morningglory (Ipomoea 
purpurea) and ivyleaf morningglory (Ipomoea hederacea), Texas 
millet (Urochloa texana), and johnsongrass (Sorghum halepense). 
Some other weed species occurred at low frequencies, including 
Palmer amaranth (Amaranthus palmeri), prostrate spurge 
(Euphorbia humistrata), and browntop panicum (Panicum 
fasiculatum). At the time of image collection, these weed species 

A

B

C

FIGURE 1 | (A) Study area (Texas A&M AgriLife Research Farm, Burleson County, TX, United States) and field setup for the 2 experimental years; (B) a multi-copter 
drone (Hylio Inc., Houston, TX, United States) attached with Fujifilm GFX100 (100 MP) camera; and (C) image datasets (top and bottom rows) collected under two 
different environmental conditions for cotton, soybean, and corn.
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occurred at different growth stages, from cotyledon to about 
five true leaves.

Workflow
The methodological workflow for this study involved three 
major steps: Data collection and management, model training, 
and model performance evaluation on different test datasets. 
See Figure  2 for a schematic diagram showing the workflow 
followed in this research. The following sections describe these 
three steps in more detail.

High-Resolution Digital Image Collection
A 100-megapixel FUJIFILM GFX100 medium format mirrorless 
RGB imaging camera was integrated with a multi-copter drone, 
Hylio AG-110 (Hylio Inc., TX, United  States) to capture high-
resolution aerial images of the crop fields (Figure 1). The images 
were captured by the drone operating at 4.9 m aboveground level 
and a speed of 0.61 m/s. The FUJIFILM GF 32–64 mm f/4 R 
LM WR lens was set at a focal length of 64 mm, shutter speed 
at 1/4,000 s, ISO at 1250, and f-stop at 8, which resulted in 
high-quality images with a spatial resolution of 0.274 mm/pixel 
at the given flying height. Under such configurations, image 
resolution and quality were sufficient for young grass seedlings 
to be  recognized in the images. However, the wind thrust (i.e., 
downwash) from the drone operation impacted some plants, 
causing them to look unreal in the images. They were excluded 
from the dataset before further analysis. All the images were 
stored in standard PNG format at 16-bit depth. Table 1 describes 
the details of the different image datasets collected in the study.

A total of three flights were made to capture images for all 
the crops in 2020 and 2021. Two image datasets for each crop 
(Cotton 1 & Cotton 2, Soybean 1 & Soybean 2, and Corn 1 & 
Corn 2) were acquired (Table  1). For each crop, the second 

image dataset (e.g., Cotton 2) differed from the first dataset with 
respect to crop growth stage, weed density, and image acquisition 
conditions. Cotton 1 was the prime dataset for this study as 
this consisted of cotton-weed images that were used for building 
the main model. This dataset was split into training (hereafter 
referred to as “Train100”), validation, and test datasets. Soybean 
1 and Corn 1 datasets were also partitioned similarly to supplement 
training and validation images to Train100 during cross-
applicability improvements later on. All images in Cotton 2, 
Soybean 2, and Corn 2 were used for testing purposes. Hereafter, 
these test datasets are referred to as “Cot1,” “Cot2,” “Soy1,” 
“Soy2,” “Corn1,” and “Corn2” for respective crops.

Weed Detection
Image Annotations
For this study, the images were annotated and recorded in 
COCO format as this format is inter-changeable to several 
formats quickly and easily. The VGG image annotator (Dutta 
and Zisserman, 2019) was used to annotate the weeds with 
bounding boxes in each image. The annotations were recorded 
for three categories: morningglories (MG), grasses (Grass), and 
other weed species (Other). Both Texas millet and johnsongrass 
seedlings were labeled as “Grass” during annotation as classifying 
them was not the scope of this study.

Weed Detection in Cotton
With respect to the first objective, i.e., develop and evaluate 
models for weed detection in cotton, the detection frameworks 
were trained with Train100. Train100 comprised of 8,580 
annotations altogether, out of which MG, Grass, and Other 
represented 19.3, 79.5, and 1.2%, respectively (Table  2). Two 
popular object detection frameworks, YOLOv4 and Faster R-CNN, 
were used in this study. YOLOv4 is the 4th subsequent version 

TABLE 1 | Various datasets used in the study.

Image dataset 
name

Acquisition 
date

Crop/growth 
stage

Weed composition/
growth stage

Weed 
density 

(plants m−2)

Image 
acquisition 
conditions

Train/Val/Test 
[images, 
annotations]

Annotation 
compositiona [MG, 
Grass, and Other]

1 Cotton 1 (Test data 
referred to as Cot1)

May 06, 
2020

Cotton: 4–5 
leaves

MG: cotyledon-4 leaves

JG: 2–3 leaves

TM: 2–3 leaves

18 Sunny Train: [460, 8,580]

Val: [100, 721]

Test: [100, 848]

[19.3, 79.5, 1.2]

[22.4, 74.2, 3.4]

[51.8, 48.1, 1.1]
2 Cotton 2 (referred to 

as Cot2)
June 13, 

2021
Cotton: 2–4 
leaves

MG: cotyledon-6 leaves

TM: 2–4 leaves

21 Partially 
cloudy

Test: [95, 600] [36, 63.8, 0.2]

3 Soybean 1 (Test data 
referred to as Soy1)

May 06, 
2020

Soybean: 6–7 
leaves

MG: cotyledon-4 leaves

JG: 2–3 leaves

TM: 2–3 leaves

17 Sunny Train: [115, 990]

Val: [25, 200]

Test: [100, 848]

[46.4, 53.48, 0.07]

[48.4, 50.8, 0.8]

