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The effects of the climate change including an increase in the average global
temperatures, and abnormal weather events such as frequent and severe heatwaves are
emerging as a worldwide ecological concern due to their impacts on plant vegetation
and crop productivity. In this review, the molecular processes of plants in response
to heat stress—from the sensing of heat stress, the subsequent molecular cascades
associated with the activation of heat shock factors and their primary targets (heat
shock proteins), to the cellular responses—have been summarized with an emphasis
on the classification and functions of heat shock proteins. Vegetables contain many
essential vitamins, minerals, antioxidants, and fibers that provide many critical health
benefits to humans. The adverse effects of heat stress on vegetable growth can be
alleviated by developing vegetable crops with enhanced thermotolerance with the aid of
various genetic tools. To achieve this goal, a solid understanding of the molecular and/or
cellular mechanisms underlying various responses of vegetables to high temperature is
imperative. Therefore, efforts to identify heat stress-responsive genes including those
that code for heat shock factors and heat shock proteins, their functional roles in
vegetable crops, and also their application to developing vegetables tolerant to heat
stress are discussed.

Keywords: global warming, heat shock factor, heat shock protein, heat stress, thermotolerance, vegetables

INTRODUCTION

Vegetable crops mainly comprise sessile organisms. They routinely experience detrimental
conditions including biotic and abiotic stresses in natural fields. The current climate changes
including frequent extreme temperatures, strong storms, heavy rainfall, and harsh droughts directly
threaten normal vegetable development during the entire period of vegetative and reproductive
growth (Driedonks et al., 2016; Hansen et al., 2016; Bhutia et al., 2018). Global warming is one
of the main issues related to global climate change and is caused by increases of greenhouse gases
such as CO2, CH4, N2O, and hydrofluorocarbons (HFCs) that have been produced by urbanization
and industrialization (Bhutia et al., 2018; Zandalinas et al., 2021). According to climate models
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(Driedonks et al., 2016) and the report from the
Intergovernmental Panel on Climate Change (IPCC1), the
world mean temperature will rise by 0.5 to 4◦C in the twenty-
first century (Hansen et al., 2016; Zandalinas et al., 2021).
The changes in weather/climatic events such as temperature
and rainfall are found to reduce the yield of crops. Statistical
evidence shows that the temperature affects rice production
in Africa. It was also found that irrigated rice yields in West
Africa in the dry season would decrease by∼45% due to reduced
photosynthesis at extremely high temperatures (van Oort and
Zwart, 2018). This indicates that the elevated temperature
brought by climate change will result in significant losses in
crop yields and production (Ortiz et al., 2008; Hansen et al.,
2016). Plants have evolved to acquire the ability to induce
defense mechanisms against the adverse effects of high ambient
temperature on their growth (Ahuja et al., 2010; Bourgine and
Guihur, 2021; Tian et al., 2021). The tolerance of plants to
high ambient temperatures with no prior heat experience is
known as basal thermotolerance (BTT), whereas the ability to
overcome extremely high temperatures (HT) with pre-exposure
to mild HT (i.e., sub-lethal temperatures) is known as acquired
thermotolerance (ATT) (Ahuja et al., 2010; Bourgine and Guihur,
2021; Tian et al., 2021). The defense mechanisms against elevated
temperatures in plants are tightly associated with rapid changes
in gene expression in both BTT and ATT (Morimoto, 1998;
Feder and Hofmann, 1999). Indeed, high ambient temperatures
trigger a drastic cellular remodeling at the physiological and
molecular levels in plants to maintain homeostasis, thereby
allowing them to survive under adverse HT (Wang et al., 2004;
Ohama et al., 2017; Tian et al., 2021). Within these mechanisms,
how plants recognize HT and relay HT-induced signaling
downstream to modulate transcription is a central question
that plant researchers have been pondering for a long time.
It has recently been reported that Ca2+ plays important roles
in the perception, response, and adaptation of plants to heat
stress (HS) (Mittler et al., 2012; Ohama et al., 2017; Lee and Seo,
2021). The alteration of fluidity in the plasma membrane (PM)
in plants in response to HS can open cyclic nucleotide-gated
calcium channels (CNGCs) controlled by nucleotide cyclases,
thereby having Ca2+ move into the cytosol from the PM (Saidi
et al., 2009; Finka et al., 2012; Gao et al., 2012; Mittler et al.,
2012; Ohama et al., 2017). The Ca2+ ions are associated with
protein calmodulin 3 (CaM3) during HS and the complex of
Ca2+-CaM3 interacts with calcium/calmodulin-binding protein
kinase 3 (CBK3) and phosphatase PP7 to transduce cytosol heat-
stress response (HSR) signals into the nucleus by modulating
phosphorytion and dephosphorylation of HSFA1, respectively
(Liu et al., 2007, 2008; Mittler et al., 2012; Ohama et al., 2017).
Also, the increased levels of Inositol-1,4,5-triphosphate (IP3)
via the phosophoinositide-signaling pathway result in the influx
of Ca2+ into cytoplasm from intracellular Ca2+ pools such as
the endoplasmic reticulum (ER) and vacuole during HS (Zhang
et al., 2009; Zhou et al., 2009; Mittler et al., 2012; Ohama et al.,
2017). In addition, reactive oxygen species (ROS) produced
by respiratory burst oxidase homolog B (RbohB), RbohD, and

1www.ipcc.ch/

NADPH oxidases are other candidate sensors of HS (Königshofer
et al., 2008; Miller et al., 2009; Suzuki et al., 2012). It has also
been demonstrated that the ROS causes accumulation of nitric
oxide (NO), which induces the activation of CaM3. The signaling
cascade of CaM3 ultimately influences the association of DNA
and heat shock factors (HSFs) in nucleus via the potential
involvement of HSFA1 activity (Xuan et al., 2010; Wang et al.,
2014; Ohama et al., 2017). Although Ca2+ and ROS are evaluated
as predicted signal transducers during HS, the full activation of
HSR in response of plants to HT cannot be exclusively explained
by them. This indicates that there may be other signal transducers
and multiple layers of signaling pathways including salicylic acid
(SA), ethylene (ET), abscisic acid (ABA), and jasmonic acid (JA)
signals (Fujita et al., 2006; Frank et al., 2009; Zhou et al., 2009).

