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The quality of vegetables is facing new demands in terms of diversity and nutritional
health. Given the improvements in living standards and the quality of consumed
products, consumers are looking for vegetable products that maintain their nutrition,
taste, and visual qualities. These requirements are directing scientists to focus on
vegetable quality in breeding research. Thus, in recent years, research on vegetable
quality has been widely carried out, and many applications have been developed via
gene manipulation. In general, vegetable quality traits can be divided into three parts.
First, commodity quality, which is most related to the commerciality of plants, refers to
the appearance of the product. The second is flavor quality, which usually represents the
texture and flavor of vegetables. Third, nutritional quality mainly refers to the contents of
nutrients and health ingredients such as soluble solids (sugar), vitamin C, and minerals
needed by humans. With biotechnological development, researchers can use gene
manipulation technologies, such as molecular markers, transgenes and gene editing
to improve the quality of vegetables. This review attempts to summarize recent studies
on major vegetable crops species, with Brassicaceae, Solanaceae, and Cucurbitaceae
as examples, to analyze the present situation of vegetable quality with the development
of modern agriculture.
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INTRODUCTION

With the improvement of living standards, an increasing number of people are paying close
attention to the nutritional components and taste of vegetables. On the market, high-quality
vegetables, such as broccoli, which contains high glucoraphanin levels, and cucumbers, which have
glossy peels, are popular with consumers (Jin et al., 2014; Zhang et al., 2021). With the development
of society and the improvement of people’s living standards, consumers not only seek vegetables
to eat but also have a wide range of choices of vegetables, with the accompanying expectations
that they are attractive, nutritionally rich, delicious, fresh, safe and environmentally friendly. Given
the requirements for the quality of vegetables, researchers have focused their efforts on systematic
studies about the nutritional value of vegetables. In general, vegetable quality includes sensory
characteristics and biochemical properties, which can be divided into three aspects, i.e., appearance,
texture, and flavor, whereas biochemical properties can be used in the analysis and evaluation of the
nutritional value and safety of vegetable crop species (Aung and Chang, 2014; Liu et al., 2017; Bort
et al., 2019; Zhao et al., 2019).
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The quality evaluation criteria of different vegetables and the
regulatory mechanisms behind these traits are quite different
(Figure 1). Therefore, summarizing the quality characteristics
of different crop species is necessary to improve vegetable
quality by gene manipulation. Currently, in addition to
traditional radiation mutagenesis, chemical mutagenesis, and
hybrid breeding methods, genetic manipulation is gradually
being applied in the innovation of vegetable crop germplasm
resources, but its specific application in quality improvement
remains unclear. This paper summarizes the application of
genetic manipulation to improve vegetable quality.

QUALITY CHARACTERISTICS OF
Brassicaceae

Consumers often judge the quality of vegetable crops by their
appearance. For example, consumers prefer densely colored
cabbage leaves because they believe that the short light time
and/or short growth cycle cause(s) the color of cabbage to
be light, which leads to a relatively low nutritional quality
(Amagai et al., 2021). Moreover, different consumers make
various choices regarding vegetable quality due to their different
needs or preferences. For instance, someone may prefer loose-
type cabbage because they find its leaves to be crisp and sweet
when chewing. Conversely, firm cabbage has a higher plant fiber
content and is softer and more flexible. Therefore, germplasm
resources of different qualities must be created to align with
various consumer expectations.

Commodity Quality of Brassicaceae
Commodity quality refers to morphological characteristics that
can be evaluated by appearance, including plant type, plant
height, leaf size, leaf color, petiole characteristics, handle color,
and handle shape (Cox et al., 2003; Cheng et al., 2009;
Olfati et al., 2010; Kim et al., 2020). There are regional
differences in the requirements for the quality of vegetables
due to different eating and consumption habits. Many kinds of
large-leaf Chinese cabbage can be found in northeast China,
while small-leaf Chinese cabbage is most popular in southern
China. For Brassicaceae, leaves are the most important organ
because they are often edible or are involved in nutrient
accumulation, and leaf size determines product yields. Current
evidence shows that the Brassicaceae leaf area is connected with
phytohormones. The transcription factor AINTEGUMENTA
(ANT), which encodes the APETALA2/ETHYLENE RESPONSE
FACTOR (AP2/ERF) family, responds to auxin and regulates
downstream gene expression related to organogenesis and cell
proliferation, indicating that ANT promotes leaf growth by
regulating cell division (Klucher et al., 1996; Note-Wilson et al.,
2010; Ding et al., 2018; Karamat et al., 2021). Three ANT and
six ANT-like (BrAIL) genes were identified in Chinese cabbage;
the expression of the BrANT gene and three BrAIL genes
increased with auxin treatment, and the leaf size increased (Ding
et al., 2018). ETHYLENE RESPONSE FACTORS (ERFs) encode
AP2/ERF superfamily transcription factors, which are the central
components of the ethylene signaling pathway (Muller and