[54.22, 43.22, 2.56]
4 Soybean 2 (referred 

to as Soy2)
May 14, 

2021
Soybean: 1–3 
leaves

MG: cotyledon-6 leaves

TM: 2–4 true leaves

21 Cloudy Test: [97, 547] [63.07, 35.4, 1.53]

5 Corn 1 (Test data 
referred to as Corn1)

May 07, 
2021

Corn: 2–3 
leaves

MG: cotyledon-3 leaves

JG: 2–3 leaves

TM: 2–3 leaves

18 Sunny Train: [115, 1,010]

Val: [25, 215]

Test: [100, 890]

[81.16, 16.75, 2.1]

[95.2, 4.1, 0.7]

[94.62, 4.9, 0.48]
6 Corn 2 (referred to as 

Corn2)
May 14, 

2021
Corn: 3–4 
leaves

MG: cotyledon-6 leaves

TM: 2–4 true leaves

23 Cloudy Test: [95, 559] [80.5, 17.5, 2]

Train, training; Val, validation; MG, morningglories; TM, texas millet; and JG, johnsongrass. 
aThe annotations statistics shown within the brackets are given in %.
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of the YOLO (Redmon et  al., 2016), developed recently by 
Bochkovskiy et  al. (2020). This framework is a one-stage object 
detector that divides images into several grids and calculates the 
probabilities that the cell grids belong to a certain class by 
computing several feature maps. The bounding boxes are then 
predicted based on grids with the highest probability for the 
respective classes. The detector sees the entire image during 
training and inferences for encoding contextual information about 
classes. Faster R-CNN is the subsequent version of Fast R-CNN 
(Girshick, 2015) developed by Ren et  al. (2017). In contrast to 
the YOLO frameworks, Faster R-CNN is a two-stage object 
detector composed of two modules working together. The first 
module is a Region Proposal Network (RPN) that proposes several 
candidate regions in the image. The second module is the detector 
that first extracts features from dense feature maps for the regions 
selected during RPN and then calculates the confidence score 
for each region that contains the object of interest (Girshick, 2015).

On-the-fly augmentation of data was carried out for both the 
frameworks. The “mosaic” augmentation (Bochkovskiy et al., 2020) 
was enabled for YOLOv4, whereas the “flip and resize” augmentation 

was performed with the default data loader when training Faster 
R-CNN. Pre-trained models as provided by the github sources 
(https://github.com/facebookresearch/detectron2 for Faster R-CNN 
and https://github.com/AlexeyAB/darknet for YOLOV4 for 
YOLOv4) were used for model initialization. A mini-batch Stochastic 
Gradient Descent method was used for model loss optimization 
for both frameworks. Faster R-CNN was trained for 50,000 
iterations whereas YOLOv4 was trained for 6,000 epochs. The 
definition for iterations and epochs for these frameworks implies 
different meanings and are explained in their respective github 
documentation resource. The model weights were saved after 
every certain number of iterations or epochs so that the weight 
resulting in the highest validation accuracy can be  chosen at the 
end for further analysis. Because of the differences in their 
detection mechanisms, these two frameworks could provide 
different results for the same detection problem. Hence, evaluation 
of these two frameworks can provide valuable insights into what 
level of accuracy can be expected for the given detection problem.

Hereafter, the model trained with Train100 is referred to as 
the “main cotton model.” Two different schemes were designed 

FIGURE 2 | Schematic showing the workflow used in the study. The study began with data collection using an UAV and the collected data were distributed for 
training and test datasets. Data management was followed by model training under two detection schemes: Detect_Weed (detecting at weed/crop level) and 
Detect_Species (detecting at weed species level). After the models were trained, they were evaluated on the test datasets (Other was excluded during the 
calculation of accuracy metrics). Average Precision (AP) and Mean Average Precision (mAP) was used as the metrics for performance evaluation.
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for weed detection. In the first scheme, hereafter referred to as 
“Detect_Weed,” frameworks were trained to detect weeds at the 
meta-level irrespective of the species. The label names for MG, 
Grass, and Other were merged and labeled as “Weed” while 
training under this scheme. However, in the second scheme, 
hereafter referred to as “Detect_Species,” frameworks were trained 
to detect weeds at the species level. For training this scheme, 
the original annotation dataset that had separate labels for MG, 
Grass, and Other were used. These schemes have different 
significance depending on how they are utilized for management. 
Currently, most of the mechanical platforms for real-time weed 
control employ “Detect_Weed” scheme for precision control 
actions (Gai et  al., 2020). In most of the existing commercial 
platforms, detectors are trained to only detect weeds, but not 
required to classify them at the species level, as the weeds are 
pulled, zapped, or clipped regardless of species in these platforms. 
However, selective herbicide spray systems would require detection 
and classification of individual weeds for species-specific herbicide 
input. Hence, it may be  informative to investigate how these 
two frameworks behave under these weed detection schemes.

Cross-Crop Applicability Analysis
With respect to the second objective, i.e., assess the scope and 
prospects for applying the main cotton models to corn and 
soybean, the performance of the main cotton models was evaluated 
for each test dataset. In addition, the four non-cotton test datasets 
(i.e., Soy1, Soy2, Corn1, and Corn2) were grouped into two 
complexity levels based on their similarity in weed pressure 
conditions and image acquisition environment. It was assumed 
that these factors would have more influence than the similarity 
between crops. Thus, Soy1 and Corn1 were grouped under 
complexity level 1, while Soy2, and Corn2 under level 2. Cot2 
was not grouped under any complexity level, but was rather 
considered as a replicate of Cot1. In the complexity level 1, the 

Soy1 and Corn1 differed from the Cotton 1 dataset only for 
the background crop species, whereas the weed density, growth 
stages of weeds, and image acquisition conditions were similar. 
In the complexity level 2, the datasets differed not only for the 
background crop species, but also for weed density, growth stages 
of weeds, and light conditions; these differences constitute a 
higher level of complexity to the weed detection process. Evaluations 
with these two complexity levels advance our understanding of 
the model performances under various environments.