The effect of HS on plants leads to diverse changes in
plant cells including the state of cellular membranes, structural
alterations in DNA and RNA species, and conformational
changes of proteins, cytoskeleton structures, and metabolites
(Ruelland and Zachowski, 2010; Mittler et al., 2012). For
instance, high ambient temperature influences fluidity of cellular
membranes containing primarily phospholipids, proteins, and
carbohydrates with the modification of membrane rigidification
(Ruelland and Zachowski, 2010). Also, high ambient temperature
affects the accessibility of nucleic acids, and it has been
determined that elevated temperatures induce the dissociation of
the histone protein H2A.Z from nucleosomes, which promotes
the chromatin accessibility to RNA polymerase II for the
expression of genes for heat-shock proteins (HSP) and HSF,
thus showing highly inductive and responsive gene expression
dynamics (Kumar and Wigge, 2010; Zhang H. et al., 2021). RNA
secondary structures can be affected by HS. It has been revealed
that HT leads to a change in translation rate, resulting from
the altered association of mRNAs with ribosomes (Matsuura
et al., 2010). Since structured nucleic acid molecules melt as the
temperature increases, it can be easily conceived that temperature
changes affect the conformation of regulatory RNAs (Narberhaus
et al., 2006). Indeed, the RNA secondary structure of internal
ribosome entry sites (IRESs), which are translation regulatory
elements of mRNAs, can be modified by HS to initiate translation
in a cap-independent manner (Dinkova et al., 2005; Ruelland
and Zachowski, 2010). Conversely, RNA secondary structures
that mask ribosomal binding sites at optimal temperature
can be modified by HS, allowing the conversion of non-
functional RNA to the competent RNA species with ribosomal
recruitment (Narberhaus et al., 2006). Heat stress also influences
the conformational changes of proteins that act as signaling
effectors in response to HT in plants (Ruelland and Zachowski,
2010). In Arabidopsis, the oligomerization of thioredoxin and/or
thioredoxin-like proteins is induced by HS, causing concomitant
functional switching from a disulfide reductase and foldase
chaperone to a holdase chaperone (Lee et al., 2009; Park et al.,
2009). It has also been reported that the elevated temperatures
from 27 to 42◦C in tobacco, and from 20 to 42◦C in Arabidopsis
cause severe damage to cytoskeletones including microtubules
(Smertenko et al., 1997; Müller et al., 2007). Furthermore,
tobacco BY-2 cells exposed to heat (50◦C, for 5 min) exhibited
depolymerization of actin microfilaments (Malerba et al., 2010),
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and such a defective phenotype was also observed in Arabidopsis
roots (Müller et al., 2007). Based on a report demonstrating that
heat triggers the accumulation of HSP70 and the heat-activated
MAP kinase (HAMK), both HSP70 and HAMK are likely to
be necessary to disassemble the cytoskeleton under HS (Suri
and Dhindsa, 2008). Altered enzymatic activities such as the
catalytic rate, and the un- or mis-folding of enzymes can also be
affected by HS, resulting in the imbalance of cellular metabolism
in plants (McClung and Davis, 2010; Ruelland and Zachowski,
2010; Suzuki et al., 2012). The steady-state efflux and influx of
metabolites such as sucrose, prolines, glycine-betaine, ascorbate,
glutathione, and ROS play an important role in heat response
and tolerance (Wang et al., 2004; Al-Whaibi, 2011; Mittler et al.,
2012). Reactive oxygen species were initially regarded as a toxic

by-product of aerobic metabolism. However, it is now apparent
that ROS such as superoxide and hydrogen peroxide are able to
function as signal molecules to induce the HSR (Miller et al.,
2007, 2009; McClung and Davis, 2010; Ruelland and Zachowski,
2010; Suzuki et al., 2012). In particular, the levels of ROS are
influenced by the participation of ROS-generating enzymes in
plant response to HT (Königshofer et al., 2008). The acquisition
of plant heat tolerance is closely associated with the synthesis of
chaperone proteins and the levels of non-enzymatic antioxidants
in response to HT (Kotak et al., 2007; Wahid et al., 2007;
Frank et al., 2009; Rampino et al., 2009). Many reports have
been published showing that HS influences protein conformation
which can drive a protein to be denatured, aggregated, and
un- or mis-folded, thereby being directly recognized by several

FIGURE 1 | General molecular mechanism of heat shock protein production and transcriptional regulation in response to heat stress in plant cells.
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FIGURE 2 | Schematic representation of available domains in the five major
families of heat shock proteins. NTD (N-terminal domain), NBD (Nucleotide
binding domain), MD (Middle domain), CTD (C-terminal domain), SBD
(Substrate binding domain), ED (Equatorial domain), ID (Intermediate domain),
AD (Apical domain), and ACD (Alpha-crystallin domain) are shown as boxes
with different colors based on their functions. Numbers in parenthesis indicate
the molecular weight distribution of each HSP family.

HSPs (Yamada et al., 2007; Scharf et al., 2012; Ohama et al.,
2017). Notably, plant HSPs play a crucial role in conferring
plant tolerance to HS, and they help facilitate proper folding of
target proteins by hindering denaturation and aggregation of the
proteins as molecular chaperones (Ahuja et al., 2010; Jacob et al.,
2017). For instance, under normal temperature conditions, HSFs
regulate the HSR and form inactive multiprotein complexes with
HSPs. On the other hand, under HS, HSFs dissociate from the
complex and form phosphorylated trimers, thereby allowing their
nuclear translocation and binding to heat-shock element (HSE)
to induce transcription of target genes (Kotak et al., 2007; Ahuja
et al., 2010; Scharf et al., 2012; Jacob et al., 2017; Ohama et al.,
2017). Indeed, transcriptomic and proteomic analyses revealed
that the abrupt changes in gene expression in response to high
ambient temperatures enhance a selected regulatory response and
synthesis of proteins linked to HSPs, HSFs, and HSR (Al-Whaibi,
2011; Jacob et al., 2017; Zandalinas et al., 2021). However, the
players and their mode of action in heat perception, HS-signaling
pathways and HSR still remain elusive in vegetable crops.

In this review, we give an overview of the HSPs with focus
on vegetable crops. Heat shock proteins play an essential role in
the regulation of HSFs and subsequently, the expression of heat
responsive genes. Moreover, a better understanding of HSPs will
enable us to widen our knowledge of interconnected mechanisms
underlying the complex regulatory networks of HSFs and heat
responsive genes at the physiological and molecular levels during
the adaptation of plants against HS. We also discuss the potential
applications of biotechnology for efficient development of crops
with enhanced thermotolerance to cope with climate change.

HEAT SHOCK PROTEINS INVOLVED IN
HEAT STRESS

In nature, plants are often exposed to various kinds of abiotic
stresses including low or high temperature, deficiency or excess

of water, high salinity, heavy metals and ultraviolet radiation
(Rucińiska-Sobkowiak, 2010; Bita and Gerats, 2013; Osakabe
et al., 2013; He et al., 2018). Among these, HS has significant
effects on plant growth, metabolism, and productivity (Rodríguez
et al., 2015). HS causes protein misfolding and/or denaturation,
leading to protein aggregation in plant cells by interactions
between exposed hydrophobic amino acid residues of affected
proteins (Nakajima and Suzuki, 2013). In response to HS, plants
synthesize molecular chaperones including HSPs that recognize
hydrophobic amino acid residues of non-native proteins and
promote folding and refolding of denatured proteins (Figure 1).
They are also responsible for assembling of multi-protein
complexes, transporting, and sorting of proteins into correct
compartments, controlling cell cycle and signal-transduction
under various stress conditions. The different classes of HSPs
play complementary and sometimes overlapping roles in protein
stabilization under thermal stress. The HSPs are generally
grouped into five major families based on their molecular weight:
HSP100, 90, 70, 60 and the small HSPs (sHSPs) (Figure 2 and
Table 1).

Heat stress (HS) influences the alteration of membrane fluidity
in plasma membrane (PM) in planta and activates the cyclic
nucleotide-gated calcium channels (CNGCs), resulting in the
movement of Ca2+ into the cytoplasm from the apoplastic
space. The Ca2+ ions are associated with protein calmodulin
3 (CaM3) during HS and the Ca2+-CaM3 complex binds to
either calcium/calmodulin-binding protein kinase 3 (CBK3) or
phosphatase PP7 to transduce cytosol heat-stress response (HSR)
signals into the nucleus by modulating phosphorylation and
dephosphorylation of the heat shock transcription factors (HSFs),
respectively. The elevated levels of inositol-1,4,5-triphosphate
(IP3) via the phosophoinositide-signaling pathway (PLC) lead
to an influx of Ca2+ into the cytoplasm from the pool
of intracellular Ca2+ ions including the ER and vacuoles
in response to HS and induce the same CaM3 signaling
pathway. ROS are generated by respiratory burst oxidase
homolog B (RbohB) and D (RbohD) during HS. RbohB/D-
produced O2

− is converted into H2O2, which depolarizes
PM as well as inducing the ROS/Redox signaling network
which is involved in the activation of HSFs. Also, H2O2 is
possibly increased in plant cells due to metabolic imbalances
and the production of ROS, resulting in the accumulation of
nitric oxide (NO) and the activation of calcium-channels that
subsequently trigger the activity of CaM3 as illustrated in the
(Figure 1). Upon HS stimuli, HSP interacts with unfolded
and aggregated proteins, thereby releasing HSF monomer. Heat
shock factor monomers trimerize and bind to HSEs within
promoter regions of heat shock genes. Heat shock factors
undergo several post transcriptional modifications (PTMs) such
as phosphorylation, which regulate the transactivation capacity
of HSF. Under normal conditions, HSPs directly bind to HSF
and provide negative feedback required to deactivate HSF. HSP70
and HSP40 together function as ATP-driven machines that
prevent aggregation of misfolded polypeptides and participate in
protein refolding. When denatured or misfolded proteins form
aggregates, ClpB/HSP100 is crucial for protein disaggregation,
refolding or degradation by protease especially during HS.
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TABLE 1 | Five major families of heat shock proteins and their major function under heat stress conditions.

