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Even frequently used in wheat breeding, we still have an insufficient understanding of
the biology of the products via distant hybridization. In this study, a transcriptomic
analysis was performed for six Triticum aestivum-Thinopyrum elongatum substitution
lines in comparison with the host plants. All the six disomic substitution lines showed
much stronger “transcriptomic-shock” occurred on alien genomes with 57.43–69.22%
genes changed expression level but less on the recipient genome (2.19–8.97%).
Genome-wide suppression of alien genes along chromosomes was observed with
a high proportion of downregulated genes (39.69–48.21%). Oppositely, the wheat
recipient showed genome-wide compensation with more upregulated genes, occurring
on all chromosomes but not limited to the homeologous groups. Moreover, strong
co-upregulation of the orthologs between wheat and Thinopyrum sub-genomes was
enriched in photosynthesis with predicted chloroplastic localization, which indicates
that the compensation happened not only on wheat host genomes but also on
alien genomes.

Keywords: wheat, Thinopyrum, substitution line, compensation, distant hybridization

INTRODUCTION

Broadening genetic diversity in wheat represents an indispensable step for any viable breeding
strategy that aimed at tackling obstacles posed by environmental stress or plateaus in yield (Feuillet
et al., 2008; Brozynska et al., 2016). In addition to intraspecific breeding using different wheat
varieties, wild relative species of Triticeae are often deployed as alternative genetic resources for
wheat improvement through distant hybridization. For example, translocation lines of the wheat-
rye 4R and 6R show strong resistance to powdery mildew (Kubaláková et al., 2002; An et al., 2013,
2015). Wheat-Thinopyrum substitution lines harboring Fhb7, Lr19, and Sr25 exhibited disease
resistance to Fusarium head blight (FHB), leaf rust, and stem rust (Wang et al., 2020). Some
superior genes were conferred by wheat-rye 1BL/1RS translocation lines, involved in high yield
potential and biotic and abiotic stress tolerance, which promoted the production (Villareal et al.,
1991; Mago et al., 2002; Lelley et al., 2004; Mohammed et al., 2013; Qi et al., 2016; Yang et al., 2016).
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Currently, we still have insufficient understanding of the
biology of the hybrid products by chromosome engineering.
A long-standing stereotyped presumption is that large
chromosomal segments/haplotypes from wheat relative species
inherently contain deleterious alleles which often lead to poor
performance of yield traits (Kerber and Dyck, 1973; Chen et al.,
2005; Hurni et al., 2014; Stirnweis et al., 2014; Rey et al., 2018).
However, it becomes increasingly clear that it is not the mere
introgression of alien chromatin or genes in host; instead, it
often transgresses the expected allele additivity in many aspects,
i.e., genetic, epigenetic, and gene regulation, that may cause
restructuring of transcriptome, proteome, metabolome, and
phenome (Lynch and Conery, 2000; Prince and Pickett, 2002;
Adams et al., 2003; Duarte et al., 2006; Buggs et al., 2011).
With the deepening of research, studies also reported that the
interaction between the donor and recipient genomes also affects
plant phenotype (Chaudhary et al., 2009). For example, the
interaction between pathogen-resistant gene and the recipient
genome leads to inhibition of gene expression (Kerber and Dyck,
1973; Kerber and Aung, 1999; Chen et al., 2005). The formation
of heteromeric complexes, which including donor and recipient
gene products, may also cause harmful effects (Hurni et al.,
2014). Therefore, further mechanistic understanding of distant
hybridization-incurred “transcriptomic-shock” phenomenon
will enhance our maneuvers (Buggs et al., 2011).

Wheatgrasses of Thinopyrum genus are well-known for
employment in wheat distant hybridization (Ceoloni et al.,
2017; Wang et al., 2020). With the recently released genome
of Thinopyrum elongatum, in this study we analyzed the
transcriptional reprogramming of six wheat-Thinopyrum
substitution lines. Our results clearly showed opposite gene
expression patterns between donor and recipient genomes,
which are involved in gene silencing and genetic compensation,
respectively. Interestingly, co-expression analysis of the
orthologs supports genetic compensation from both the recipient
and donor plants.

