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Recent research advances in wheat have focused not only on increasing grain yields,
but also on establishing higher grain quality. Wheat quality is primarily determined by the
grain protein content (GPC) and composition, and both of these are affected by nitrogen
(N) levels in the plant as it develops during the growing season. Hyperspectral remote
sensing is gradually becoming recognized as an economical alternative to traditional
destructive field sampling methods and laboratory testing as a means of determining
the N status within wheat. Currently, hyperspectral vegetation indices (VIs) and linear
nonparametric regression are the primary tools for monitoring the N status of wheat.
Machine learning algorithms have been increasingly applied to model the nonlinear
relationship between spectral data and wheat N status. This study is a comprehensive
review of available N-related hyperspectral VIs and aims to inform the selection of
VIs under field conditions. The combination of feature mining and machine learning
algorithms is discussed as an application of hyperspectral imaging systems. We discuss
the major challenges and future directions for evaluating and assessing wheat N status.
Finally, we suggest that the underlying mechanism of protein formation in wheat grains
as determined by using hyperspectral imaging systems needs to be further investigated.
This overview provides theoretical and technical support to promote applications of
hyperspectral imaging systems in wheat N status assessments; in addition, it can be
applied to help monitor and evaluate food and nutrition security.

Keywords: hyperspectral imaging, wheat, grain protein, vegetation index, machine learning

INTRODUCTION

Wheat accounts for 21% of global food crops, with a production of 766 million tons in 2019 (FAO,
2020), and it is one of the most important foods for human survival. The viscoelastic properties
of dough made with wheat allow it to be formed into a variety of baked goods, which require
the highest possible flour quality. Grain protein concentration (GPC) is the main descriptor for
indicating flour quality; it affects the formation of gluten in bread production and the technological
properties in baked products and determines the monetary value of wheat grain (Asseng et al.,
2019). However, GPC alone may not be a suitable parameter for evaluating flour quality, which is a
complex parameter and needs to be determined by combining GPC and composition characteristics
(Chaudhary et al., 2016).
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Grain proteins are polymorphic and based on their solubility
properties, can be divided into various components: albumins,
globulins, gliadins, and glutenins. Albumin and globulin have
high nutritional value as well as structural and metabolic
functions (Shewry et al., 1995). Gliadins and glutenins are gluten
proteins, and their composition is decisive for flour quality,
accounting for roughly 80% of the protein in wheat flour (Shewry
and Halford, 2002). Specifically, the viscosity and ductility of
dough are highly influenced by gliadins, while the strength
and elasticity of the dough are mainly influenced by gliadins
(Wieser, 2007). Increasing the nitrogen (N) content and changing
the N distribution would increase the GPC and improve the
composition by changing N partitioning in the grain proteins,
thus enhancing flour quality and helping to ensure food and
nutrition security (Zörb et al., 2010; Xue et al., 2016).

N is absorbed throughout the growing season as an essential
nutrient as illustrated in Figure 1 (Hawkesford, 2017). It is
absorbed by seedling roots to supply the seed, as the seed’s
reserves are rapidly exhausted. It continues to be absorbed during
growth, driving the establishment of the canopy before anthesis.
N uptake is highest around jointing and does not continue to
rise after heading. Changes in N uptake, accumulation, and
further partitioning within the plant lead to variations in the final
GPC and its components (Hirel et al., 2007; Gaju et al., 2011).
Differences in N uptake between the pre- and post-anthesis
periods may affect N partitioning in wheat plants (Bogard et al.,
2010) and the N content in the grains, as this mainly comes from
two different sources: N stored in vegetative organs during the
pre-flowering stage and N absorbed from the soil after flowering.
Grain N is mainly remobilized from senescing canopy tissues and
from the soil through the roots. Furthermore, N uptake efficiency
is mainly related to the ability of the plant to maintain root
activity and/or the plant’s ability to regulate N uptake during
the grain-filling period (Foulkes et al., 2009; Hawkesford, 2014).
The process of post-anthesis N remobilization to the grain affects
the final GPC and composition during grain filling (Barraclough
et al., 2010; Gaju et al., 2014), with the leaves and stems being the
most valuable sources of N to the grain (Gaju et al., 2014). Canopy
reflectance has been widely reported to be a good indicator of the
N status in wheat plants because it is related to chlorophyll (Chl)
a and b content (Wang et al., 2004; Zhao et al., 2005; Reyniers
and Vrindts, 2006). Therefore, studying the eco-physiological
characteristics of wheat canopy N during the growth period
can provide a way to obtain field information in real time for
agricultural production and can inform the breeding of high-
yielding and good-quality wheat.