Cross-Crop Applicability Improvement With Training Size 
Expansion
The third objective was to test if supplementing Train100 with 
additional training images from Soybean 1 and Corn 1 image 
datasets improves prediction for corn and soybean. As the 
frameworks were trained to recognize only the weeds and consider 
crops as part of the background, changes in crop species might 
confuse the frameworks as to what comprises the background. 
This confusion intensifies when the frameworks infer upon crop 
species that were never seen before. Due to this situation, it 
was assumed that exposing these unseen crops to the frameworks 
might help boost the confidence score for background. It was 
more desirable to achieve considerable improvement in the 
performance with a minimal number of Soybean 1 and Corn 
1 images. For this purpose, 10 additional training datasets were 
prepared by randomly selecting an equal proportion of soybean 
and corn images and adding them to the main train dataset 
(i.e., Train100) such that the new dataset size did not exceed 
150% of the Train100 size (Table  2). Both frameworks were 
trained independently using 10 different training datasets listed 
in Table  2 under the two detection schemes and were validated 
against test datasets. The same pre-trained models provided by 
the github source were used for model initialization for each 
training dataset. Moreover, configurations were also kept the 
same across training datasets for these two frameworks.

Accuracy Metrics for Performance Evaluation
The standard performance metric called Mean Average Precision 
(mAP) was calculated to assess the performance of weed 
detection under Detect_Species, whereas Average Precision (AP) 
was used as the performance metric for Detect_Weed. In recent 
years, these metrics have been frequently used to assess the 
accuracy of object detection tasks. mAP is a mean of AP 
calculated for each class to be detected/predicted by the model. 
AP for each class is calculated as the area under a precision-
recall curve. The area is determined in two stages. First, the 
recall values are evenly segmented to 11 parts starting from 
0 to 1. Second, the maximum precision value is measured at 
each level of recall and averaged to determine AP (Eq.  1).

 
AP

, ,
= ( )

Î ¼{ }
å1

11 0 0 1 0 2 1r
p r

. .
max

 
(1)

where p(max) represents maximum precision measured at 
respective recall (r) level.

Precision and recall values are in turn calculated using the 
Eqs  2, 3, respectively.

TABLE 2 | Various training datasets evaluated in the study for training YOLOv4 
and Faster R-CNN and annotations record for each training dataset.

Training 
dataset

Non-cotton 
images (%)a

Annotations

MG (%) Grass (%) Other (%) Total

Train100b 0 19.3 79.5 1.20 8,580
Train105 5 20.0 78.8 1.25 8,775
Train110 10 20.7 78.0 1.23 8,915
Train115 15 21.7 77.1 1.21 9,072
Train120 20 22.9 75.9 1.19 9,234
Train125 25 23.0 75.7 1.33 9,480
Train130 30 23.9 74.7 1.32 9,689
Train135 35 24.3 74.4 1.34 9,827
Train140 40 25.0 73.7 1.32 9,970
Train145 45 25.5 73.2 1.31 10,113
Train150 50 25.7 73.0 1.29 10,198

MG-Morningglories; Grass-Grass weeds; and Other-Weeds other than MG and Grass. 
aThe numerical figures in this column indicate the percentage of images added to 
Train100 (i.e., 460 images).
bTrain100 had a total of 460 cotton images and 0 non-cotton images.  
“Train100” represents the dataset with cotton images only, i.e., no non-cotton images. 
The last two digits of training dataset names represent the percentage of non-cotton 
images added to Train100 randomly for building the respective training dataset. The 
percentage was with respect to Train100.
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Precision =

+
TP

TP FP  
(2)

 
Recall =

+
TP

TP FN  
(3)

where TP, FP, and FN denote true positive, false positive, 
and false negative samples, respectively.

True positives, false positives, and false negatives are identified 
with the help of the Intersection over Union (IoU) ratio. This 
ratio is calculated by comparing the ground truth box with 
the model predicted box. If the ratio is above the user-defined 
threshold, the predicted box is labeled as TP. In this study, 
the threshold for IoU was set to 0.5. The mAP value ranges 
between 0 and 1, with 0 indicating null accuracy and 1 indicating 
perfect accuracy. Only the AP for MG and Grass were averaged 
to calculate mAP under Detect_Species. AP for Other were 
found to be  very low due to a very small test sample size 
during the evaluation which led to non-representative mAP 
values; thus, the accuracy for Other category was excluded 
during the evaluation process for both frameworks and schemes.

RESULTS AND DISCUSSION

Performance of the Main Cotton Model 
Over Cotton Test Datasets
Two popular object detection frameworks, YOLOv4 and Faster 
R-CNN were trained to detect weeds in cotton and non-cotton 
crops. Train100 was used to build two cotton-weed detection 
models under different detection schemes for each framework. 
Both YOLOv4 and Faster R-CNN provided reasonably fair accuracy 
levels under both detection schemes for Cot1 (Table  3). Under 
Detect_Species, AP was higher for MG compared to Grass. 
Although grasses were visible to naked eyes and also discernible 
in the images, the model failed to detect a few grass instances. 
On the contrary, the model led to over-detection (i.e., more plants 
were predicted than what was present) when these grasses had 
multiple tillers spread out. Lottes et al. (2018) also observed lower 
AP for grasses compared to broadleaves when they tested their 
weed detection model on UAV imageries. However, the opposite 
was true when they tested on images collected using a ground robot.