HSP family/
MW (kDa)

Subcellular
location

Major functions under heat stress
conditions

Major domain

HSP100/
100-104

Cytosol
Mitochondria
Chloroplasts

Disaggregation of proteins and involvement in
protein degradation (Mishra and Grover, 2016).

NTD (N-terminal domain)
NBD (Nucleotide binding domain)

MD (Middle domain)

HSP90/
80-94

Cytosol
ER

Nucleus
Mitochondria
Chloroplasts

Protein folding, signal transduction (most of the
substrates of HSP90s are kinases and

transcription factors) (Kadota and Shirasu,
2012).

NTD
MD

CTD (C-terminal domain)

HSP70/
68-75

Cytosol
ER

Mitochondria
Chloroplasts

Assisting folding and refolding of non-native
proteins to block protein degradation in the ER

and protein import and translocation (Shiber
and Ravid, 2014).

NBD
SBD (Substrate binding domain)

HSP60/
57-60

Mitochondria
Cytosol

ER
Nucleus

Chloroplasts

Assisting folding and refolding of unfolded
polypeptides in the mitochondrial matrix (Martin

et al., 1992; Caruso Bavisotto et al., 2020).

ED (Equatorial domain)
AD (Apical domain)

ID (Intermediate domain)

sHSPs/
15-42

Cytosol
ER

Mitochondria
Chloroplasts
Membrane

Preventing aggregation and refolding of
unfolded polypeptides (Waters and Vierling,

2020).

NTD
ACD (Alpha-crystallin domain)

CTD

Consequently, HSPs as chaperones play a pivotal role in
conferring thermotolerance in plants. The dashed line indicates
an unknown pathway.

Heat Shock Protein 100 Family
The caseinolytic proteinase/heat shock protein 100 (Clp/HSP100)
proteins are members of the AAA+ protein group (ATPases
associated with various cellular activities) that act in protein
disassembly and/or protein degradation using the energy from
adenosine triphosphate (ATP) hydrolysis (Sauer et al., 2004;
Burton and Baker, 2005; Gul et al., 2021). In contrast to the typical
molecular chaperones which function in protecting proteins from
misfolding and aggregation, the Clp/Hsp100 proteins play a
wide variety of functional roles in eliminating non-functional
proteins and/or assisting the reassembly of denatured proteins
from the aggregated protein complexes. As such, the Clp/Hsp100
proteins contribute to the maintenance of protein homeostasis
in cells (Schirmer et al., 1996; Latterich and Patel, 1998;
Agarwal et al., 2001; Mishra and Grover, 2019). The Clp/Hsp100
proteins consist of hexameric rings and the structural features
are determined by nucleotide binding domains (NBD), spacer
(linker) region, the middle domain (MD), N-terminal domain
(NTD) and C-terminal domain (CTD) among diverse living
organisms from prokaryotes to eukaryotes (Dougan et al.,
2003; Schlieker et al., 2005; Butler et al., 2006). On the basis
of the number of NBD domains, the Clp/Hsp100 family is
classified into two major subclasses (class I and class II). The
first class ClpA, ClpB, ClpC, and ClpD proteins that harbor
two nucleotide binding domains (called ATP-binding domains)
separated by spacers are clustered as large Clp proteins ranging
from molecular weights of 68 to 110 kDa (Wang et al., 2004),
whereas the second class including ClpM, ClpN, ClpX, and ClpY

proteins that possess one NBD are grouped based on their low
molecular weights ranging from 40 to 50 kDa (Wang et al., 2004;
Mogk et al., 2008; Mishra and Grover, 2016). It was initially
reported that the system of Clp ATPase proteins are able to
hydrolyze casein in vitro (Hwang et al., 1987; Katayama-Fujimura
et al., 1987). Later, further investigations on two-component
protease systems revealed that the complexes of ClpA regulatory
machine with an AAA+ ATPase module and a proteolytic
component ClpP (Schelin et al., 2002) together with Lon protease
complex serve as protein choppers for the degradation of toxic
protein aggregates in cells (Wang et al., 2007). Moreover, the
ClpAP complex recognizes target aggregated proteins via the
guidance of the ClpS adapter that assists ClpAP to specifically
bind and chop the aggregated proteins (Dougan et al., 2002). In
addition to this, ClpB was initially found in bacteria and yeast,
and it was later reported that plant HSPs were identified with high
molecular weights of 100–110 kDa (Schirmer et al., 1994). Since
plants harbor semi-autonomous organelles such as chloroplasts
and mitochondria, plant ClpBs are classified into three different
forms ClpB-C (cytoplasmic), ClpB-P (chloroplastic), and ClpB-
M (mitochondrial) (Mishra and Grover, 2014). Although ClpB
is considered to be a functional ortholog of ClpA with high
similarity between the two proteins (Gottesman et al., 1990;
Sanchez and Lindquist, 1990), it has been experimentally shown
that ClpB could not replace the function of ClpA in protein
degradation due to the lack of the LIV-GFL motif required for
the interaction with ClpP (Weibezahn et al., 2004; Zolkiewski,
2006; Tessarz et al., 2008). Moreover, it was demonstrated that
ClpB plays an essential role in the denaturing and/or renaturing
pathway to release the native proteins from the aggregates rather
than the degradation pathway as other Clps do. Of note, it has
been displayed that ClpB is induced by HS in contrast to other

Frontiers in Plant Science | www.frontiersin.org 5 April 2022 | Volume 13 | Article 837152

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-837152 April 5, 2022 Time: 15:46 # 6

Kang et al. Heat Stress Responses in Vegetables

Clps (Singh et al., 2010; Kim et al., 2012), indicating that ClpB is
crucial for the protein renaturation/denaturation from aggregates
especially during HS. Interestingly, the possible mechanism for
assisting protein folding toward native and functional form
from aggregates would be collaborated with the Hsp70 member,
which is another ATP-dependent chaperone that is involved in
refolding of liberated proteins by ClpB/HSP100 (Glover and
Lindquist, 1998; Goloubinoff et al., 1999). However, when the
aggregated proteins are interacted with other Clps and the
peptidase (ClpP) system, the proteins move to the degradation
pathway (Wang et al., 2004). The cellular roles of ClpB have been
widely studied from prokaryotes to eukaryotes such as bacteria,
yeast, and plants (Lindquist, 1986; Vierling, 1991; Wang et al.,
2004). Remarkably, it has been determined that the fine-tuned
expression of ClpB genes within cells is required for normal
growth, development, and adaptation to environmental stresses
including cold, heat, drought, and high salt (Yang et al., 2006).
In particular, it has been shown that ClpB proteins are essential
for rendering thermotolerance to organisms in response to HS.
The loss-of-function mutant ofClpB in E. coli remarkably affected
cell viability in response to abrupt HT (50 ◦C) with a slow
growth rate at 44 ◦C (Squires et al., 1991). Also, ScHSP104 in
Saccharomyces cerevisiae is one of the ClpB genes involved in
acquiring thermotolerance: ScHSP104 deficient yeast cells grew
and died at the same rate as the wild-type cells did when
exposed directly to HT although the mutant cells could not
acquire tolerance to heat after a mild pre-heat treatment (Sanchez
and Lindquist, 1990). Plant ClpB/HSP100 proteins have been
evaluated in diverse plant species includingArabidopsis (Lee et al.,
2007), wheat (Campbell et al., 2001), soybean (Lee et al., 1994),
maize (Nieto-Sotelo et al., 1999; Young et al., 2001), and rice
(Agarwal et al., 2003). Analyses of ClpB/HSP100 proteins have
been also conducted in vegetable crops such as pea, tomato,
pepper, carrot, spinach, potato, banana, rapeseed, and mustard
greens in response to heat and cold stresses.