Numerous studies have already shown the potential of
hyperspectral imaging techniques to estimate the quality of wheat
grain (Figure 1). Traditional methods of assessing wheat N
status requires destruction of the plant for chemical analysis.
Although this method is more accurate, it is also time-
consuming and laborious. To monitor the N status in wheat
plants in real time and non-invasively, hyperspectral remote
sensing has gradually been applied in recent years. This new
method also reflects the spatial and temporal variation of N
during the growing season using appropriate algorithms, which
allows for recommendations before mid-season fertilization

(Feng et al., 2008; Saberioon et al., 2014; Moharana and Dutta,
2016; Raya-Sereno et al., 2022). It is helpful for the early diagnosis
of N stress, to inform remedial measures to ameliorate the
stress. Moreover, it is of great significance to study the effect of
environmental conditions on wheat grain quality.

Spectral data obtained from hyperspectral remote sensing
instruments have a non-linear relationship with N in wheat
plants. Hyperspectral vegetation indices (VIs) and machine
learning are gradually being applied for the assessment of N
status in wheat plants (Ranjan et al., 2012; Camps-Valls et al.,
2018). The objectives of this study were (1) to investigate
the existing wheat N-related hyperspectral VIs, which were
inferred by hyperspectral inversion, with the aim of providing
a reference method for selecting VIs in agricultural fields; (2)
to summarize machine learning algorithms that can analyze
field-derived hyperspectral data for wheat N status assessments;
and (3) to explore the main challenges and future directions
for the continued development of predicting wheat GPC
and composition.

HYPERSPECTRAL TECHNIQUES AND
CANOPY SPECTRAL VEGETATION
INDICES OF NITROGEN STATUS IN
WHEAT PLANTS

Hyperspectral analysis can be used as a high-throughput
phenotyping tool for assessing the N status in wheat plants
during the growing season (Figure 1). Optical remote sensing
techniques can measure eco-physiological traits in a high-
throughput manner in field trials. Remote sensing of vegetation is
mainly achieved by passive sensors that acquire electromagnetic
wave reflection information from the canopy. It has been
established that the reflectance of a wheat canopy in terms of
its electromagnetic spectrum (spectral reflectance or emission
characteristics of the canopy) is determined by the morphological
and chemical characteristics of the leaf surface (Zhang and
Kovacs, 2012). This data typically ranges from 350 to 2,500 nm,
with unique reflectance value profiles in the visible (400–700 nm),
near-infrared (700–1,200 nm), and short-wave infrared regions
(1,200–2,500 nm), which are generally used to infer wheat plant
growth characteristics (Serbin et al., 2015; Heckmann et al., 2017;
Yendrek et al., 2017). Remotely-sensed data that indicate the
growth, vigor, and N dynamics of a wheat canopy can provide
necessary information for estimating grain quality and beneficial
insights for agricultural production (Xue and Su, 2017).

In recent years, progress has been made in studying canopy
spectral reflectance VIs in wheat plants with respect to N. When
sunlight hits a wheat plant, most of the irradiance is consumed
by water transpiration, and a small portion is used for CO2
assimilation. Part of the light energy is absorbed by the canopy
and a part is reflected to space. The reflected light in the
visible region of the electromagnetic spectrum is influenced by
the chlorophyll pigment content in the wheat canopy, which
in turn is related to the concentration of leaf N (Thomas
and Gausman, 1977; Wessman, 1990). Blue (450 nm) and red
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FIGURE 1 | It is a review of hyperspectral imaging systems for evaluating wheat grain protein. Hyperspectral imaging systems, a combination of hyperspectral
remote sensing and machine learning, have significant advantages in evaluating wheat grain proteins. Hyperspectral remote sensing can capture information
reflecting nitrogen (N) status in wheat plants in real-time and non-destructively. Meanwhile, machine learning can effectively simulate the non-linear relationship
between nitrogen and spectral data of wheat. Hyperspectral imaging systems are now widely used to predict wheat grain protein content (GPC), and crop models
can complement the analysis of eco-physiological mechanisms in the prediction process.