MATERIALS AND METHODS

Sample Preparation and Sequencing
The plant materials used in this study comprised Tel
(2n = 2x = 14, EE), CS wheat (2n = 6x = 42, AABBDD),
and six disomic substitution (DS) lines, namely, DS3E(3A),
DS3E(3B), DS3E(3D), DS7E(7A), DS7E(7B), and DS7E(7D).
All samples were raised under a 16 h photoperiod and a 22◦C
temperature. The samples were harvested at three leave stages,
then snap-frozen in liquid nitrogen, and held at −80◦C. Three
biological replicates were collected for each sample.

A total amount of 1 µg RNA per sample was used as the
input material for the RNA sample preparations. Sequencing
libraries were generated using the NEBNext R© UltraTM RNA
Library Prep Kit for Illumina (NEB, United States) following
manufacturer’s recommendations, and index codes were added
to attribute sequences to each sample. To select cDNA
fragments of preferentially 150–200 bp in length, the library
fragments were purified using the AMPure XP system (Beckman

Coulter, Beverly, United States). PCR products were purified
(AMPure XP system), and library quality was assessed on the
Agilent Bioanalyzer 2100 system. The clustering of the index-
coded samples was performed on a cBot Cluster Generation
System using the TruSeq PE Cluster Kit version 3-cBot-HS
(Illumina) according to the manufacturer’s instructions. After
cluster generation, the library preparations were sequenced
on an Illumina Hiseq platform, and 150 bp paired-end
reads were generated.

RNA-seq Analysis
Each of the reads for each of the three samples of Tel was mapped
against the Tel genome, and CS samples were mapped against
the wheat genome (IWGSC version 1.0) using TopHat (version
2.0.12) software (Kim et al., 2013; Appels et al., 2018; Wang et al.,
2020). HTSeq version 0.6.1 was used to count the read numbers
mapped to each gene (Anders et al., 2015). Then, Fragments
Per Kilobase Per Million (FPKM) of each gene was calculated
based on the length of the gene and reads count mapped to this
gene. Transcripts recording a count of less than one per million
mapped reads were ignored. The assignment of differentially
expressed genes (DEGs) was based on two comparisons, i.e.,
the alien genes in DS lines compared with Tel and wheat genes
except E chromosome in DS lines compared with CS. Differential
expression analysis of two groups was performed using the
DESeq R package (1.18.0). Genes with an adjusted p-value < 0.05
[false discovery rate (FDR)] found by DESeq were assigned
as differentially expressed, and the Benjamini-Hochberg (BH)
method was used for FDR control (Benjamini and Hochberg,
1995). The density of the transcribed genes (TGs) was calculated
on the basis of a sliding 10 Mbp window. Similarly, the ratios
of downregulated and upregulated to transcribed transcripts
[R(Down/Trans), R(Up/Trans)] were calculated.

Cytogenetic Analysis
The protocol for FISH was adopted as previously described
(Yang et al., 2005). The seeds were germinated on a wet
filter paper at room temperature (22◦C), and the root tips
were removed when the roots grew to 1.5–2.0 cm. The
synthetic oligonucleotide probes, namely, oligo-PSC119.2 and
oligo-PTA535 (Invitrogen Biotechnology, Inc.), were 5′ end-
labeled green with 6-carboxyl fluorescein (6-FAM) or red
with 6-carboxyl-tetramethylrhodamine (Tamra). The 6-µl probe
system (20 ng/µl, 2 × SSC and 1 × TE buffer, pH 7.0)
was denatured in boiling water for 5 min and then placed
on ice. Then, hybridization experiments were carried out in
a humid incubator at 37◦C overnight. The slides were rinsed
with 2 × SSC and treated with a VECTASHIELD mounting
medium containing 1.5 µg/ml 4,6-diamidino-2-phenylindole
(DAPI; Vector Laboratories). Images were captured using an
Olympus BX-51 microscope equipped with a DP-70 CCD
camera. Then, specific alien chromosomes were identified by
comparing signal patterns.

Identification of Orthologous Gene
The coding sequences (CDSs) of the two genomes were aligned
reciprocally in a BLASTN search with the cutoff E-value of
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1e−10. Gene pairs in the two compared genomes that have more
than 80% sequence identity and greater than 60% of the total
length of the orthologous region of the CDSs are regarded as
orthologous genes.