Heat Shock Protein 90 Family
Heat shock protein 90 (HSP90; known as GroEL in E. coli) is
one of the most abundant heat-related proteins expressed in
cells accounting for 1–2% of total protein levels (Taipale et al.,
2010). Heat shock protein 90 is a highly conserved molecular
chaperone involved in the assembly, maturation, stabilization
and activation of key signaling proteins including regulatory
kinases, steroid hormone receptors and transcription factors
in plant cells (Kadota and Shirasu, 2012; Chen et al., 2019).
Most plants have several isoforms of HSP90 classified by their
subcellular localization in the cytoplasm (HSP90.1), nucleus
(HSP90.4), chloroplast (HSP90.5), mitochondria (HSP90.6), and
endoplasmic reticulum (ER; HSP90.7) (Milioni and Hatzopoulos,
1997; Krishna and Gloor, 2001; Xu et al., 2012). HSP90 exists in
the form of a dimer consisting of three main structural domains:
NTD, which binds ATP; MD, which is important for ATP
hydrolysis and client protein binding; and CTD, which mediates
HSP90 dimerization and client protein binding. ATP binding
to the NTD and its hydrolysis induce conformational change
which is essential for chaperone activity (Krishna and Gloor,
2001; Pearl and Prodromou, 2006). HSP90 proteins play a major

role in assisting the proper folding of other proteins together
with HSP70s (Picard, 2002) by acting as molecular chaperones,
signaling for the cellular quality control, trafficking of other HSP
proteins (Pratt and Toft, 2003) and stabilizing proteins against
HS (Marcu et al., 2002; Wang R. et al., 2016). Also, HSP90
proteins along with their co-chaperone HSP70s contribute to
the maintenance of cellular protein homeostasis by inactivating
HSF during attenuation/recovery of HSR (Hahn et al., 2011).
In Arabidopsis, HSP90 and the co-chaperone SUPPRESSOR OF
G2 ALLELE SKP1 (SGT1) positively regulate plant growth by
stabilizing the auxin co-receptor F-box protein TIR1 under
higher ambient temperature conditions (Wang R. et al., 2016),
showing that HSP90 participates in plant growth control under
changing thermal conditions.

Heat Shock Protein 70 Family
The heat shock protein 70 (HSP70) family (known as DnaK in
E. coli), one of the most ubiquitous classes of chaperones, is
highly conserved in all organisms, and also found in different
cellular compartments such as the cytosol, chloroplasts, ER and
mitochondria (Amir-Shapira et al., 1990; Radons, 2016; Usman
et al., 2017). The HSP70 family is the central hub of the protein
homeostasis network that prevents protein aggregation and uses
the energy of ATP hydrolysis to solubilize, translocate and
mediate the proper refolding and unfolding of proteins (Ben-
Zvi et al., 2004; Imamoglu et al., 2020). Heat shock protein 70
contains two major domains: one is the N-terminal nucleotide
binding domain for hydrolyzing ATP to ADP (Adenosine
diphosphate) and the other is the C-terminal substrate binding
domain (SBD) (Mayer, 2010). Under abiotic stress conditions
such as HS, HSP70 molecular chaperones also function as ATP-
driven unfolding/refolding machines that are capable of shifting
substrate polypeptides between various folding states together
with their co-chaperones such as HSP40 (Lee et al., 2007; Shiber
and Ravid, 2014; Palakolanu et al., 2016). The significance of
HSP70 regarding functional roles against HS was highlighted
by transgenic plants overexpressing AtHSP70-1 and NtHSP70-1
(Sung and Guy, 2003; Cazalé et al., 2009; Cho and Choi, 2009). In
addition, numerous experimental results have shown that HSP70
is involved in thermotolerance in various crops such as rice (Jung
et al., 2013), tomato (Hahn et al., 2011), and pepper (Guo et al.,
2014) under HS conditions.

Heat Shock Protein 60 Family
The heat shock protein 60 (HSP60) family (also known as
chaperonins, Cpn, and GroEL in E. coli) typically functions
inside the mitochondria together with the co-chaperone HSP10
to maintain protein homeostasis (Caruso Bavisotto et al., 2020).
However, they have also been found in other subcellular
compartments including the ER, cytosol, chloroplasts and
nucleus, and participate in folding and aggregation of many
proteins (Meng et al., 2018). Chaperonins are generally composed
of two rings, stacked back to back, consisting of subunits of
∼60 kDa molecular weight (Nguyen et al., 2021). Each oligomer
has three domains (1) the equatorial domain (ED), which has
the ATP-biding site, (2) the apical domain (AD), which hosts
client proteins and (3) the intermediate domain (ID), which
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transduces signals from the equatorial domain (Pipaón et al.,
2021). When signals are transmitted to the ID from ATP
binding and hydrolysis, conformational changes occur in the
AD corresponding to the open and closed forms (Xu et al.,
1997). Heat shock protein 60 proteins bind several types of
proteins before folding to block their aggregation (Parsell and
Lindquist, 1993) and stromal chaperones (Hsp70 and Hsp60)
are involved in functional conformation of newly transferred
proteins to the chloroplast (Jackson-Constan et al., 2001). Most
of the HSP60 family proteins are heat inducible and also required
for preventing protein aggregation, and mediating folding and
refolding in mitochondria under HS conditions (Martin et al.,
1992; Sharma et al., 2006).

Small Heat Shock Protein Family
Small heat shock proteins (sHSPs), which have a low molecular
mass of 15-42 kDa, are very diverse in plants (Wang et al.,
2004; Basha et al., 2006; Morrow and Tanguay, 2012). Small
heat shock proteins have a common alpha-crystallin domain
(ACD) containing 80–100 amino acid residues on the C-terminal
region, and contribute to degradation of proteins with unsuitable
folding (Seo et al., 2006). Small heat shock proteins are ubiquitous
ATP-independent molecular chaperones that bind and stabilize
misfolded or unfolding intermediates of substrate proteins in
an energy-independent manner (Ferguson et al., 1990; Miernyk,
1999; Waters and Vierling, 2020).

TRANSCRIPTIONAL REGULATION OF
HEAT SHOCK PROTEINS IN PLANTS
UNDER HEAT STRESS

Heat-stress response is known to be controlled by complex,
tight networks, including selective enhancement and repression
of gene expression in various metabolic processes, production
of chaperone proteins for cellular protein homeostasis and
other protective molecules that prevent targets from detrimental
effectors such as ROS. The regulation of this network is critical for
plant cells not only to adapt to various environmental conditions
linked to temperature, humidity and light, but also to protect
them from proteotoxic stresses. HSFs have a central function
as major regulators in HSR by regulating transcription of a
wide range of genes in several signaling and metabolic pathways
(von Koskull-Döring et al., 2007; Guy et al., 2008). Heat shock
factors are responsible for rapid synthesis and accumulation of
HSPs, molecular chaperones for preventing protein aggregation
and maintaining cellular protein homeostasis (Vierling, 1991;
Wang et al., 2004; Gupta et al., 2010; Schleiff and Becker,
2011). Heat shock factor activity in each cell is controlled
through sophisticated and complex feedback mechanisms and
protein interactions, allowing for rapid adjustment and flexibility
by diverse chaperones to changing environmental conditions
(Akerfelt et al., 2010).