(670 nm) wavelengths are two major absorption bands, due
to the uptake of Chl a and b, the two main leaf pigments in
wheat, which account for approximately 65% of the total pigment
concentration in wheat plants. Therefore, it is possible to rapidly
estimate the N status of wheat plants by remotely sensing the
canopy Chl content.

The VIs, which are derived from wheat canopy hyperspectral
reflectance, are used to describe vegetation characteristics that
depend on the environment. The list of indices in Table 1
summarizes 20 VIs that quickly provide information on the
N status of the entire wheat plant under field conditions
(Gamon et al., 1997; le Maire et al., 2004; Herrmann et al.,
2010). VIs for predicting Chl contents are usually based on
(i) reflectance values far from the pigment absorption maxima
and (ii) the selection of wavelengths close to the absorption
bands. Another exciting region of the spectral area is the region
between the strong red light absorption by Chl (680 nm)
and the highly reflective near-infrared wavelengths (780 nm),
a region of the spectrum known as the “red edge;” several
red edge indices have been described (Vogelmann et al., 1993;

Filella and Penuelas, 1994; Barnes et al., 2000). In wheat
plants, Chl reduction caused by N deficiency leads to increased
reflectance in the visible range (400–700 nm), changing the
spectral signature, which reduces symptom-specific spectral
characteristics (Osborne et al., 2002). Conducting experiments
under diverse ecological conditions is helpful for validating
other known VIs and for developing more broadly applicable
monitoring models to indirectly assess the eco-physiological
traits associated with N stress (El-Hendawy S. E. et al., 2019).
Rodriguez et al. (2006) tested several developed VIs for estimating
the level of canopy N nutrition in wheat plants under different
environmental conditions and they derived a simple canopy
reflectance index entirely independent of environmental factors.
A N stress-free VI was developed that adjusts shoot %N
according to the plant’s biomass and area; thus, it considers the
environmental conditions affecting wheat growth.

Two-band VIs are increasingly used for N estimation
(Table 1). VIs are calculated from canopy reflectance values for
specific visible and near-infrared wavelengths (Frels et al., 2018).
These indices can estimate changes in canopy Chl content and
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TABLE 1 | The 27 selected vegetation indices (VIs) that have been applied to wheat under field conditions were reviewed in the study, together with their number of
spectral bands, band-specific formulations, and associated principal reference, including 17 two-band VIs and 10 three-band VIs.

Number of
Bands

Vegetation
Indices

Full Name Formulation References

Two-bands CIrededge Red Edge Model (R800/R700) − 1 Jin et al., 2013

EVI800,660 Enhanced Vegetation Index 2.56 (R800 − R660)
/

(1 + R800 + 2.4R660) Jin et al., 2013

GI Green Index R554
/

R677 Duan et al., 2019

NDSI860,720 Normalized Difference Spectral
Indices based on the original
spectrum

(R860 − R720)
/

(R860 + R720) Yao et al., 2010

NDSIFD860,FD720 Normalized Difference Spectral
Indices based on the First
Derivative spectrum

(FD860 − FD720)
/

(FD860 + FD720) Yao et al., 2010

NDVI Normalized Differenced
Vegetation Index

(R790 − R660)
/

(R790 + R660) Hansen and
Schjoerring, 2003;
Hassan et al., 2019

NDWI Normalized Difference Water
Index

(R860 − R1240)
/

(R860 + R1240) Tuvdendorj et al., 2019

NWI970,990 Normalized Water Index (R970,
R990)

(R970 − R900)
/

(R970 + R900) Babar et al., 2006

NWI970,850 Normalized Water Index (R970,
R850)