Functional Annotations and Enrichment
Analysis
Protein sequences of CS and Tel were conducted using BLASTP
search (E-value ≤ 10−5) against NCBI non-redundant (NR),
Pfam, SwissProt, Kyoto Encyclopedia of Genes and Genomes
(KEGG), and Gene Ontology (GO) databases (Chen et al., 2021).
In addition, the omicShare website1 was used to perform the
GO and KEGG enrichment. Hypergeometric test was used for
statistical significance tests (p < 0.05).

RESULTS

The six Triticum aestivum-T. elongatum DS lines were previously
generated by hybridization of hexaploid bread wheat cultivar
“Chinese Spring” (CS, 2n = 6x = 42, AABBDD) with its diploid
wild relative T. elongatum (Tel, 2n = 2x = 14, EE) (Figure 1A).
FISH assays confirmed the substitutions in each of these lines
(Supplementary Figure 1). To identify transcriptomic changes
associated with the introgression of the 3E and 7E chromosomes
into the wheat genome, we conducted RNA-seq analysis to
compare each of the six substitution lines with both CS and Tel
parents. An average of 40,698,776 clean reads for each library was
generated (Supplementary Table 1).

“Transcriptomic-Shock” for Exotic and
Host Genomes
Reads of Tel samples were mapped against the Tel genome, and
CS samples were mapped against the wheat genome (IWGSC
version 1.0). Reads of the DS lines were mapped to the chimeric
reference genomes according to the substituted sub-genome
(Figure 1A). For example, the reference genome for DS3E(3D)
is comprised of all the wheat sub-genomes but with chr. 3D
replaced by chr. 3E. To determine whether substitution with Tel
chromatin resulted in major transcriptomic changes compared
with that of CS or Tel, we then calculated the expression levels
(FPKM > 1) of each gene in the sequencing reads (i.e., TGs)
and then identified the differentially expressed genes (DEGs) and
non-DEGs (Tel genes in DS lines compared with Tel and wheat
genes except E chromosome in DS lines compared with CS). The
results showed that the frequency of DEGs for alien 3E and 7E
chromosomes (57.43–69.22%) is much higher than that for wheat
recipient genome (2.19–8.97%), which supported substantially
stronger “transcriptomic-shock” for alien genes compared with
genes from the CS recipient genome (Figure 1B). Notably,
only 254 (0.75%) wheat DEGs were observed in comparisons
of DS7E(7D) vs. CS (Figure 1C), indicating that chr. 7D
substitution induced a very low degree of “transcriptomic-shock,”
which is favorable for breeding program when engineering
this chromosome.
1https://www.omicshare.com/tools/Home/Soft/getsoft

Distribution of Differentially Expressed
Genes on E Genome
For all the six substitution lines, we found that the E
chromosomes showed substantially downregulated DEGs
(1,487–1,813 or 39.69–48.21%) than upregulated DEGs
(665–820 or 17.75–21.70%) (Figure 1B and Supplementary
Figure 2), implying that the alien genes were suppressed to
a greater extent than native genes following substitution.
This suppressive effect could be detected along the full length
of each substituted E chromosome. In addition, both the
number and ratio of downregulated DEGs were higher in
the distal regions of the short and long arms, while the
downregulated or upregulated DEGs tended to localize near
the centromeres (Supplementary Figures 3A,B). Moreover,
most of the upregulated or downregulated DEGs were the
same genes regardless of which sub-genome was substituted
and were true for both chr. 3E and chr. 7E (Supplementary
Figure 3C and Supplementary Table 2), suggesting that a similar
underlying mechanism was responsible for this effect across
genes and chromosomes.