When the same models were tested over the second cotton 
dataset (i.e., Cot2) collected in 2021, the AP & mAP values 
declined by 12.5 & 14.5% and 11.7 & 22.5% for YOLOv4 and 
Faster R-CNN, respectively. Unlike Cot1, AP was higher for Grass 
than for MG for both frameworks under Detect_Species. It should 
be noted that Cot2 differed from Cot1  in three aspects: (1) Cot2 
had a relatively higher density of weeds and the median size of 
MG and Grass differed from that of Cot1, (2) some of the 
cotton plants in Cot2 had slightly different visual appearance 
due to herbicide drift, and (3) the illumination conditions for 
Cot2 was slightly darker than that of Cot1. Hu et  al. (2021) 
suggested that illumination conditions can affect weed detection 
accuracy. With respect to herbicide drift impact, Suarez et  al. 
(2017) found in cotton that drift can lead to a significant change 
in the spectral behavior of the crop. All these reports indicate 
that morphological, agronomical, and illumination differences can 
be  attributed to the lower accuracy levels observed for Cot2.

Very few studies have looked at weed detection and mapping 
in cotton. Alchanatis et  al. (2005) used rank order algorithms 
and neighborhood operations to detect broadleaves and grass 
weeds in cotton. With their approach, 86% of the true weed 
area was correctly identified, with only 14% misclassified as 
cotton. Lamm et  al. (2002) developed an early growth stage 
weed control system for cotton. Using morphological analysis 
such as binarization and erosion, their system was able to 
correctly identify and spray 88.8% of the weeds. On a different 
note, both frameworks used in this study have been already 
used in other weed detection studies. For example, Gao et  al. 
(2020) employed YOLOv4 and Tiny YOLO to detect field 
bindweed (Convolvulus sepium) in sugar beet (Beta vulgaris) 
fields. They used synthetic images in addition to real images 
to train the framework and obtained an mAP50 value of 0.829 
for field bindweed detection. Osorio et al. (2020) used YOLOv3 
and other object detection frameworks for weed detection in 
commercial lettuce crops and obtained an overall accuracy of 
89% with YOLOv3. Using the Faster R-CNN framework with 
the Inception_ResNet-V2 backbone, Le et  al. (2020) achieved 
an mAP0.50 value of 0.55 for detection of wild radish (Raphanus 
raphanistrum) and capeweed (Arctotheca calendula) in barley. 
The overall accuracy obtained in this study for weed detection 
compares well with reported accuracies by past studies.

TABLE 3 | Accuracy obtained for various test datasets with YOLOv4 and Faster R-CNN under Detect_Weed and Detect_Species using the main cotton model.

Detect_Weed Detect_Species

YOLOv4 Faster R-CNN YOLOv4 Faster R-CNN

AP AP AP (MG) AP (Grass) mAP AP (MG) AP (Grass) mAP

Cot1 0.88 0.87 0.88 0.83 0.85 0.86 0.79 0.83
Cot2 0.79 0.74 0.71 0.79 0.75 0.60 0.70 0.65
Soy1 0.83 0.76 0.83 0.75 0.79 0.72 0.70 0.71
Soy2 0.35 0.60 0.63 0.64 0.64 0.72 0.49 0.61
Corn1 0.72 0.62 0.88 0.15 0.52 0.78 0.15 0.47
Corn2 0.33 0.39 0.65 0.15 0.40 0.54 0.03 0.29

MG-Morningglories; Grass-Grass weeds; AP, average precision; and mAP, mean average precision. AP and mAP values were computed to assess the performance of the main 
cotton model over the test datasets. mAP was calculated by averaging AP for MG and Grass. AP was calculated as a function of precision and recall values obtained when 
Intersection Over Union (IoU) was set to 0.5.
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FIGURE 3 | Weed detection using bounding boxes by the main cotton models under “Detect_Weed” scheme for various test datasets used in the study. YOLOv4 
and Faster R-convolutional neural network (CNN) were trained with the Train100 dataset (i.e., dataset containing cotton images only) to develop the main cotton 
models. Under this scheme, MG, Grass, and Other were combined into “Weed” category while training the model.

Cross-Crop Applicability of Main Cotton 
Models
The main cotton models were also applied over non-cotton 
test datasets (i.e., Soy1, Soy2, Corn1, and Corn2) under both 
detection schemes. The main goal was to see if one crop-
based weed detection model can be  used to detect the same 

weeds in other crop species under similar or different 
agronomic and image acquisition conditions. The detection 
results by both frameworks for different test datasets under 
Detect_Weed and Detect_Species are shown in Figures  3, 
4, respectively for qualitative evaluation. The Detect_Species 
cotton model performed satisfactorily for Soy1 and Soy2 
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datasets, while not so effectively for Corn1 and Corn 2 
datasets. The Detect_Weed model performed the same way 
except that AP was higher for Corn1 but not for Soy2. The 
significant difference in performance between Faster R-CNN 
and YOLOv4 for Soy2 under Detect_Weed is notable. In 

this regard, YOLOv4 predictions on Soy2 images were further 
investigated. Several MG were not detected by the model, 
resulting in many false negatives. AP/mAP for non-cotton 
test datasets was not better than that of Cot1 for both 
frameworks. Among non-cotton test datasets, the highest 

FIGURE 4 | Bounding boxes generated for MG and Grass by the main cotton models under “Detect_Species” scheme for various test datasets used in the study. 
YOLOv4 and Faster R-CNN were trained with the Train100 dataset (i.e., dataset containing cotton images only) to develop the main cotton models. Under this 
scheme, MG, Grass, and Other were trained as separate categories.
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FIGURE 5 | Average Precision and mAP achieved for different complexity 
level datasets with main cotton models. Complexity level 1 datasets include 
Soy1 and Corn1, whereas level 2 include Soy2 and Corn2. The main cotton 
models were derived by training the detection frameworks (YOLOv4 and 
Faster R-CNN) with Train100 (i.e., dataset containing cotton images only). The 
AP/mAP for datasets under each complexity level were averaged to derive 
average AP and mAP.