(R970 − R850)
/

(R970 + R850) Babar et al., 2006

NPCI Normalized Pigments
Chlorophyll Ratio Index

(R680 − R430)
/

(R680 + R430) Tan C.-W. et al., 2018

ONLI Optimized Non-Linear Index 1.5(0.6R2
798 − R728)

/ (
0.6R2

798 + R728 + 0.05
)

Feng et al., 2019

OSAVI Optimized Soil-Adjusted
Vegetation Index

1.16 (R800 − R670)
/

(R800 + R670 + 0.16) Jin et al., 2013

PRI Photochemical Reflectance
Index

(R531 − R570)
/

(R531 + R570) Robles-Zazueta et al.,
2021

RSI990,720 Ratio Spectral Indices based on
the original spectrum

R990/R720 Yao et al., 2010

RSIFD725,FD516 Ratio Spectral Indices based on
the First Derivative spectrum

FD990/FD720 Yao et al., 2010

RVI870,660 Ratio Vegetation Index R870/R660 Zhu et al., 2008

RVI810,660 Ratio Vegetation Index R810/R660 Zhu et al., 2008

Three-band EVI Enhanced Vegetation Index 2.5
[
(R900 − R680)

/
(R900 + 6R680 − 7.5R475 + 1)

]
Wang et al., 2012;

Robles-Zazueta et al.,
2021

MCARI705,750 Modified Chlorophyll
Absorption Ratio Index
calculated with reflectance from
705 to 750 nm

[(R750 − R705) − 0.2 (R750 − R550)] (R750/R705) Wu et al., 2008

MCARI2 Modified Chlorophyll
Absorption Ratio Index
Improved

1.5[2.5(R803 − R671)− 1.3(R803 − R549)]/√
(2R803 + 1)2− (6R803)− 5

√
R671)− 0.5

Haboudane et al., 2004

mNDVI Modified Normalized
Differenced Vegetation Index

(R924 − R703 + 2R423)
/

(R924 − R703 − 2R423) Wang et al., 2012

MTVI2 Modified Triangular Vegetation
Index Improved

1.5[1.2(R800 − R550)− 2.5(R670 − R550)]/√
(2R800 + 1)2− (6R800)− 5

√
R670)− 0.5

Li et al., 2019

MTCI Medium Terrestrial Chlorophyll
Index

(R750 − R710)
/

(R710 + R680) Tan C.-W. et al., 2018

SIPI-1 Structure Insensitive Pigment
Index-1

(R800 − R445)
/

(R800 − R680) Robles-Zazueta et al.,
2021

SIPI-2 Structure Insensitive Pigment
Index-2

(R800 − R435)
/

(R415 − R435) Robles-Zazueta et al.,
2021

TCARI670,700 Transformed Chlorophyll
Absorption Reflectance Index

3
[
(R700 − R670)− 0.2 (R700 − R550)

(
R700

/
R670

)]
Wang et al., 2012; Wu

et al., 2021

TCARI705,750 Transformed Chlorophyll
Absorption Reflectance Index
calculated with reflectance from
705 to 750 nm

3
[
(R750 − R705)− 0.2 (R750 − R550)