Transcriptional Compensation in Wheat
In comparison with alien genes from the E genome, the
DEGs from wheat showed an opposite expression pattern
that upregulated genes were apparently more abundant than
downregulated in all DS lines (Figure 1D), which suggested
genetic compensation for the substitution of either chr. 3 or
chr. 7. This compensation could be detected on almost all
the endogenous wheat chromosomes, even the corresponding
homeologous chromosomes of 3A, 3B, 3D or 7A, 7B, 7D
showed a relatively higher amount of upregulated genes than
downregulated genes (Figure 1D). It is noted that, when chr. 7E
substituted its D sub-genome homolog, the DEGs were relatively
fewer than that under A and B sub-genome substitutions
(Figure 1D), suggesting weaker transcriptomic influence for
loss of the chr. 7D. Moreover, even most wheat endogenous
sub-genomes exhibited more upregulated genes suggesting that
genetic compensation, chr. 7A in DS3E(3D), and chr. 6B and chr.
6D in DS7E(7D) showed more downregulated genes (Figure 1D),
which might be due to the potential fragment deletion on these
chromosomes. No significant expression was detected for the
genes located at the most distal region of Chr. 7AL (∼36 Mb)
in the substitution line of DS3E(3D), indicating a chromosome
fragment loss of the recipient genome (Supplementary Figure 4
and Supplementary Table 3). Similarly, potential loss of genome
fragments from the distal ends of Chr. 6B and Chr. 6D was
also observed in the DS7E(7D) substitution line (Supplementary
Figure 5 and Supplementary Table 3).

Co-expression of Orthologs Between E
and Wheat Sub-Genomes
Incomplete compensation is generally presumed to occur
between the different homeologous sub-genomes of wheat
(Leach et al., 2014). However, in our study, we found that
the compensatory transcriptional effects following chromosome
substitution were detectable across homeologous chromosomes
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FIGURE 1 | Detailed information on the differential expression of the transcriptome of the substitution line. (A) Schematic diagram of disomic substitution lines
produced by distant hybridization between CS and Tel. (B) The differential transcription of Tel genes. (C) The differential transcription of CS genes. (D) Number of
differentially expressed genes (DEGs) in alien Tel chromosome and CS genome. The alien Tel chromosome was surrounded by the red box. Homologous
chromosomes from CS that belong to the same linkage group as the alien Tel chromosome were marked with an asterisk (*). The upregulated and downregulated
genes were represented by the orange and blue rectangles. The chromosomes with missing fragments were marked in a red star.

from the intact sub-genomes as well as in almost all the
other wheat chromosomes (Figure 1D). To investigate potential
correlations between the transcription of orthologous donor
and recipient genes, we compared the DEGs from the E
genome with their orthologs in the wheat sub-genome (e.g., the

orthologs on chr. 3B and chr. 3D were studied in the DS3E(3A)
substitution line). The results showed that a dozen of wheat
orthologs that corresponded to upregulated alien genes were also
transcriptionally upregulated, while few CS orthologs showed
downregulation (Figures 2A,B, Supplementary Figure 6, and
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Supplementary Tables 4, 5). For example, among the 665
upregulated exotic genes from DS3E(3A), 23 and 41 orthologs
were upregulated on chr. 3B and chr. 3D, respectively. In contrast,
the number of downregulated orthologs from the chr. 3B and D
sub-genomes was 0 (Figure 2A). This co-expression pattern for
upregulated genes implied that the observed compensation for
chromatin which was lost from wheat was potentially attributable
to both donor and recipient genomes.

To further investigate the possible underlying mechanisms,
we submitted all the co-upregulated orthologous genes (429)
of wheat to the Cell-PLoc version 2.0 website2 to predict their
subcellular localization (Supplementary Table 6). Interestingly,
most of these genes were expressed in the chloroplast, from
both 3E (39.18%) and 7E (40.44%), which implied their
involvement in photosynthesis (Figure 2C and Supplementary
Table 6). We also examined the annotation of these co-
upregulated orthologs using the KEGG, Swissprot, Pfam, and
NCBI nr databases (Supplementary Tables 7, 8). Subsequent
KEGG enrichment analysis showed that the co-expressed
genes were mainly enriched in pathways for photosynthesis-
related functions, such as “Carbon fixation,” “Porphyrin and
chlorophyll metabolism,” and “Pyruvate metabolism” among
others (Figure 2D and Supplementary Figure 5). Detailed
analysis of their functional annotations revealed a large number
of genes among the upregulated DEGs with the same or similar
functions, for example, encoding thylakoid lumenal proteins,
NAD(P)H, 30S, and 50S chloroplast ribosomal proteins, which
directly participate in photosynthetic processes (Figure 2E and
Supplementary Tables 7–9; Liu and Last, 2017; Pulido et al.,
2018; Ma et al., 2021). Moreover, many bHLH transcription
factors and ABC transporter genes were also enriched, which
are not expressed in the chloroplast but are widely reported
to contribute to photosynthesis (Figure 2E and Supplementary
Tables 7–9; He et al., 2020; Yu et al., 2021), which further
support that the co-upregulated gene cluster is involved in the
photosynthesis process. Thus, the co-expression of these genes
in compensation for lost chromosomes may imply defects in
photosynthesis of distant hybridization products, especially for
substitution lines.