AP/mAP was obtained for Soy1 for both frameworks (Table 3). 
Further, in general, the model performed relatively better 
on complexity level 1 than level 2 (Figure  5). The difference 
in performance was more obvious under Detect_Weed for 
both frameworks.

It was notable that Soy1 yielded higher AP/mAP values 
than Cot2 for both frameworks under both schemes. The 
authors could think of two reasons for this outcome: Soy1 
had similar weed density and sizes to that of Train100; 
further, Soy1 and Train100 datasets were acquired at the 
same time, and hence illumination conditions were exactly 
the same. Here, higher accuracy for Soy1 suggests that 
illumination conditions and weed density can impose more 
influence on the detection accuracy. In general, higher 
accuracies were obtained for soybean datasets compared to 
corn datasets. The main reason could be  the confusion 
between Grass and corn plants. A few instances of corn 
plants were detected as Grass by the model as they looked 
similar during early growth stages. Such misclassification was 
also observed when corn was distinctively larger than grasses. 
This suggests that the model may have focused more on 
the canopy structure than canopy size. Further, the detection 
performances between complexity levels were in line with 
our expectations. The primary reason for higher accuracy 
with complexity level 1 was the similar illumination conditions 

and weed density to the training dataset, i.e., Train100 as 
compared to the level 2 test datasets.

Cross-Crop Applicability Improvement 
With Additional Non-cotton Image 
Datasets
Train100 was supplemented with different amounts of training 
images from Soy1 and Corn1 to generate various training 
datasets. These datasets were used to train new models under 
two detection schemes and finally, the built models were tested 
over cotton and non-cotton test datasets. Both frameworks 
showed general increments in accuracy with the addition of 
non-cotton crop images under both detection schemes (Figure 6). 
The rate of increment, however, varied across test datasets, 
frameworks, and detection schemes (Table  4). The trend was 
relatively smoother for Faster R-CNN compared to YOLOv4 
for all test datasets. The increment was the highest for Corn2 
and the lowest for either of the cotton test datasets for both 
frameworks and detection schemes. AP/mAP for test datasets 
under each complexity level were averaged along with Cot1 
values to calculate average AP/mAP (Figure  7). The trend was 
smoother for Faster R-CNN compared to YOLOv4 for all 
complexity levels.

Scope and Limitations of the Study
Cross-crop applicability assessments conducted in this 
study provides useful insights into how models can 
be  generalized for broad application. Such generalization 
could save enormous efforts and resources and help 
make rapid progress toward effective site-specific weed 
management. Cross-applicability has become an absolute 
necessity owing to the huge data requirements by the CNN 
models for a given crop-weed environment. Often, a significant 
amount of data resources is used to train a weed detection 
model for a single crop environment. For example, Yu et  al. 
(2019) used a total of 29,000 images to train a model that 
could detect multiple weeds in perennial ryegrass. Czymmek 
et  al. (2019) trained a model to detect weeds in organic 
carrot farms using 2,500 images. It is increasingly important 
to focus on how these data resources can be  exploited 
strategically for maximizing efficiency and productivity. By 
testing the approach of data supplementation, this study 
demonstrated that cross-crop applicability can be  improved 
with such tactics.

It should be  noted that this study evaluated CNN model 
cross-applicability for crops that had similar weed 
compositions. The cross-crop applicability findings from this 
study do not apply to crops differing in weed species 
composition. In other words, the models would fail to 
perform if applied over soybean and corn infested with 
other weed species. A single crop-based model may not 
be  effectively applied at regional scales where weed 
composition differs. Furthermore, not all the hyperparameters 
for both frameworks used in the study were tuned, but 
rather used as defaults in the settings. The reported accuracies 
may change if parameters are tuned.
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CONCLUSION

The study explored two popular object detection frameworks 
under two useful detection schemes for weed detection in 
cotton. The study also evaluated the feasibility of cross-crop 
applicability of the cotton model and experimented with several 
amounts of non-cotton images to improve cross-applicability. 
Based on the results, the following main conclusions could 
be  derived:

 a. The cotton model achieved reasonably high weed detection 
accuracy for cotton test datasets.

 b. The cotton model achieved a fair level of accuracy for 
non-cotton crops infested with similar weed compositions. 

FIGURE 6 | Line plots showing AP and mAP achieved with various training datasets for each test dataset used in the study for both frameworks and detection 
schemes. Various training datasets were created by adding Soybean 1 and Corn 1 training images to the original dataset, i.e., Train100. These non-cotton crop images 
were added 5% at a time until they amounted to 50% of Train100. The last two digits in the training dataset name denote the % of images added to Train100.

TABLE 4 | The maximum rate of increment in accuracy for various test datasets 
with the addition of non-cotton images.

Detect_Weed (AP%) Detect_Species (mAP%)

YOLOv4 Faster R-CNN YOLOv4 Faster R-CNN

Cot1 2.27 2.29 5.89 2.42
Cot2 7.60 2.70 2.00 7.70
Soy1 3.61 5.26 6.32 7.74
Soy2 122.8 16.00 11.90 8.27
Corn1 31.9 53.22 12.62 34.40
Corn2 127.27 69.23 28.75 58.62

AP, average precision; mAP, mean average precision. The rate was determined by 
subtracting the accuracy obtained with Train100 (no non-cotton images) from the 
highest accuracy obtained among all training datasets for the respective test dataset.
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FIGURE 7 | Line plots showing AP and mAP achieved for each complexity level with YOLOv4 and Faster R-CNN. Complexity level 1 datasets include Soy1 and 
Corn1, whereas level 2 include Soy2 and Corn2. AP and mAP for Cot1 dataset were also included in the averaging process of each complexity level to understand 
how well the models perform with both cotton and non-cotton datasets.