The expression of HSPs is induced by HSFs that bind
the HSEs in the promoters of heat shock responsive genes
(Nover et al., 2001). Under normal conditions, monomeric HSFs
are bound to HSP70 in the cytoplasm. When plants are exposed

to HS, HSFs are released from HSP70-HSF complexes, and
phosphorylated in the cytoplasm, and form a trimer for biding
to HSEs in the nucleus (Liu et al., 2006). Overexpression
of HSF genes in turn turns on almost all heat shock genes
containing the HSE consensus sequence, conferring tolerance
to HS. HSP70/90 plays an important role in the regulation
of HSFA1 activity. HSP70/90 complex keeps HSFA1 inactive
under normal conditions by repressing transactivation activity
and nuclear localization of HSFA1 (Yamada et al., 2007; Hahn
et al., 2011). Recently, the temperature-dependent repression
(TDR) domain has been identified in the central region
of HSFA1d, one of the Arabidopsis HSFA1s responsible for
HS-dependent transactivation activity (Ohama et al., 2017).
Overexpression of constitutively active HSFA1d, which lacks the
TDR domain, induced the expression of heat shock proteins in
the absence of HS, thereby conferring strong thermal stability
in the overexpressing plants. Under HS conditions, HSFA1a
is released from the HSFA1-HSP70/90 complex and activated.
Of note, no TDR domain has been observed in mammalian
HSFA1 proteins although the repression of the activities of
HSFs by the HSP70/90 complex is generally conserved in
both plants and animals. Activated HSFA1 directly and rapidly
regulates expression levels of genes encoding important HS-
responsive transcription factors (TFs) such as DEHYDRATION-
RESPONSIVE ELEMENT BINDING PROTEIN 2A (DREB2A),
HSFA2, HSFA7a, HSFBs, and MULTIPROTEIN BRIDGING
FACTOR 1C (MBF1C) (Yoshida et al., 2011). Subsequently,
DREB2A directly regulates the gene expression level of
HSFA3 by creating a coactivator complex with NUCLEAR
FACTOR Y, SUBUNIT A2 (NF-YA2), NF-YB3, and DNA
POLYMERASE II SUBUNIT B3-1 (DPB3-1)/NF-YC10 (Chen
et al., 2010; Sato et al., 2014). HSFA3 knockout or knockdown
transgenic lines caused reduced expression of putative target
HSP genes under HS, thus HSFA3 is regarded as an important
HS-responsive TF (Schramm et al., 2008; Yoshida et al.,
2008). Furthermore, HSFA2 contributes to high levels of
modifications at specific histone tail residues (H3K4me2 and
H3K4me3) of ascorbate peroxidase 2 (APX2), HSP22, and
HSP18.2 (Sung et al., 2003; Charng et al., 2007; Lämke et al.,
2016). Heat stress memory is maintained for several days,
allowing plants to survive when they are exposed to the
next HS conditions (Yamaguchi, 2021). Strong/rapid expression
of sHSP genes including HSP21, HSP22, and HSP17.6C is
observed in primed plants compared to non-primed plants
(Yamaguchi et al., 2021). FORGETTER3 (FGT3)/HSFA3 is
needed to retain HS memory for several days following
HS exposure (Friedrich et al., 2021). A recent discovery
showed that genes encoding stem cell regulators such as
CLAVATA1 (CLV1), CLV3, and HSP17.6A, and the primary
carbohydrate metabolism gene FRUCTOSE-BISPHOSPHATE
ALDOLASE 6 (FBA6) are involved in the HS transcriptional
memory in the shoot apical meristem (Olas et al., 2021).
JUMONJI-C DOMAIN CONTAINING PROTEINs (JMJs) that
code for H3K27me3 demethylases are regulators of heat
acclimation through controlling the methylation status of HSP
loci (Pan et al., 2007; Xiao et al., 2016; Yamaguchi et al., 2021;
Yamaguchi and Ito, 2021).
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TABLE 2 | Gene expression pattern response to heat or cold stress in vegetables.

Vegetables Gene/
protein

Expression pattern Tissue Description References

Heat (H) Cold (C)

Tomato
(Solanum
lycopersicum)

SlHSP100 Up H: leaves Upregulation detected in both thermotolerant and
thermosensitive lines under HS.

Gul et al., 2021

HSP70
sHSP

Up *Up (H→ C) H/C: fruits Protein levels of HSPs were increased under HS.
*Increased protein levels at HT remained high for several

weeks even when transferred to low temperatures.

Sabehat et al.,
1996

SlHSP20 Up/
Down

Expression of 13 of all tested SlHsp20 genes was
drastically increased in both thermotolerant and

thermosensitive lines under HS, except for SlHsp15.7.

Yu et al., 2016

HSFA2
Hsp17-CII

Up H: flowers The highest induction of two genes was identified in the
anther tissues under HS.

Giorno et al., 2010

tom111
(homolog
from pea
HSP21),
tom66,

(homolog
from pea
HSP18.1)

Up **Up
(H→ C)

H: fruits,
flowers, leaves,

stems
C:

Mature-green
fruits

The expression of tom 111 and tom66 was induced by
HT.

**The expression was first decreased and re-induced
after the heated organs were transferred to low

temperature.

Sabehat et al.,
1998

LeHSP17.6 Up ***Up
(H→ C)

H/C: fruits Finally, Fruits with heating-and-chilling treatment
showed a high level of expression of LeHSP17.6.

***Increased expression of LeHSP17.6 at HT remained
during subsequent exposure to low temperatures for at

least one week.

Kadyrzhanova
et al., 1998

Pepper
(Capsicum
annuum)

CaHSP70 Up/
Down

H: leaves Expression of HSP70 gene was highly upregulated in
the thermotolerant line compared to the

thermosensitive line under HS.

Usman et al., 2015

CaHSP60 Up/
Down

Up H/C: leaves,
stems, roots

Fifteen (93% of total CaHSP60 genes) CaHSP60 genes
were upregulated under HS and cold stress, and only

CaHSP60-3 was downregulated in both
thermosensitive B6 and thermotolerant R9 lines.

Haq et al., 2019

CaHSP20 Up/
Down

H: leaves,
stems, roots,

flowers

Generally, the peaks of expression levels of CaHsp20
genes in the thermosensitive line B6 were higher than

the thermotolerant line R9.

Guo et al., 2015

CaHSP16.4 Up H: leaves, roots The expression level of CaHsp25.9 was higher in leaves
than that in roots, and was highest at 2 h after HS in
both thermosensitive B6 and thermotolerant R9 lines.

Feng et al., 2019

Soybean
(Glycine max)

GmHSP90 Up H: leaves A significant upregulation was observed in 12.
GmHsp90 genes within 30 min at 42◦C

Xu et al., 2013

GmHSP70 Up/
Down

H: leaves 29 genes out of 61 detectable GmHSP70s showed
upregulation under drought and HS conditions.

Zhang et al., 2015

GmHSP20 Up Up C: leaves 47 soybean Hsp20 genes were responsive to heat
shock stress, and 5 were also induced by cold stress.

Lopes-Caitar et al.,
2013

Pea
(Pisum sativum)

HSP70
PsHSFA

Up H: leaves,
cotyledons

The expression of PsHSFA and HSP70 was induced in
both leaves and cotyledons under HS.

Aranda et al., 1999

HSP17.9
HSP18.1

Up H: leaves The expression of HSP17.9 and HSP18.1 was highly
upregulated at the beginning of HS, and declined

rapidly after the stress.