Munne-Bosch, 2015). Overexpression of BrERF4 in Arabidopsis
thaliana can reduce leaf size by inhibiting cell expansion. For
BrERF4 overexpression, two EXPANSIN (EXP) genes, AtEXPA5
and AtEXPA10, are downregulated in A. thaliana (Park et al.,
2012). Thus, ethylene can effectively regulate Brassicaceae leaf
size. In addition to leaf size, leaf shape can affect consumer
choice; for example, some consumers prefer split-leaf Chinese
cabbage, but others prefer round leaves. LOST MERISTEM2
(BrLOM2) may be the main factor regulating the phenotype of
split leaves. A comparison of the round-leaf Chinese cabbage
with split-leaf near isogenic lines shows that the expression of
BrLOM2 in split leaves increases synchronously with the number
of leaf edge cracks (Shu-juan et al., 2016). Moreover, the plant
surface is crucial in determining vegetable quality, including
brightness and color. The wax content in Brassicaceae is the main
factor controlling brightness, and it also affects stress defense.
One principal component analysis of different waxy materials
showed that the expression of the LIPID TRANSFER PROTEINS
(LTP2) gene is higher in the least waxy lines and that of the
ECERIFERUM3 (CER3) gene is more highly expressed in the
most waxy lines in Brassica oleracea var. capitata, indicating that
LTP2 and CER3 may be related to the wax content (Laila et al.,
2017). Scanning electron microscopy and gas chromatography–
mass spectrometry (GC–MS) revealed that the wax content
of the CRISPR-BoCER1 plant “CW1-3” is significantly lower
than that of the wild type, proving that BoCER1 is crucial in
the biosynthesis of cabbage epidermal wax (Cao et al., 2021).
In addition to affecting glossiness, wax-related genes play an
important role in defense against adverse stresses and are worthy
of further exploration. In terms of color, for example, purple
leaf Brassicaceae varieties are popular on the market. Given
the different colors of vegetables, the contents of pigments also
varies. Li et al. (2019) found that the relative expression of
BASIC HELIX-LOOP-HELIX49 (bHLH49) in stalks and young
leaves of Zicaitai “Xianghongtai 01” is significantly higher than
that in Caitai “Yinong50D,” indicating that bHLH49 affects the
color formation of Zicaitai. These studies on the appearance
of Brassicaceae will help enrich commodity quality and provide
consumers with more choices.

Flavor Quality of Brassicaceae
Brassicaceae flavor quality includes sweetness, crispness, softness,
juiciness and the lack of undesirable smells. In particular, the
leaves and petioles tend to be soft, the odor should be fresh
and fragrant, and the material should be tender and strong
(Wright et al., 2006). Moreover, high oxygen atmospheric
packaging (> 70 kPa, HOAP) can maintain vegetable quality.
HOAP affects the production of hydrogen peroxide (H2O2),
increases cabbage tissue firmness, and significantly reduces the
contents of hemicellulose, cellulose, and lignin in the stem.
Therefore, the decrease in the H2O2 signal in hemicellulose,
cellulose, and lignin biosynthesis may be related to the differential
accumulation of oxidative stress-related proteins that are induced
by HOAP treatment (Wang et al., 2020). At present, studies about
Brassicaceae flavor quality are limited, and the mechanism by
which special flavors are formed has not yet been found.
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FIGURE 1 | Overview of the different vegetable commodity characteristics, with Brassicaceae, Solanaceae, and Cucurbitaceae as examples. Extensive research has
been performed to optimize leaf size (e.g., split or round Chinese cabbages), leaf color (e.g., green or purple cabbages), fruit color (e.g., red, yellow or green
tomatoes, purple or green eggplants, and orange or green pumpkins), fruit shape (e.g., big or small tomatoes, wrinkled or straight eggplants, and long or flat
pumpkins), and fruit size (e.g., cucumbers of different lengths). Vegetables are usually optimized to meet consumer expectations for product quality, including
appearance, taste, and texture.