(
R750

/
R705

)]
Wu et al., 2008

Rλ is the spectral reflectance of random wavelengths (λ); FDλ is the corresponding derivative spectrum.
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thus indicate the N status of wheat plants (Gutierrez et al., 2004).
Hansen and Schjoerring (2003) used two-band combinations of
the normalized vegetation index (λ1 − λ2)/(λ1 + λ2) to predict
N-related crop variables at different growth stages during the
winter wheat growing season in a field experiment. Zhu et al.
(2008) identified common spectral bands and VIs to characterize
the N status of wheat leaves and analyze the quantitative
relationship between leaf N status and canopy reflectance. In
their study, ratio VIs (RVIs) (R870, R660) and RVIs (R810, R660)
showed the highest correlation with leaf N status compared
to other specific RVIs, differential VIs (DVIs), and normalized
VIs (NDVIs) in the 16 bands from the MSR16 radiometer.
Yao et al. (2010) conducted real-time monitoring of wheat
canopy hyperspectral reflectance and leaf N status under different
treatments in a field experiment. They found that the sensitive
spectral bands of the leaf N status concentrated in the visible and
near-infrared regions, and that NDSIs (R860, R720), RSIs (R990,
R720), NDSIs (FD736, FD526), and RSIs (FD725, FD516) were the
best VIs for estimating the N status in wheat plants. However,
the values of VIs calculated by combining two bands were found
to be closely related to the number of leaves in the canopy.
A dense canopy can quickly saturate the two bands, making it less
sensitive to the plant’s high eco-physiological content (Gitelson,
2004). Therefore, three-band VIs were developed to solve the
problem of canopy saturation that can occur in two-band VIs
(Wang et al., 2012).

Selecting the optimal central bands for three-band VIs
requires a comprehensive analysis of two-band VIs based on
hyperspectral information (Hansen and Schjoerring, 2003; Zhu
et al., 2008; Yao et al., 2010). Selecting the central band of the
three-band VIs is a bandwidth issue, and is controversial in wheat
plant growth monitoring. Broge and Mortensen (2002) predicted
eco-physiological traits in wheat at three newton levels in the
field by comparing the predictive power of broadband-based VIs
with narrowband-based VIs. They concluded that narrowband-
based VIs were more sensitive to changes in wheat plants during
growth and more effective at minimizing noise and saturation in
eco-physiological trait estimation. In contrast, Wang et al. (2012)
conducted field experiments with different N levels, moisture
conditions, and wheat varieties, and concluded that broadband-
based VIs are more realistic. Therefore, they constructed a
new three-band VI by combining narrowband-based VIs and
broadband-based VIs to reduce the saturation of broadband-
based two-band VIs on the basis of reality (Table 1). Based on
this, a reliable and stable linear monitoring model for leaf N
concentration was established, which provides a good index and
an accurate estimation model for monitoring the N status in
wheat plants using a three-band VI (Wang et al., 2012).

There is little agreement in previous studies on which
VIs are most suitable for determining the N status in wheat
plants. Main et al. (2011) investigated 73 VIs and ranked them
according to their relationship with total Chl content, which
is related to N. They found that indices using the red-edge
region (680–730 nm) were better predictors of the N status of
wheat canopy (via canopy Chl content), with a better linear
relationship and lower saturation than other VIs. Frels et al.
(2018) used 299 wheat genotypes in a 2-year trial near Ithaca,

NE, United States, to compare the correlation between 28 VIs
inferred from canopy spectral reflectance during the grain filling
stage and N-related traits in wheat plants. They concluded that
it is more accurate to use VIs to estimate N traits in wheat
plants during the early grain filling stage, as more traits were
associated with the Maccioni index. This index captures many
components of the N use efficiency. Incorporating it into the
existing selection programs could yield more N-related indicators
(Frels et al., 2018).

DISSECTION OF HYPERSPECTRAL
REFLECTANCE TO ESTIMATE
NITROGEN STATUS IN WHEAT PLANTS
BASED ON MACHINE LEARNING
ALGORITHMS

Machine learning is an effective method for solving complex
problems such as multicollinearity and overfitting in multiple
linear models (MLMs) to estimate the N status in wheat plants
(Figure 1). With the development of hyperspectral imaging
systems, the amount of computation required has gradually
increased. Moreover, the massive data features tend to cause
overfitting and affect estimations produced by MLM. Selecting
a suitable estimation method can reduce the dimensionality of
the raw data, screen out necessary information from the data,
significantly improve the validity of the data, and is an important
aspect of improving the accuracy of N status estimation in wheat
plants (Li D. et al., 2020). Most studies have used MLM to
quantitatively assess the relationship between spectral indices and
N status (Babar et al., 2006; Pavuluri et al., 2015). However,
when many characteristic dimensions are used, the correlations
between VIs and leaf N status are generally low, and the models
are prone to multicollinearity and overfitting, which reduces the
accuracy of the estimated N status (El-Hendawy S. et al., 2019).
To address these issues, machine learning methods can reduce
the wide range of co-linear variables and non-correlated factors,
and reduce the impact of background effects on model precision
(Singh et al., 2021).