DeRocher et al.,
1991

Potato
(Solanum
tuberosum)

18 kDa
sHSP

Up H: leaves The 18 kDa sHSP proteins were induced longer in the
heat tolerant cultivars than the heat sensitive cultivars.

Ahn et al., 2004

HSP100
HSP90
HSP80
HSP70
sHSP

Up
(during chilling

storage)

C: tuber Fifteen HSPs genes, including HSP100, HSP90,
HSP80, HSP70 and sHSP family were consistently
upregulated by low temperatures in both RNA and

protein levels, which may act to prevent cellular
damage from cold stress in potato tubers during

postharvest storage.

Lin et al., 2019

Lettuce
(Lactuca sativa)

HSP70 Up H: leaves,
stems

HT induced the expression of a gene encoding HSP70
that interacts with a calmodulin for heat induced bolting

tolerance.

Liu R. et al., 2020

HSP70
sHSP

Up H: leaves The sHSP and HSP70 genes were quickly and sharply
induced within 1 h treatment of HS.

Kang et al., 2021
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Extreme HT causes protein misfolding and denaturation.
Unfolded proteins can be degraded by the ubiquitin proteasome
system or autophagy (Buchberger et al., 2010; Amm et al., 2014;
Xu and Xue, 2019). It has been demonstrated that some ubiquitin
E3 ligases and autophagy-related genes play a critical role in
plant heat tolerance (Zhou et al., 2014; Li et al., 2015; Liu J.
et al., 2016; Gil et al., 2017). Transgenic plants overexpressing
ubiquitin or ubiquitin E3 ligases displayed enhanced BTT and/or
ATT (Tian et al., 2014; Liu J. et al., 2016), and Zhang Y.
et al. (2021) reported that silencing CARBOXYL TERMINUS OF
THE HSC70-INTERACTING PROTEINS (CHIP), a chaperone-
dependent ubiquitin E3 ligase caused reduced heat tolerance
in tomato. CHIP plays a critical role in HSR through the
misfolded proteins degradation induced by HS. Transgenic
Arabidopsis seedlings overexpressing PROTEIN WITH THE
RING DOMAIN AND TMEMB (PPRT1) encoding a C3HC4
zinc-finger ubiquitin E3 ligase showed enhanced BTT and ATT
(Liu Y. et al., 2020). Moreover, virus-induced gene silencing
(VIGS) of tomato AUTOPHAGY RELATED5 (ATG5) and ATG7
genes resulted in increased sensitivity of tomato plants to HS
(Zhou et al., 2014).

Understanding the dynamic behavior involving expression
levels of TFs and HSPs under HS will help understand the whole
regulatory network to adapt to HT.

Expression Patterns of HSP and HSF
Genes in Vegetables Under Heat Stress
Exposure to extreme temperature stresses such as heat and cold
induces cellular changes in plant cells (Guy, 1999; Bita and Gerats,
2013). Plants have evolved various physiological and molecular
adaptations to stresses in order to minimize damage and provide
cellular homeostasis (Theocharis et al., 2012; Awasthi et al.,
2015). In response to the extreme temperature stresses, plants
synthesize many stress-responsive proteins including HSP and
HSF by regulating gene expression (Guo et al., 2016a; Ul Haq
et al., 2019). So far, many studies on gene expression patterns
under heat and/or cold stresses in vegetable crops have been
reported and the collected information can be seen in Table 2.

Tomato (Solanum lycopersicum L.)
Tomato is one of the most economically important vegetable
crops worldwide (Campos et al., 2021). As global warming
leads to extreme weather events, a number of researchers have
examined the effects of heat and/or cold stresses on the expression
pattern of genes such as HSPs and HSFs, which play crucial roles
in thermotolerance in tomatoes (Tubiello et al., 2007).

Heat treatment has been found to induce chloroplastic
SlHSP100 genes in both thermotolerant and thermosensitive
tomato seedlings. The highest upregulation was observed in the
genotype 17903, which showed the highest ratio of cell viability
and cell membrane stability under HS, implying a crucial role for
the gene in ATT (Gul et al., 2021). Besides the role of HSP100
as a chaperone, Sabehat et al. (1996) found that tomato fruits
heated and then chilled showed a high level expression of both
HSP70 and sHSP family genes (14–25kDa) and enhanced chilling
tolerance compared to unheated fruits (Sabehat et al., 1996).
Similar results were also reported by Kadyrzhanova et al. (1998)

and Sabehat et al. (1998) where the expression of chloroplastic
HSP21 and HSP17.6 was first decreased and re-induced when
the heated fruits were transferred to low temperature. The
members of SlHSP20s in tomato were also upregulated in both
thermotolerant and thermosensitive lines under HS, except for
SlHsp15.7 (Yu et al., 2016). Moreover, it has been reported
that the expression of HSFA2, transcriptional activator of HSP
expression, and HSP17-CII was highly activated in the tomato
anther during its development under HS (Giorno et al., 2010).

Pepper (Capsicum annuum)
The production and consumption of pepper has steadily
increased worldwide due to its nutritional benefits and spice,
but it is thermosensitive (Crosby, 2008; Guo et al., 2014).
As with tomato, there has been a growing body of research
that explores the expression of HSP genes in pepper under
temperature stress conditions. Many HSPs including CaHSP70,
CaHSP60, CaHSP20, and CaHSP16.4 are upregulated in pepper
under HS (Guo et al., 2015; Usman et al., 2015; Feng et al.,
2019; Haq et al., 2019). HSP70 gene was significantly upregulated
in the thermotolerant line compared to the thermosensitive
line after 2 h of HS treatment at 42◦C, indicating that
the gene is quickly and sharply induced by heat shock and
plays a major role in thermotolerance (Usman et al., 2015).
Haq et al. (2019) observed that fifteen CaHSP60 genes were
upregulated under HS and cold stress, and only CaHSP60-3 was
downregulated in both thermosensitive B6 and thermotolerant
R9 lines (Haq et al., 2019).

Soybean (Glycine max)
Soybeans are members of the legume family of vegetables and
have been a staple of Asian cuisines for a long time. Soybean yield
is severely affected by temperature stresses. Under low or high
temperature stress conditions, HSPs are induced in soybean to
prevent cell damage caused by the temperature stresses. Xu et al.
(2013) studied the expression of GmHSP90 in relation to HS, and
observed a significant upregulation of this gene in early response
to HS (Xu et al., 2013). Expression patterns of soybean 61
GmHSP70 genes under HS and drought were analyzed. Among
those genes, 55 GmHSP70 genes were highly upregulated during
HS, and 29 GmHSP70 genes showed increased expression under
both heat and drought stress conditions, indicating that most of
the GmHSP70 genes play an important role in heat and drought
tolerance (Zhang et al., 2015). Similarly, 47 GmHSP20 genes
among 51 GmHSP20 candidates were found to be highly induced
under HS and 5 genes were induced under both heat and cold
conditions (Lopes-Caitar et al., 2013).

Pea (Pisum sativum)
Pea has long been important in the human diet due to its
starch, protein, and fiber content and the many phytochemical
substances it contains, but it is a cool season crop which is
heat-sensitive (Dahl et al., 2012). Therefore, some researchers
have investigated the expression of HSPs in pea during HS.
DeRocher et al. (1991) observed that the HSP18.1 mRNA peaked
at the beginning of the maximum temperature during 4 h gradual
HS (30–42◦C) period, and began to decline 6 to 8 h before the
amount of HSP18.1 protein reached maximum levels, implying

Frontiers in Plant Science | www.frontiersin.org 9 April 2022 | Volume 13 | Article 837152

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-837152 April 5, 2022 Time: 15:46 # 10

Kang et al. Heat Stress Responses in Vegetables

TABLE 3 | Engineering temperature stress tolerance in plants.