Nutritional Quality of Brassicaceae
Nutritional quality refers to nutritional value, which is mainly
determined by the contents of nutrients but is also affected
by the contents of harmful components and pollutant
residues. The nutritional quality of Brassicaceae requires
high contents of flavonoids, L (+)-ascorbic acid (AsA), dry
matter, soluble solids, and vitamins; a moderate content of
crude fiber; a low content of nitrate; and absence of pollutant
residues such as pesticides. The unique nutritional quality
of Brassicaceae is attributed to flavonoids. Watercress is a
special plant rich in flavonoids. Four important watercress
varieties were compared with non-heading Chinese cabbage
by ultrahigh-performance liquid chromatography-electrospray
ionization-tandem mass spectrometry (UHPLC–ESI–MS/MS).
A total of one hundred thirty-two flavonoid metabolites
were detected: eight anthocyanins, two dihydroflavonoids,
three dihydroflavonols, one flavonoid, twenty-two flavonoids,
eleven flavonol carbon glycosides, eighty-two flavonols and
three isoflavones. Marked differences in flavonoid metabolites
were found in different samples, and all of them exhibited
their own unique metabolites (Ma et al., 2021). The most
important nutritional quality of Brassicaceae is the content of
AsA, which can be regenerated from monodehydroascorbate
and dehydroascorbate by MONODEHYDROASCORBATE
REDUCTASE (MDHAR). Overexpression of MDHAR1 from
non-heading Chinese cabbage reduces the AsA level and growth
in transgenic tobacco (Ren et al., 2015). Additionally, there is a
very significant negative correlation between the nitrate content
and AsA content in leaf lettuce (Koyama et al., 2012). These
results provide a reference for enhancing the nutritional quality
of Brassicaceae crop species.

QUALITY CHARACTERISTICS OF
Solanaceae

Given that people eat only the fruits of solanaceous crop species,
the key to improving the quality of solanaceous crops is to focus
on fruit quality. Consumers have different evaluation standards

for the fruit quality of Solanaceae. For example, tomatoes with
uniform color, thin skin, and no cracks are more popular than
their counterparts. When the taste is sweet and sour, the quality
of tomatoes is considered high. Similarly, uniform color and
strong luster are important qualities for peppers. Plump and juicy
peppers taste better and are more popular with consumers than
their counterparts. Less spicy peppers with moderate aromas sell
well in northern China. However, peppers with high levels of
spiciness and strong scents are highly popular among consumers
in southern China, such as Sichuan and Hunan Provinces. In
addition, factors such as cooking techniques and geographical
restrictions lead to different consumer needs, so many varieties
of solanaceous crops exist on the market.