On average, the performance was better for soybean than 
for corn.

 c. The cross-crop applicability was improved (AP/mAP: +3.61 
to 127.27%) when Train100 was supplemented with 
non-cotton images.

The outcomes of this study are expected to advance our 
understanding of cross-crop applicability of weed detection 
models. Such understanding will guide our efforts toward 
optimal use of data resources and accelerate weed 
detection, mapping, and site-specific management in agricultural 
systems. In the future, CNN model cross-applicability will 
be  assessed for additional crops and different levels 
of complexities.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article 
will be  made available by the authors, without undue  
reservation.

AUTHOR CONTRIBUTIONS

MB and BS: conceptualization and experimental design. MB: funding 
acquisition, supervision, and project management. BS and CH: 
field data acquisition and analysis. BS: writing the first draft of 
the paper. MB, BS, and CH: paper editing and revisions. All 
authors contributed to the article and approved the submitted version.

FUNDING

This study was funded in part by the USDA-Natural Resources 
Conservation Service-Conservation Innovation Grant (NRCS-
CIG) program (award #NR213A750013G017) and Cotton 
Incorporated (award #20-739).

ACKNOWLEDGMENTS

The authors acknowledge field technical support by Daniel 
Hathcoat and Daniel Lavy.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Sapkota et al. Cross Applicability of Weed Detection Models

Frontiers in Plant Science | www.frontiersin.org 13 April 2022 | Volume 13 | Article 837726

 

REFERENCES

Abdalla, A., Cen, H., Wan, L., Rashid, R., Weng, H., Zhou, W., et al. (2019). Fine-
tuning convolutional neural network with transfer learning for semantic segmentation 
of ground-level oilseed rape images in a field with high weed pressure. Comput. 
Electron. Agric. 167:105091. doi: 10.1016/j.compag.2019.105091

Adhikari, S. P., Yang, H., and Kim, H. (2019). Learning semantic graphics 
using convolutional encoder–decoder network for autonomous weeding in 
paddy. Front. Plant Sci. 10:1404. doi: 10.3389/fpls.2019.01404

Ahmad, F., Qiu, B., Dong, X., Ma, J., Huang, X., Ahmed, S., et al. (2020). 
Effect of operational parameters of UAV sprayer on spray deposition pattern 
in target and off-target zones during outer field weed control application. 
Comput. Electron. Agric. 172:105350. doi: 10.1016/j.compag.2020.105350

Ahmed, F., Al-Mamun, H. A., Bari, A. S. M. H., Hossain, E., and Kwan, P. 
(2012). Classification of crops and weeds from digital images: a support 
vector machine approach. Crop Prot. 40, 98–104. doi: 10.1016/j.
cropro.2012.04.024

Alchanatis, V., Ridel, L., Hetzroni, A., and Yaroslavsky, L. (2005). Weed detection 
in multi-spectral images of cotton fields. Comput. Electron. Agric. 47, 243–260. 
doi: 10.1016/j.compag.2004.11.019

Aravind, R., Daman, M., and Kariyappa, B. S. (2015). “Design and development 
of automatic weed detection and smart herbicide sprayer robot,” in 2015 
IEEE Recent Advances in Intelligent Computational Systems (RAICS). 257–261.

Bagavathiannan, M. V., and Davis, A. S. (2018). An ecological perspective on 
managing weeds during the great selection for herbicide resistance. Pest 
Manag. Sci. 74, 2277–2286. doi: 10.1002/ps.4920

Beckie, H. J., Ashworth, M. B., and Flower, K. C. (2019). Herbicide resistance 
management: recent developments and trends. Plants 8:161. doi: 10.3390/
plants8060161

Berge, T. W., Goldberg, S., Kaspersen, K., and Netland, J. (2012). Towards 
machine vision based site-specific weed management in cereals. Comput. 
Electron. Agric. 81, 79–86. doi: 10.1016/j.compag.2011.11.004

Bochkovskiy, A., Wang, C.-Y., and Liao, H.-Y. M. (2020). YOLOv4: optimal 
speed and accuracy of object detection. arXiv [Preprint]. doi: 10.48550/
arXiv.2004.10934

Buchanan, G. A., and Burns, E. R. (1970). Influence of weed competition on 
cotton. Weed Sci. 18, 149–154. doi: 10.1017/S0043174500077560

Czymmek, V., Harders, L.O., Knoll, F.J., and Hussmann, S. (2019). “Vision-
based deep learning approach for real-time detection of weeds in organic 
farming.” in 2019 IEEE International Instrumentation and Measurement 
Technology Conference (I2MTC). 1–5.

Dutta, A., and Zisserman, A. (2019). “The VIA annotation software for images, 
audio and video.” in Proceedings of the 27th ACM International Conference 
on Multimedia (MM ‘19); October 21-25 (New York, NY, USA), 2276–2279.

Fawakherji, M., Youssef, A., Bloisi, D., Pretto, A., and Nardi, D. (2019). “Crop 
and weeds classification for precision agriculture using context-independent 
pixel-wise segmentation.” in 2019 Third IEEE International Conference on 
Robotic Computing (IRC). 146–152.

Gai, J., Tang, L., and Steward, B. L. (2020). Automated crop plant detection 
based on the fusion of color and depth images for robotic weed control. 
J. Field Robot. 37, 35–52. doi: 10.1002/rob.21897

Gao, J., French, A. P., Pound, M. P., He, Y., Pridmore, T. P., and Pieters, J. G. 
(2020). Deep convolutional neural networks for image-based Convolvulus 
sepium detection in sugar beet fields. Plant Methods 16:29. doi: 10.1186/
s13007-020-00570-z

García-Santillán, I. D., and Pajares, G. (2018). On-line crop/weed discrimination 
through the Mahalanobis distance from images in maize fields. Biosyst. Eng. 
166, 28–43. doi: 10.1016/j.biosystemseng.2017.11.003

Girshick, R. (2015). “Fast R-CNN.” in Proceedings of the IEEE International 
Conference on Computer Vision. 1440–1448.