Machine learning techniques are advantageous for estimating
agricultural indices from hyperspectral remote sensing data
(Zhang et al., 2021). Wheat canopy reflectance is a function of
the wheat leaf ’s optical properties, wheat canopy structure, soil
background, atmospheric conditions, observation geometry, and
solar zenith angle (Boegh et al., 2002; Baret et al., 2007; Homolová
et al., 2013). The relationship between canopy reflectance and
wheat N status is controlled by many influencing factors.
Thus, finding the response mechanism of canopy hyperspectral
reflectance to the wheat N status is often complicated and
nonlinear in character (Fu et al., 2021). Most machine learning
algorithms are often considered “black boxes” because they
provide no information about how they work. Therefore,
machine learning can be used to explore the complex non-
linear relationships between spectral features and the N status in
wheat plants without a clear understanding of the original data
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distribution (Singh et al., 2021). This not only provides a multi-
faceted and flexible direction for data analysis, but also a wider
scope for experts to apply their theoretical knowledge to explain
the principles in conjunction with algorithms. Previous spectral
indices have depended on a few available spectral bands and,
therefore, do not use all the information conveyed by the spectral
trace. In contrast, machine learning techniques not only use
inverse VIs but also all the spectral information, demonstrating
the potential to analyze hyperspectral reflectance data with a
large number of bands and to evaluate additional features.
This provides more information for high-precision prediction
modeling of the N status in wheat plants (Chlingaryan et al.,
2018). Recently, the advantages of machine learning over VI-
based approaches have been highlighted. Specifically, machine
learning has excelled in modeling the complex mechanisms of
canopy-scale spectral features in response to the N status in wheat
plants, without the need to know the underlying data distribution
(Thorp et al., 2017; Miphokasap and Wannasiri, 2018; Tan K.
et al., 2018). With the proliferation of spaceborne, airborne, and
unmanned aerial vehicle (UAV) imaging spectrometers, many
types of hyperspectral data are now available and has ushered in
the era of “big data” in the field of remote sensing. This requires
machine learning algorithms to mine available information to
more effectively monitor the N status in wheat plants in real time
and to predict their GPC and composition (Fu et al., 2021).

Machine learning involves various types of learning
techniques. Partial least squares regression (PLSR) is a commonly
used technique for estimating eco-physiological traits in wheat
from hyperspectral data (Fu et al., 2014). Hansen and Schjoerring
(2003) calculated NDVIs for all possible combinations of
wavelengths in the range of 438–884 nm. They found that
linear regression and PLSR can be used to estimate Chl and N
concentrations in wheat plants. Pimstein et al. (2007) also used
PLSR to estimate the N content of wheat leaves from spectral
(350–2,500 nm) data collected in the field. The authors concluded
that the appropriate wavelength and application of derivatives
to the raw spectra could improve the predictive quality of the
estimated model. Li et al. (2014) also estimated canopy N content
in wheat plants using optimized hyperspectral VIs combined
with PLSR. Mahesh et al. (2015) used PLSR to predict wheat
GPC based on hyperspectral reflectance. In conclusion, PLSR has
been applied as a method capable of analyzing a large amount
of noise-laden co-linear data to monitor N content in wheat
plants and predict wheat GPC in agricultural fields. Its accuracy
improves with an increase in the number of relevant variables
and observations (Berger et al., 2020).