DISCUSSION

Distant hybridization, the practice crossing two different species
or closely related genera, has been proven successful as a
strategy for introducing agronomically beneficial genes from
wild species into cultivated crops to increase their yield, quality,
and resistance to biotic and abiotic stresses (Moore et al., 2006;
Endo, 2007). In wheat, efforts to create useful introgression
lines remain ineffective, either due to linkage drag, incomplete
genetic compensation, or our relatively poor understanding of
“transcriptomic-shock” related to distant hybridization (Buggs
et al., 2011). In this study, RNA-seq analysis was used to analyze
transcriptomic changes in six wheat-Thinopyrum substitution
lines compared with that in their wild-type genetic backgrounds.

2http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/

Our results clearly showed substantially stronger
transcriptomic-shock for alien genes compared with genes
from the CS recipient genome, with as much as 57.43–
69.22% of E genome-derived genes exhibiting significantly
different expressions from that in T. elongatum (Figure 1B and
Supplementary Figure 2). This finding was consistent with
previous results observed in a barley-wheat addition line (Rey
et al., 2018). Similar findings also showed that the number of
downregulated alien DEGs was far greater than the number
of upregulated DEGs. This suppressive effect on alien gene
expression could at least partially explain the frequently observed
loss of function among disease resistance genes following transfer
by distant hybridization into wheat from other Triticeae species.
The mechanisms underlying large-scale transcriptomic changes
are presumably complex, involving both genetic and epigenetic
components. It is reasonable to speculate that the transcriptional
machinery required for control of alien genes is absent or
incompatible with that in the wheat genetic background, e.g.,
transcription factors do not fully match with the targeted
cis-regulatory elements in alien chromatin (Li et al., 2019).
A recent analysis of three-dimensional chromatin architecture
in allohexaploid wheat variety Aikang 58, which carries the
1RS/1BL translocation chromosome, showed a low frequency of
inter-chromosomal interactions involving the translocated 1RS
chromosomal arm (Jia et al., 2021).

In contrast with alien genes, many fewer genes native to
wheat were differentially expressed (4.45% average), but those
DEGs significantly differed between substitution lines. Only 254
(0.75%) of the native wheat genes were differentially expressed
in the DS7E(7D) line, which suggested that chromosome
engineering of 7D could serve as a potentially effective strategy
for introducing beneficial genes from wild relatives with low
impact on the host plant (Figure 1C). Moreover, we observed
strong apparent transcriptional compensation, based on the
significantly greater number of upregulated DEGs in wheat
compared with the number of downregulated DEGs (Figure 1D).
We found that the compensatory transcriptional effects almost
all the wheat chromosomes not just incomplete compensation
supported by a study using nullisomic-tetrasomic wheat lines
(Zhang et al., 2019). Notably, the corresponding homologous
chromosomes showed a higher proportion of upregulated DEGs
than other chromosomes (Figure 1D).

In addition, substitution lines in which the 7D sub-genome
was replaced, DS7E(7D), showed a lower ratio of upregulated
genes compared with those with replacement of the A and B sub-
genomes. This finding indicated relatively weaker compensation
for the 7D sub-genome, although the underlying mechanisms
require further investigation to unravel. Interestingly, we found
small genome fragment deletions in these two D sub-genome
substitution lines on the distal ends of chr. 7AL, chr. 6BL, and chr.
6DL (Supplementary Figures 4, 5 and SupplementaryTable 3).
This fragment deletion on chr. 7AL was also observed in another
barley-wheat addition line, and these deletions were possibly
caused by chromosomal rearrangements that occurred during
the hybridization process, given that wheat-barley hybridization
has been reported to trigger structural changes and chromosomal
instability (Rey et al., 2018).
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FIGURE 2 | Transcriptional changes and functional analysis of CS homeologous genes in DS3E and DS7E. (A) The differential transcription of CS orthologs of
upregulated genes in DS3E and DS7E. (B) Comparison of upregulated and downregulation of CS homologous genes. Statistical analysis was performed using the
T-test method. *p < 0.05. **p < 0.01. (C) Subcellular localization of CS homologous genes. (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of
wheat homologous genes. The photosynthesis-related genes with p < 0.01 were marked by the red star. (E) Distribution of photosynthesis-related genes in different
substitution lines. Different items were represented by different color lines. The same item was represented by a line of the same color between different substitution
lines.