Commodity Quality of Solanaceae
Tomatoes, peppers, and eggplants are common Solanaceae
vegetables and are important parts of our table dishes. Given
that the main edible part of solanaceous crops is the fruit, fruit
shape and color are important commodity qualities. For example,
the best-selling tomato requires uniform coloring, bright color,
small cracks in the apical pedicel, and no longitudinal or
ring cracks (Yildiz and Baysal, 2007; Liu et al., 2020; Xue
et al., 2020). Currently, most consumers prefer bright red
or pink fruit colors, and a few prefer an orange fruit color,
which varies with the changes in eating habits in different
regions (Veerappan et al., 2016; Yang et al., 2019). Similar to
Brassicaceae, pigments, such as chlorophyll, lutein, carotene, and
anthocyanin, affect the color of tomatoes. The expression of
the structural flavonoid genes is closely followed by MYB12,
suggesting that MYB12 regulates the production of flavonoids
in tomato fruit by activating the transcription of the genes
encoding these pathway enzymes, and MYB12 is also reported
to be suppressed in pink line tomatoes (Adato et al., 2009;
Ballester et al., 2010). SlMYB12 mutation leads to premature
termination of the amino acid sequence and structural changes,
resulting in a colorless epidermis phenotype in tomato fruits
(Veerappan et al., 2016). Compared with yellow tomatoes,
ISOPENTENYL DIPHOSPHATE ISOMERASE 1 (IDI1) is a
cytoplasmic enzyme involved in the biosynthesis of isoprenoids,
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including cholesterols, that inserts a single T base into exon
6 in apricot tomatoes, resulting in a decrease in carotenoid
content and yellow pericarp (Nakamura et al., 2015; Shin
et al., 2019; Chattopadhyay et al., 2021). Several genes and
their mutant alleles related to carotenoid biosynthesis have
been identified and characterized in tomato fruit. PHYTOENE
SYNTHASE (PSY1), CAROTENOID ISOMERASE (CrtISO),
LYCOPENE BETA CYCLASE (CYC-B), and LYCOPENE E-
CYCLASE (LCY-E) mutations can affect the carotene content and
change the color of the tomato epidermis, but the mechanisms
of the formation of different colors remain unclear (Hwang
et al., 2016; Yoo et al., 2017; Chen et al., 2019). For purple
eggplant, pericarp color intensity is an important economic
characteristic. Many factors are considered in assigning the final
color intensity, one of which is the accumulation of anthocyanins
and chlorophyll. Comparing two advanced purple eggplant
lines, EP26 and EP28, with different pericarp color intensities,
a higher anthocyanin content and lower chlorophyll content
were observed in EP26, and deeper pericarp color intensity was
observed at two developmental stages. In addition, comparative
transcriptome analysis of EP26 and EP28 showed that 131
transcription factors, including those of the MYB, bHLH, WRKY
and NO APICAL MERISTEM, Arabidopsis TRANSCRIPTION
ACTIVATION FACTOR1/2, and CUP-SHAPED COTYLEDON
(NAC) families, displayed dynamic changes, which may have
been due to the changes in fruit pigment accumulation between
EP26 and EP28 (Zhou et al., 2021). Although some genes related
to Solanaceae fruit color have been clarified, the mechanism
by which different colors are formed has yet to be elucidated.
Further research on the molecular regulatory mechanism of color
is necessary to create multicolor germplasm resources.

Tomato cracking generally occurs during fruit ripening and
is affected by genetic or environmental factors such as fruit
firmness, cuticle characteristics, abscisic acid (ABA), gibberellins
(GAs), water, light and nutrients (Cox et al., 2003; Bargel
and Neinhuis, 2005; Khadivi-Khub, 2015; Yang et al., 2016;
Jiang et al., 2019). Cracking greatly reduces the edible value
of tomatoes, and tomatoes with no cracks are highly popular
on the market. One crack-resistance gene, Cr3a, was found by
mapping. The water content of cracked tomato fruit during the
green ripening period was significantly higher than that of the
Cr3a crack-resistant tomato. However, no significant difference
in the thickness of the cuticle or the number of epidermal
cells was found between these two kinds of tomatoes, and
the mechanism remains unclear (Yu et al., 2020). In addition
to these genetic or environmental factors, tomato cracking
is related to the pectin content. POLYGALACTURONASE
(PG) can degrade the pectin backbone, and EXPANSIN (EXP)
is a non-enzymatic cell wall active protein. PG and EXP
cooperatively disassemble wall polysaccharide networks and
contribute to the softening of fruit. By suppressing SlPG and
SlEXP1 expression in tomato fruit (pg/exp), the content of
water-soluble pectin decreases in the pericarp, whereas the
content of propectin increases. Although the cell wall and
wax layer become thicker and the pg/exp fruit hardens, the
rate of fruit cracking is reduced due to the firm protopectin
(Jiang et al., 2019).

The texture of the fruit, especially the firmness, is the
main quality of fresh tomatoes evaluated by consumers
(Hongsoongnern and Chambers, 2008; Brashlyanova et al., 2014).
Most consumers prefer hard tomatoes, which have better cooking
characteristics. The factors affecting the firmness of tomatoes are
epidermal toughness, pulp firmness and the internal structure
of fruits (Chapman et al., 2012; Romero and Rose, 2019). FIRM
SKIN 1 (FIS1) encodes a GA2-oxidase, and changes in the level
of GAs can induce parthenocarpic development and affect fruit
maturity in tomatoes (Martinez-Bello et al., 2015; Li et al., 2019).
Early termination of the FIS1 gene increases the biological activity
of GA, the biosynthesis of thorny and waxy layers, and the shelf
life and firmness of fruits in tomato (Li et al., 2020). These
changes improve the firmness of tomato fruits, thereby increasing
transportability and yielding more economic benefits.