Hu, C., Sapkota, B. B., Thomasson, J. A., and Bagavathiannan, M. V. (2021). 
Influence of image quality and light consistency on the performance of 
convolutional neural networks for weed mapping. Remote Sens. 13:2140. 
doi: 10.3390/rs13112140

Jiang, H., Zhang, C., Qiao, Y., Zhang, Z., Zhang, W., and Song, C. (2020). 
CNN feature based graph convolutional network for weed and crop recognition 
in smart farming. Comput. Electron. Agric. 174:105450. doi: 10.1016/j.
compag.2020.105450

Kargar, B. A. H., and Shirzadifar, A. M. (2013). “Automatic weed detection system 
and smart herbicide sprayer robot for corn fields.” in 2013 First RSI/ISM 
International Conference on Robotics and Mechatronics (ICRoM); February 13-15, 
2003; Tehran, Iran, 468–473.

Lamm, R. D., Slaughter, D. C., and Giles, D. K. (2002). Precision weed control 
system for cotton. Transact. ASAE 45:231. doi: 10.13031/2013.7861

Le, V. N. T., Ahderom, S., and Alameh, K. (2020). Performances of the LBP 
based algorithm over CNN models for detecting crops and weeds with 
similar morphologies. Sensors 20:2193. doi: 10.3390/s20082193

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 
436–444. doi: 10.1038/nature14539

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., et al. (2016). 
“SSD: single shot multibox detector,” in Computer Vision – ECCV 2016, 
Lecture Notes in Computer Science. eds. B. Leibe, J. Matas, N. Sebe and M. 
Welling (Cham: Springer International Publishing), 21–37.

Liu, B., and Bruch, R. (2020). Weed detection for selective spraying: a review. 
Curr. Robot. Rep. 1, 19–26. doi: 10.1007/s43154-020-00001-w

López-Granados, F. (2011). Weed detection for site-specific weed management: 
mapping and real-time approaches. Weed Res. 51, 1–11. doi: 
10.1111/j.1365-3180.2010.00829.x

Lottes, P., Behley, J., Chebrolu, N., Milioto, A., and Stachniss, C. (2018). “Joint 
stem detection and crop-weed classification for plant-specific treatment in 
precision farming.” in 2018 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS). 8233–8238.

Lottes, P., Behley, J., Chebrolu, N., Milioto, A., and Stachniss, C. (2019). Robust 
joint stem detection and crop-weed classification using image sequences 
for plant-specific treatment in precision farming. J. Field Robot. 37, 20–34. 
doi: 10.1002/rob.21901

Ma, X., Deng, X., Qi, L., Jiang, Y., Li, H., Wang, Y., et al. (2019). Fully 
convolutional network for rice seedling and weed image segmentation at 
the seedling stage in paddy fields. PLoS One 14:e0215676. doi: 10.1371/
journal.pone.0215676

Machleb, J., Peteinatos, G. G., Kollenda, B. L., Andújar, D., and Gerhards, R. 
(2020). Sensor-based mechanical weed control: present state and prospects. 
Comput. Electron. Agric. 176:105638. doi: 10.1016/j.compag.2020.105638

Martin, D., Singh, V., Latheef, M. A., and Bagavathiannan, M. (2020). Spray 
deposition on weeds (Palmer amaranth and Morningglory) from a remotely 
piloted aerial application system and packpack sprayer. Drones 4:59. doi: 
10.3390/drones4030059

Nave, W. R., and Wax, L. M. (1971). Effect of weeds on soybean yield and 
harvesting efficiency. Weed Sci. 19, 533–535. doi: 10.1017/S0043174500050608

Oquab, M., Bottou, L., Laptev, I., and Sivic, J. (2014). “Learning and transferring 
mid-level image representations using convolutional neural networks.” in Proceedings 
of the IEEE Conference on Computer Vision and Pattern Recognition. 1717–1724.

Osorio, K., Puerto, A., Pedraza, C., Jamaica, D., and Rodríguez, L. (2020). A 
deep learning approach for weed detection in lettuce crops using multispectral 
images. AgriEngineering 2, 471–488. doi: 10.3390/agriengineering2030032

Partel, V., Kakarla, S. C., and Ampatzidis, Y. (2019). Development and evaluation 
of a low-cost and smart technology for precision weed management utilizing 
artificial intelligence. Comput. Electron. Agric. 157, 339–350. doi: 10.1016/j.
compag.2018.12.048

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You  only look 
once: unified, real-time object detection.” in Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition. 779–788.

Redmon, J., and Farhadi, A. (2018). YOLOv3: an incremental improvement. 
arXiv [Preprint]. doi: 10.48550/arXiv.1804.02767

Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-CNN: towards real-
time object detection with region proposal networks. IEEE Trans. Pattern 
Anal. Mach. Intell. 39, 1137–1149. doi: 10.1109/TPAMI.2016.2577031

Rumpf, T., Römer, C., Weis, M., Sökefeld, M., Gerhards, R., and Plümer, L. 
(2012). Sequential support vector machine classification for small-grain weed 
species discrimination with special regard to Cirsium arvense and Galium 
aparine. Comput. Electron. Agric. 80, 89–96. doi: 10.1016/j.compag.2011.10.018

Sabzi, S., Abbaspour-Gilandeh, Y., and García-Mateos, G. (2018). A fast and 
accurate expert system for weed identification in potato crops using metaheuristic 
algorithms. Comput. Ind. 98, 80–89. doi: 10.1016/j.compind.2018.03.001