Transgenic
plant

Stress Gene
targeted/

transferred

Gene
expression/

manipulation

Result References

Arabidopsis Heat AtHSP101 Down regulation/Antisense
inhibition or co-suppression

Decreased heat tolerance. Queitsch et al., 2000

AtHSF1 Overexpression of
AtHSF1-GUS and

GUS-AtHSF1

Increased HSP18 expression level at normal
temperatures and enhanced basic

thermotolerance.

Lee et al., 1995

CaHSP25.9
From pepper

Overexpression Increased heat tolerance.
Reduced accumulation of reactive oxygen species

(ROS).

Feng et al., 2019

CaHSP70
from pepper

Overexpression Increased heat tolerance including basal
thermotolerance and acquired thermotolerance.

Guo et al., 2016b

PfHSP21.4
from Primula

Overexpression Increased thermotolerance activity.
Increased antioxidant enzymes such as ascorbate

peroxidase (APX).

Zhang et al., 2014

TaHSP26
from wheat

Overexpression Increased thermotolerance.
Increased photosynthetic pigments, higher

biomass, and seed yield.

Chauhan et al., 2012

Down-regulation/Antisense
inhibition

Showed negligible thermotolerance.

LimHSP16.45
from David Lily

Overexpression of
LimHSP16.45-GFP

Enhanced viability of Arabidopsis cells under HS.
Induced more superoxide dismutase (SOD) and

catalase (CAT) activity.

Mu et al., 2013

Cold CsHSP17.7
CsHSP18.1
CsHSP21.8

from Camellia sinensis

Overexpression Increased root length in Arabidopsis under low
temperature.

Wang et al., 2017

PfHSP17.2
from Forrest primrose

Overexpression Enhanced freezing tolerance. Zhang L. et al., 2018

Tobacco Heat OsHSP101
(ClpB-C)
from rice

Overexpression Increased heat tolerance. Chang et al., 2007

ZmHSP16.9
from maize

Overexpression Increased tolerance to heat and oxidative stress. Sun et al., 2012

LeHSP21
from tomato

Overexpression Increased tolerance to heat and oxidative stress. Zhang et al., 2016

BcHSP70
from Brassica campestris

Overexpression Increased heat tolerance.
Increased the chlorophyll content, SOD and

peroxidase (POD) activities.

Wang X. et al., 2016

Cold CaHSP26
from sweet pepper

Overexpression Protected PSII and PSI from chilling stress. Guo et al., 2007

CaHSP22.5
from pepper

Overexpression Improved the tolerance of chilling stress.
Increased the activity of reactive oxygen

species-scavenging enzymes.

Li et al., 2018

Rice Heat AtHSP101 (ClpB-C) Overexpression Increased heat tolerance. Katiyar-Agarwal et al.,
2003

OsHSP18.6 Overexpression Increased heat tolerance.
Exhibited the lower levels of malondialdehyde
(MDA) and greater CAT and SOD activities.

Wang et al., 2015

Tomato Heat HSFA1b (AtHSF
A1b and β-glucuronidase

(gusA) fusion gene)

Overexpression Increased heat tolerance.
Increased the activity of soluble isoforms of APX.

Li et al., 2003

HSP24.4 Overexpression Increased heat tolerance.
Showed tissue specific expression in root, shoot,

and stem tissue under HS.

Mahesh et al., 2013

Unknown
(HT7 mutant)

EMS Micro-Tom mutant Heat tolerant tomato lines.
Highly expressed SlHSFA1b and SlHsp101 than

WT respond to HS.

Pham et al., 2020

Cold HSP Overexpression Increased chilling tolerance. Wang et al., 2005

HSFA1b (AtHSF
A1b and gusA fusion gene)

Overexpression Increased chilling tolerance.
Increased the activity of soluble isoforms of APX.

Li et al., 2003

sHSP23.8-M Overexpression Protected fruit from chilling injury. Escobar et al., 2021

(Continued)
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TABLE 3 | (Continued)

Transgenic
plant

Stress Gene
targeted/

transferred

Gene
expression/

manipulation

Result References

Knock-down Decreased chilling tolerance.
Showed wilting and skin wrinkles, partial

discoloration.

SlHSP17.7 Overexpression Increased tolerance response to cold stress. Zhang et al., 2020

Potato Heat DcHSP17.7
from carrot

Overexpression Increased cellular membrane stability and
tuberization.

Ahn and Zimmerman,
2006

Pepper Heat CaHSP60-6 Down regulation/
virus-induced gene

silencing (VIGS)

Reduced heat tolerance. Haq et al., 2019

Carrot Heat HSP17.7 Overexpression Increased heat tolerance (with an increase of
68-90% growth).

Malik et al., 1999

Down-regulation/Antisense
inhibition

Decreased heat tolerance (with a decrease of
12-26% growth).

Soybean Heat GmHsp90A2 Overexpression Increased heat tolerance.
Reduced chlorophyll loss and stabilized membrane

systems.

Huang et al., 2019

Knockout/
CRISPR/Cas9

Reduced heat tolerance.

that sHSP levels in plants may also be self-regulated or regulated
by some other heat-inducible protein.

Potato (Solanum tuberosum)
Potato is a vegetable crop that mainly grows in a temperate
climate, so HS can have a negative effect on the yield by
inducing physiological defects in tubers (Rykaczewska, 2017).
Hence, it is important to examine the accumulation of HSPs
in response to HS. Ahn et al. (2004) reported that the 18 kDa
sHSP proteins were synthesized for a longer time in the heat
tolerant cultivars compared to the heat sensitive cultivars under
strong heat shock temperature, suggesting that sHSP plays an
important role in the heat tolerance enhancement (Ahn et al.,
2004). Fifteen HSPs, including three HSP70s, two HSP80s,
one HSP90, one HSP100 and eight sHSPs were consistently
upregulated by low temperatures at both the RNA and protein
levels to reduce cellular damage and re-build cellular homeostasis
in potato tubers under cold stress during postharvest storage
(Lin et al., 2019).

Lettuce (Lactuca sativa)
Lettuce is an important cool season leafy vegetable with an
optimal growing temperature ranging from 17 to 28◦C (Holmes
et al., 2019). HT can facilitate the accumulation of gibberellin
(GA) which promotes lettuce bolding (Fukuda et al., 2012).
Under HT, it is suggested that induced expression of genes
encoding LsHSPs that interact with a calmodulin confers
enhanced tolerance to heat with bolting resistance in lettuce
(Liu R. et al., 2020). Recently, putative early heat responsive
HSP genes were identified by transcriptome profiling in lettuce
(Kang et al., 2021). Among them, sHSP and HSP70 genes
were quickly and sharply induced within 1 h in response to
HS, indicating that these genes could be potential candidates
as the breeding targets for the development of heat-tolerant
lettuce cultivars.

BREEDING FOR ELEVATED RESISTANCE
TO HEAT STRESS

Currently, the greatest risk to crop productivity and yields
associated with global climate change is being caused by extreme
weather events such as extreme hot and cold weather (Reddy
and Hodges, 2000). Therefore, improved tolerance to heat and
cold stress might be crucial in increasing yields for most crops.
Application of transgenic and genome editing technologies
could help to introduce desirable abiotic stress tolerance traits
into crop varieties (Sanghera et al., 2011; Lamaoui et al.,
2018). In recent years, there has been an increasing effort to
reveal functional roles of HSPs and HSFs using mutagenic and
transgenic plants for production of crops with enhanced heat
and/or cold tolerance (Table 3).