In addition to PLSR, kernel-based regression methods are
becoming more popular in wheat N status assessment using
hyperspectral data. Machine learning algorithms require a few
statistical assumptions to be applied to the data to develop linear
and nonlinear models. Among them, kernel-based regression
methods [e.g., support vector regression (SVR) and Gaussian
process regression (GPR)] use structural risk minimization.
Therefore, with a limited training set, these methods are
considered to have a better generalization ability than artificial
neural networks (ANNs) (Fu et al., 2020). Li et al. (2016)
compared four chemometric techniques used to estimate N

status in winter wheat plants using spectral features. In their
study, the predictive power and the impact of sample size
were assessed. They proposed that SVR is more suitable than
back-propagation neural networks (BPNN) for estimating winter
wheat N concentrations when the sample size is insufficient.
Different kernel functions differ in their ability to embed
geometric structures in the training samples. To combine the
advantages of different kernel functions, Wang et al. (2017)
constructed a multiple-kernel SVR (MK-SVR) consisting of a
radial basis function (RBF) kernel and polynomial kernel for
N status estimation in wheat plants. They found that the MK-
SVR outperformed multiple linear regression (MLR), partial
least squares (PLS), ANNs, and single kernel SVR (SK-SVR)
models, introducing a new method for non-destructive and
rapid monitoring of the N status in wheat plants based on
hyperspectral data.

Physical and hybrid methods have also been applied to wheat
N-inversion. Their application is based on the high degree of
correlation between leaf Chl and the N status in wheat plants,
and their effectiveness depends on the radiative transfer models
(RTM) used, the inversion technique applied, and the quality of
the data measured (Danner et al., 2021). PROSAIL is a widely
used radiative transfer model for estimating the N status in
wheat because it provides a good compromise between model
realism and inversion possibilities. Yang et al. (2015) developed
an N-PROSPECT model to estimate the N status of the winter
wheat canopy by replacing the Chl uptake coefficient with the N
uptake coefficient in the original PROSPECT model. Coupling of
the N-PROSPECT model and the SAIL model (N-PROSAIL) has
been used to estimate canopy N density in wheat plants, and the
model has been shown to have a high potential for establishing
the N status in wheat plants (Li et al., 2018b, 2019). However,
the ability of PROSAIL and N-PROSAIL models to characterize
a non-homogenous canopy structure before complete canopy
closure is poor, resulting in less accurate estimates of the N status
in wheat plants (Botha et al., 2010).

DEFICIENCIES AND PROSPECTS OF
THE HYPERSPECTRAL IMAGING
SYSTEM FOR ESTIMATING THE
NITROGEN STATUS IN WHEAT PLANTS

The use of the hyperspectral imaging system often allows for
immediate and punctuated estimates of the wheat N status
over wide regions. However, there are intrinsic inevitable
shortcomings in the empirical methods. Hyperspectral VIs are
widely used in crop N estimation due to its simple, timely and
efficient computation. Further, machine learning techniques are
expected to be more suitable for simulating wheat N status
from such data due to their ability to deal with nonlinear
problems. Many combinations of hyperspectral VIs and machine
learning algorithms have yielded improved N status estimates
for wheat plants, and there have been studies modeling the
relationship between VIs and GPC based on machine learning
algorithms. For example, Tan et al. (2020) analyzed 14 VIs by
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using PLSR and found that 12 of them were closely related to
wheat GPC (model prediction accuracy > 90%). Nevertheless,
PLSR was not compared with other machine learning methods
in the study. Although PLSR is superior to linear regression
and principal component analysis model, decision tree, random
forest, artificial neural networks and other methods may have
better simulation results for wheat GPC. Furthermore, the
hyperspectral imaging system still needs improvement. First,
the results of models calibrated with hyperspectral data are
significantly influenced by seasonal characteristics, cropping
environments and experimental design, which is characterized by
poor spatio-temporal heterogeneity. Therefore, applying a model
from one specific environment or growing season to any other
environment or growing seasons may result in poor prediction
results of wheat grain nutrition (Colaço and Bramley, 2018,
2019). Second, the spectral features identified by the available
feature mining techniques involve statistical models and largely
depend on a dataset without any inherent relationships between
GPC, the environment, and management, with unclear physical
meaning and poor explanation of mechanism (Li Z. et al.,
2020; Figure 1). Some researchers have argued that as (i) wheat
growth is a dynamic process and (ii) wheat canopy N status
changes dynamically; a better understanding of the physical
processes underlying the hyperspectral response to wheat canopy
N status is required. This would enable the development of robust
assessment models with causal relationships that complement
the eco-physiologically hyperspectral imaging systems (Li et al.,
2018a; Fu et al., 2021).