Sapkota, B., Singh, V., Neely, C., Rajan, N., and Bagavathiannan, M. (2020). 
Detection of Italian ryegrass in wheat and prediction of competitive interactions 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.1016/j.compag.2019.105091
https://doi.org/10.3389/fpls.2019.01404
https://doi.org/10.1016/j.compag.2020.105350
https://doi.org/10.1016/j.cropro.2012.04.024
https://doi.org/10.1016/j.cropro.2012.04.024
https://doi.org/10.1016/j.compag.2004.11.019
https://doi.org/10.1002/ps.4920
https://doi.org/10.3390/plants8060161
https://doi.org/10.3390/plants8060161
https://doi.org/10.1016/j.compag.2011.11.004
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.1017/S0043174500077560
https://doi.org/10.1002/rob.21897
https://doi.org/10.1186/s13007-020-00570-z
https://doi.org/10.1186/s13007-020-00570-z
https://doi.org/10.1016/j.biosystemseng.2017.11.003
https://doi.org/10.3390/rs13112140
https://doi.org/10.1016/j.compag.2020.105450
https://doi.org/10.1016/j.compag.2020.105450
https://doi.org/10.13031/2013.7861
https://doi.org/10.3390/s20082193
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s43154-020-00001-w
https://doi.org/10.1111/j.1365-3180.2010.00829.x
https://doi.org/10.1002/rob.21901
https://doi.org/10.1371/journal.pone.0215676
https://doi.org/10.1371/journal.pone.0215676
https://doi.org/10.1016/j.compag.2020.105638
https://doi.org/10.3390/drones4030059
https://doi.org/10.1017/S0043174500050608
https://doi.org/10.3390/agriengineering2030032
https://doi.org/10.1016/j.compag.2018.12.048
https://doi.org/10.1016/j.compag.2018.12.048
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1016/j.compag.2011.10.018
https://doi.org/10.1016/j.compind.2018.03.001


Sapkota et al. Cross Applicability of Weed Detection Models

Frontiers in Plant Science | www.frontiersin.org 14 April 2022 | Volume 13 | Article 837726

using remote-sensing and machine-learning techniques. Remote Sens. 12:2977. 
doi: 10.3390/rs12182977

Sharpe, S. M., Schumann, A. W., and Boyd, N. S. (2020). Goosegrass detection 
in strawberry and tomato using a convolutional neural network. Sci. Rep. 
10:9548. doi: 10.1038/s41598-020-66505-9

Suarez, L. A., Apan, A., and Werth, J. (2017). Detection of phenoxy 
herbicide dosage in cotton crops through the analysis of hyperspectral 
data. Int. J. Remote Sens. 38, 6528–6553. doi: 10.1080/01431161.2017. 
1362128

Sujaritha, M., Annadurai, S., Satheeshkumar, J., Kowshik Sharan, S., and 
Mahesh, L. (2017). Weed detecting robot in sugarcane fields using fuzzy 
real time classifier. Comput. Electron. Agric. 134, 160–171. doi: 10.1016/j.
compag.2017.01.008

Wu, X., Xu, W., Song, Y., and Cai, M. (2011). A detection method of weed 
in wheat field on machine vision. Procedia Engin. 15, 1998–2003. doi: 
10.1016/j.proeng.2011.08.373

Xie, S., Hu, C., Bagavathiannan, M., and Song, D. (2021). Toward robotic 
weed control: detection of nutsedge weed in bermudagrass turf using 
inaccurate and insufficient training data. IEEE Robot. Automat. Lett. 6, 
7365–7372. doi: 10.1109/LRA.2021.3098012

Yu, J., Schumann, A. W., Cao, Z., Sharpe, S. M., and Boyd, N. S. (2019). 
Weed detection in perennial ryegrass with deep learning convolutional neural 
network. Front. Plant Sci. 10:1422. doi: 10.3389/fpls.2019.01422

Conflict of Interest: The authors declare that the research was conducted in 
the absence of any commercial or financial relationships that could be  construed 
as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, is 
not guaranteed or endorsed by the publisher.

Copyright © 2022 Sapkota, Hu and Bagavathiannan. This is an open-access article 
distributed under the terms of the Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other forums is permitted, provided the original 
author(s) and the copyright owner(s) are credited and that the original publication in 
this journal is cited, in accordance with accepted academic practice. No use, distribution 
or reproduction is permitted which does not comply with these terms.

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
https://doi.org/10.3390/rs12182977
https://doi.org/10.1038/s41598-020-66505-9
https://doi.org/10.1080/01431161.2017.1362128
https://doi.org/10.1080/01431161.2017.1362128
https://doi.org/10.1016/j.compag.2017.01.008
https://doi.org/10.1016/j.compag.2017.01.008
https://doi.org/10.1016/j.proeng.2011.08.373
https://doi.org/10.1109/LRA.2021.3098012
https://doi.org/10.3389/fpls.2019.01422
http://creativecommons.org/licenses/by/4.0/

	Evaluating Cross-Applicability of Weed Detection Models Across Different Crops in Similar Production Environments
	Introduction
	Materials and Methods
	Study Area and Experimental Setup
	Workflow
	High-Resolution Digital Image Collection
	Weed Detection
	Image Annotations
	Weed Detection in Cotton
	Cross-Crop Applicability Analysis
	Cross-Crop Applicability Improvement With Training Size Expansion
	Accuracy Metrics for Performance Evaluation

	Results and Discussion
	Performance of the Main Cotton Model Over Cotton Test Datasets
	Cross-Crop Applicability of Main Cotton Models
	Cross-Crop Applicability Improvement With Additional Non-cotton Image Datasets
	Scope and Limitations of the Study

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding

	References