Flavor Quality of Solanaceae
For tomato, the main factors affecting flavor quality are the
contents of sugar and acid and the ratio of sugar to acid (Beckles,
2012). High sugar and low acid contents make the tomato taste
light, whereas a low ratio of sugar to acid makes the tomato taste
sour. When both are low, the fruit is tasteless. For good flavor, the
fruit must have a high sugar content and high sugar:acid ratio.
In recent years, given the obvious diversification of consumer
groups, tomato fruits with increased acidity have been favored
by special groups such as beverage lovers under the premise
of a high sugar content. The cell wall CONVERTING ENZYME
INHIBITOR 1 (SlCIF1) gene, which is involved in tomato glucose
metabolism, activates the small HEAT SHOCK PROTEIN 17.7
(SlHSP17.7) gene to control the flavor of tomato. In SlHSP17.7-
RNA interference (RNAi) lines, the sweetness of tomato is
significantly decreased by modulation of the contents of sucrose
and fructose (Zhang et al., 2018).

Spicy taste is a unique flavor quality of pepper. Whole-
genome sequencing and assembly of the hot pepper (Mexican
landrace of Capsicum annuum cv. CM334) revealed fifty-
four CAPSAICINOID BIOSYNTHETIC GENES (CBGs) related
to the spicy taste of pepper; CBGs are specifically expressed
in the placenta of pepper, but the mechanisms behind
these genes are unclear (Kim et al., 2014). MYB31 is a
transcription factor specifically expressed in pepper placenta.
Transcription level analysis revealed that MYB31 is highly
coexpressed with CBG. Further experiments revealed that
MYB31 directly regulates ACYLTRANSFERASE 3(AT3), which
exhibits developmentally regulated placenta-specific expression
and participates in capsaicin biosynthesis by binding to MYB cis-
elements. Moreover, MYB31 directly regulates CBG expression
and participates in capsaicin biosynthesis (Zhu et al., 2019).
Consumer preferences for pepper spiciness are affected by
subjective factors, so breeders can select corresponding varieties
depending on the preferences of local consumers.

Nutritional Quality of Solanaceae
The content of AsA is an important index of quality. MYO-
INOSITOL OXYGENASE (MIOX) is a critical enzyme in
the plant AsA biosynthesis pathway. MIOX4 overexpression
tomato lines show a significant increase in total ascorbate in
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leaves and red fruits compared to the control (Munir et al.,
2020). After the knockout of ASCORBATE OXIDASE (AO)
and mitochondrial ASCORBATE PEROXIDASE (mitAPX), the
decreased AO enzyme activity and significantly improved AsA
content in tomato fruit were observed to be correlated with AO
gene suppression, and the downregulated mitAPX expression and
APX enzyme activity led to an increase in the content of AsA in
tomato fruits compared with the wild type, indicating that AO
and APX can improve the content of AsA (Zhang et al., 2011a,b).

QUALITY CHARACTERISTICS OF
Cucurbitaceae

The common Cucurbitaceae vegetable crops include cucumbers
(Cucumis sativus L.) and pumpkins (Cucurbita moschata), and
their morphological characteristics are quite different from
each other. Cucumbers with a slender and uniform body are
preferred for cooking and fresh eating in China. To make
pickled cucumbers, Russians prefer short fruits. Moreover, some
people believe that cucumbers with small and dense thorns are
better, and those with large and sparse thorns do not have
the unique flavor of cucumbers. However, other people like
cucumber fruit without thorns and growths. For yellow or green
pumpkin, people believe that the darker the pumpkin is, the
greater the sweetness. Consumers also find that yellow pumpkin
is suitable for steaming or cooking porridge to make various
cakes, while green pumpkin is suitable for fried food. In addition
to cucumbers and pumpkins, Cucurbitaceae vegetables such as
melons and watermelons exist in various shapes and colors.
Therefore, Cucurbitaceae crops of different qualities should be
cultivated to meet the demands of consumers.