The combination of crop models and remote sensing data
is emerging as a promising approach for monitoring wheat
growth and grain protein accumulation. Crop models can
simulate the dynamic biological processes of wheat growth based
on the quantitative relationships between wheat growth and
environmental conditions, including weather, soil conditions,
wheat genotype information, and field management (Jin et al.,
2018). Crop models combined with hyperspectral data can
provide time continuity for wheat quality prediction systems.
This can enable the effective development of crops based
on the environment and stress conditions (water or N),
improve the temporal and spatial expansion ability of wheat
quality prediction, enhance the agronomic and mechanical
rationality of prediction, and can be used for scenario testing
and strategic (long-term) decisions (Li Z. et al., 2020). In
previous studies, the transfer of N to the grain has been
simulated at various levels of complexity. Both simpler harvest
indexing approaches [e.g., SIRIUS (Jamieson et al., 1998) and
STATISTICS (Brisson et al., 1998)] and more sophisticated
source-aggregation models [e.g., SIRIUS (Jamieson and Semenov,
2000)] illustrate this evolution. The CERES-Wheat grain filling
program applied independent controls for dry matter and N
accumulation in the grain, dividing the grain filling process into
stages. However, variation in N accumulation due to genetic
variance was not considered in this procedure (Ritchie et al.,
1998). APSIM-Nwheat used the same grain protein program
as CERES-Wheat and applied the model to study the effect
of seasonal temperature and rainfall interactions on grain N
concentrations (Asseng and Milroy, 2006). Meanwhile, other

studies have proposed a framework to model the mechanisms
of N uptake and partitioning in wheat plants, thus advancing
toward more accurate modeling of N dynamics (Jamieson
and Semenov, 2000). In recent years, crop models have
been used to assess the impact of climate change on wheat
GPC, however, uncertainty varies with location (Asseng et al.,
2019).

In addition, the SiriusQuality model has been developed to
consider the assignment of structural and storage proteins in
wheat grain. Within the routine, the model divides N into
structural/metabolic proteins and major storage proteins, and
it provides predictions of the protein compositions, which are
the alcoholic and glutenin fractions (Martre et al., 2003, 2006).
The SiriusQuality model also assumes that the partitioning of N
between the storage protein compositions, alcoholic, and gluten
remains constant during the grain filling stage. It also assumes
that the interactions between the genotype and environment
alters the total grain N through source limitation rather than
through partitioning of N between different protein compositions
(Martre et al., 2006). This provides proof of concept that crop
models can be extended to explain protein composition. In
general, existing crop models can correctly simulate GPC in
the absence of stress treatments; however, the performance of
models under extreme temperature conditions still needs to be
improved (Osman et al., 2020). In addition, some important
model input parameters are difficult or impossible to obtain, and
the information provided to crop models on wheat growth is
limited to scattered points (Fu et al., 2021).

CONCLUSION

An accurate assessment of the in-plant N status of wheat is
essential for predicting GPC and composition, in addition to
ensuring food and nutritional safety. We are at the beginning
of a promising path toward using hyperspectral imaging
systems to predict GPC and composition in wheat plants.
On the one hand, as a high-throughput phenotypic tool,
hyperspectral remote sensing has the potential to complement
or even replace types of field measurements for some wheat
N-related traits in the growing season. On the other hand,
the combination of hyperspectral VIs and machine learning
algorithms is a powerful tool for estimating agricultural indices
from hyperspectral remote sensing data. However, VIs and the
spectral features identified by machine learning algorithms in
hyperspectral imaging systems depend heavily on the input
dataset without any intrinsic relationship between GPC, the
environment, and field management. Based on our review, we
suggest that these issues can be understood in conjunction
with crop models. Crop models consider the environmental
effects of wheat growth. These methods strive to uncover
the underlying mechanisms of wheat growth when using
hyperspectral data to predict wheat GPC and composition.
Insight into the limitations of these methods will help us select
the appropriate method for monitoring the N status in wheat
plants and contribute to further developing methods for wheat
grain quality studies.
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