Another important finding of this study is that many
orthologs of the upregulated alien genes are also upregulated
in wheat, indicating that the genetic impact caused by
chromosome substitution can be compensated by both
the donor and recipient genomes (Figures 2A,B and
Supplementary Figure 6). We found that the striking
functional redundancy of these co-expressed genes was
related to photosynthesis, a fundamental biological process

in plants. The majority of these genes were predicted to be
localized in the chloroplast (Figure 2C and Supplementary
Table 6), and even bHLH transcription factors and ABC
transporter among these co-expressed genes are known
to contribute to photosynthesis (Dong et al., 2014; Borba
et al., 2018; Voith von Voithenberg et al., 2019; Li et al.,
2020), despite predicted subcellular localization to other
compartments. For instance, overexpression of MdbHLH3
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can increase photosynthetic capacity and carbohydrate levels
of apple leaves, thereby enhancing the accumulation of
carbohydrates in fruit (Yu et al., 2021). OsABCI7 can interact
with OsHCF222 to stabilize the thylakoid membrane in rice (He
et al., 2020). Photosynthesis is a major determinant of crop yield
and represents a central target for breeding improvement of
quantitative agronomic traits. Thus, the co-expression of these
genes in compensation for lost chromosomes could imply that
the often poor performance of yield traits by distant hybridization
lines, especially substitution lines, may be attributable to defects
in photosynthesis, as well as the linkage drag revealed in previous
studies (Mondal et al., 2016).

CONCLUSION

This is the first finding on transcriptional compensation
in wheat-Thinopyrum substitution lines. Our research
indicated that both the alien genes derived from Tel
and CS endogenous genes compensate the replaced
chromosome, and this finding explains the feasibility of
distant hybridization in some extent, which provided
theoretical reference for the application of related species in
wheat breeding.
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Supplementary Figure 1 | Karyotypes of the six disomic substitution (DS) lines in
the FISH assay, and the red arrow represents the alien 3E and 7E chromosomes.

Supplementary Figure 2 | Comparison of the number of upregulated genes and
downregulated genes in DS3E and DS7E. Upregulated and downregulated genes
were represented by different colors. Statistical analysis was performed using the
T-test method. ∗∗∗∗p < 1e-5.

Supplementary Figure 3 | Distribution of the differentially expressed genes
(DEGs) and non-DEGs along the 3E and 7E chromosomes. (A) Distribution in the
number of the DEGs and non-DEGs along the 3E and 7E chromosomes. (B)
Distribution in the proportion of the DEGs and non-DEGs along the 3E and 7E
chromosomes. (C) Overlapped DEGs of DS lines belonging to the
same linkage group.

Supplementary Figure 4 | The chromosomal spread of 7A genes showing
altered transcription in DS3E(3D). The blue shadow in the 7AL terminal represents
the deletion region of the wheat genome. The ratio of not-DT to transcribed genes
(TGs) [R(not-DT/Trans)], the ratio of upregulated to TGs [R(Up/Trans), the ratio of
downregulated to TGs [R(Down/Trans)], and the mean log FC in CS along the 7A
chromosome were represented by different colors.

Supplementary Figure 5 | The chromosomal spread of 7A genes showing
altered transcription in DS7E(7D). (A) Deletion of the chromosomal fragment that
occurs on 6BL. (B) Deletion of the chromosomal fragment that occurs on 6DL.
The blue shadow represents the deletion region. The ratio of not-DT to TGs
[R(not-DT/Trans)], the ratio of upregulated to TGs [R(Up/Trans), the ratio of
downregulated to TGs [R(Down/Trans)], and the mean log FC in CS along the 6B
and 6D chromosomes were represented by different colors.

Supplementary Figure 6 | Comparison of upregulation and downregulation of
homologous genes of downregulated genes in 3E and 7E. Statistical analysis was
performed using the T-test method. NS, no significant.
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