Model Plants
A number of researchers have used model plants such as
Arabidopsis, tobacco and rice for functional studies (proof of
concept) on genes involved in heat and cold stresses because
of the ease of genetic experiments (Rensink and Buell, 2004;
Koornneef and Meinke, 2010). Queitsch et al. (2000) examined
transgenic Arabidopsis plants containing HSP101 antisense
and/or co-suppression constructs, and found that they showed
normal growth but impaired ATT and BTT, indicating HSP101
plays a pivotal role in heat tolerance in Arabidopsis. In contrast,
transgenic Arabidopsis plants containing constitutively active
HSF-GUS fusion proteins caused increased HSP18 expression at
normal temperature by forming HSF trimers and their binding to
DNA, resulting in enhanced BTT (Lee et al., 1995).

In addition, transgenic approaches with other crop genes
have also been made with a fair degree of success. Genetically
engineered Arabidopsis plants overexpressing HSP genes from
pepper (Guo et al., 2016b; Feng et al., 2019), primula (Zhang et al.,
2014), wheat (Feng et al., 2019) and David Lily (Mu et al., 2013)
exhibited increased thermotolerance activity. Similar events were
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also observed under cold stress conditions by Wang et al.
(2017) and Zhang L. et al. (2018). They introduced CsHSP17.7,
CsHSP18.1, CsHSP21.8, and PfHSP17.2 from Camellia sinensis
and Forrest primrose into Arabidopsis for overexpression.
Transgenic plants showed increased root length and tolerance to
cold stress. Furthermore, overexpression of OsHSP101 (Chang
et al., 2007), ZmHSP16.9 (Sun et al., 2012), LeHSP21 (Zhang
et al., 2016), BcHSP70 (Wang X. et al., 2016), AtHSP101 (Katiyar-
Agarwal et al., 2003) and OsHSP18.6 (Wang et al., 2015)
conferred improved HS tolerance in tobacco and rice. These
results indicate that HSP genes from various crops play a key role
in developing thermotolerance.

Vegetables
Vegetable crops are very susceptible to abiotic stresses such
as high and low temperatures. Therefore, the development
of varieties that are tolerant to heat and cold stresses is an
important goal for improvement in crop productivity. Recently
investigators have examined the protective roles of HSP and
HSF against heat and cold stresses in transgenic vegetables. Li
et al. (2003) reported that increased activity of soluble isoforms
of ascorbate peroxidase (APX) and tolerance were observed
in the transgenic tomato plants overexpressing AtHSFA1b-
gusA fusion gene under heat and cold stress conditions. In
addition, 15 heat tolerant tomato lines were isolated through
screening of over 4000 ethyl methanesulfonate (EMS) Micro-
Tom mutants. Among the selected heat tolerant mutants,
the HT7 line displayed much higher fruit number and total
pollen number with enhanced viability under HS conditions.
Higher expression levels of SIHSFA1b3, which is known as
a master regulator that activates HSR (Mishra et al., 2002),
and HSP101 were detected in the leaves of HT7 compared
to those of WT after long-term exposure to HS, suggesting
that HT7 could be used as a breeding material for production
of tomato with improved heat tolerance (Pham et al., 2020).
Also, up and downregulated expression of HSP23.8 made it
possible for each transgenic plant to display the opposite
phenotype under low temperature conditions: Transgenic plants
overexpressing HSP23.8 gene showed increased cold tolerance
whereas decreased chilling tolerance, wilting, skin wrinkles and
partial discoloration were observed in the transgenic plant with
reduced expression ofHSP23.8 gene (Escobar et al., 2021). Similar
studies have reported that the HSP17.7 gene plays a role in
the HS tolerance in potato (Ahn and Zimmerman, 2006) and
carrot (Malik et al., 1999). Recently, it has been reported that
HS tolerance decreases in pepper when the CaHSP60-6 gene is
down-regulated by virus-induced gene silencing (VIGS) (Haq
et al., 2019). In particular, CRISPR-Cas9 based gene knockout
was applied to GmHSP90A2 in soybean, and the GmHSP90A2
mutant exhibited reduced heat tolerance (Huang et al., 2019).
In conclusion, major HSP and HSF genes are tightly related
to thermotolerance of vegetables. Thus, continuous efforts to
identify detailed functions and working mechanisms of HSP and
HSF genes are needed for the generation of vegetables with
enhanced heat/cold tolerance traits through precise manipulation
of genetic elements.

CONCLUSION AND FUTURE
PROSPECTS

Climate change including global warming is causing abrupt
changes in weather patterns, and extreme weather events that
threaten crop yields. Elevated temperatures, in particular, will
have a severe influence on the productivity and yields of
vegetables in agricultural fields. It is, therefore, indispensible to
understand the sophisticated mechanisms vegetable crops use to
adapt to changing temperature environments, from the signal
perception to gene expression in reponse to HS.

As mentioned above, recent research has elucidated that
an interplay of cooperative HSP, HSF, and HSR mechanisms
orchestrate the expression of heat-responsive genes as the plant
response to HS. Furthermore, research identifying TFs related
to abiotic stresses and their molecular functions has contributed
to the expansion of knowledge for the production of crops with
desired traits through genetic manipulation and/or molecular
breeding. Functional and cellular roles of some key TFs such as
HSFA1s and DREB2A have been determined in transcriptional
networks of HSR at the post-translational levels during HS.
Nevertheless, the current information on the functional roles
of HSP and HSF genes in vegetable crops is still insufficient
for their practical application to breeding. Transcriptional
regulation between HSPs and HSFs, and in-depth working
mechanisms and pathways of heat-related proteins during HSR
remain to be explored.

Chromatin immunoprecipitation sequencing (ChIP-seq) for
protein-protein complexes and reverse ChIP for mining the
upstream-gene regulatory sequences have been shown to be
effective tools to investigate potential interaction networks
between regulatory regions in HSE and proteins, respectively
(Machanick and Bailey, 2011; Shim et al., 2021). It will be
necessary to utilize these techniques to clarify the in-depth
mechanism underlying the gene regulatory relationships in
the HSPs and HSFs of vegetable crops during HSR. It is
becoming evident that microRNAs, small RNAs, and epigenetic
modulations in DNA, RNA, and protein species play a
pivotal role in HS memory (Guan et al., 2013; Stief et al.,
2014a,b; Lämke et al., 2016). Advances in high-throughput
small RNA sequences (RNA-seq) together with methylated
DNA and RNA-sequencing combined with IP will be of
help in determining the functions of TFs and epigenetic
regulators (Pall and Hamilton, 2008; Zhang H. et al., 2018;
Shen et al., 2019; Lee et al., 2021). In addition, state-of-art
next-generation sequencing (NGS) including quantitative trait
loci (QTL)-sequencing, genotyping-by-sequencing (GBS), and
genome-wide association studies (GWAS) have been successfully
developed and adopted for deciphering comprehensive genome
sequences, thus facilitating the identification of a wide variety
of molecular markers corresponding to target traits in crops
(Han et al., 2016; Jo et al., 2017; Lee et al., 2020; Jha et al., 2021).
Candidate and/or identified genes crucial for thermotolerant-
traits and HS-related pathways can be used for production of
transgenic vegetable crops via genetic engineering. Furthermore,
the clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9) and dead Cas9
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(dCas9) systems have been extensively introduced into crop
biotechnology as powerful tools for gene/genome editing in spite
of controversial GMO and non-GMO issues (Liu D. et al., 2016;
Pramanik et al., 2020; Gao, 2021; Kim et al., 2021). Indeed,
“Sicilian Rouge High GABA tomato” was recently developed
by using the CRISPR/Cas9 gene editing technology. It contains
high levels of gamma-aminobutyric acid (GABA), an amino acid
believed to aid relaxation and help lower blood pressure.2 All
the aforementioned technologies can be utilized for dissecting
action modes and intricate networks of HSP, HSF and HSR for
thormotolerance in vegetable crops.
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