Commodity Quality of Cucurbitaceae
The main edible part of Cucurbitaceae crop species such
as cucumber is the fruit. Together with tomato and other
Solanaceae crops, pericarp color, pulp color, and fruit luster are
also important commodity qualities of Cucurbitaceae vegetables
(Zhang et al., 2019; Gebretsadik et al., 2021; Mashiane et al.,
2021). Fruit length and wax powder are the unique commodity
qualities of Cucurbitaceae crops and have long been the focus
of research (Hu et al., 2011; Dou et al., 2018; Ding et al.,
2020). For cucumbers, it is difficult to select for fruit firmness
during breeding. Peterson et al. found that cucumber firmness
was quantitatively inherited with sufficient additive effects, so
environmental effects and polygenic heritability were obvious.
Fruit length is important to Cucurbitaceae crops, especially
cucumber. Similar to Brassicaceae, some key genes controlling
cucumber fruit length have been identified that are related to
plant hormones, especially auxin. Knockout of the FRUITFULL
1 (CsFUL1) gene results in further elongation of cucumber
fruit, while the high expression of the CsFUL1 gene significantly
shortens cucumber fruit. In addition, CsFUL1 inhibits the
expression of the auxin transporters PIN-FORMED1 (PIN1)
and PIN7, resulting in a decrease in auxin accumulation in
fruit, thereby affecting the fruit length of cucumber (Jiang
et al., 2015; Zhao et al., 2019). To clarify the effect of plant

hormones on the length of cucumber fruit, researchers can
adjust the morphology of high-quality cucumbers in the actual
production process. Wax powder is one of the factors affecting
the glossiness of fruit. The AtWAX2 homolog CsWAX2 in
cucumber was cloned and found to be highly expressed in
synthetic waxy epidermis. The ectopic expression of CsWAX2
in the Arabidopsis wax2 mutant can partially complement the
bright stem phenotype (Wang et al., 2015). Additionally, grafting
cucumber onto pumpkin rootstock is an effective way to produce
glossy cucumber fruits. AtWIN1 is a regulator of wax biosynthesis
that can activate the expression of wax biosynthesis genes such
as CER1, CER2, and KCS1; when the expression is enhanced,
the mutant Arabidopsis became glossier than the wild type
(Broun et al., 2004). CsWIN1 and several key wax biosynthesis
genes, including CsCER1, CsCER1-1, CsCER, 4,3-KETOACYL-
CoA SYNTHASE (CsKCS1) and the wax transport gene ATP-
BINDING CASSETTE (CsABC), are significantly upregulated in
cucumber grafted onto pumpkin, so these genes are positively
correlated with wax synthesis. More wax esters (C20 fatty acid
composition) and fewer alkanes (C29 and C31) were deposited
in the grafted cucumber pericarp, probably due to the high wax
ester content and the high integration of small trichomes in the
pericarp (Zhang et al., 2019). However, there are few studies on
the glossiness of Cucurbitaceae, and the mechanism needs to be
further clarified.

Flavor Quality of Cucurbitaceae
Using cucumber as an example, its flavor quality generally
refers to its unique smell and taste (Shimomura et al., 2016).
The bitterness of Cucurbitaceae is caused by cucurbitacin.
The transcription factors BITTER LEAF (BL) and BITTER
FRUIT (BT) can be used to regulate bitterness formation
in leaves and fruits, respectively, by applying the integrative
bioinformatics and molecular biology approaches described
above. Researchers have identified four additional P450 genes
(Csa3G698490, Csa3G903540, Csa3G903550, and Csa1G044890)
that are coexpressed with the BI cluster (Shang et al.,
2014). In addition to bitterness, unique aromatic substances
and some non-volatile substances have been reported in
cucumber. Researchers used GC–MS to analyze eighty-five
volatile chemicals, including thirty-six volatile terpenes in
twenty-three different tissues of cucumber, and found that
TERPENE SYNTHASE11 (TPS11)/TPS14, TPS01, and TPS15
are responsible for volatile terpenoid production in the roots,
flowers, and fruit tissues of cucumber plants and can improve
cucumber flavor (Wei et al., 2016). Many kinds of cucumber
flavor substances have been identified, of which (E,Z)-2,6-
non-adienal (NDE) is an important commercial flavor. NDE
has been found in various plant materials, but cucumbers
are considered the best source of this flavor substance.
NDE production is reduced by acidification, enhanced by
linolenic acid, and unaffected by unsaturated fatty acids, NaCl
or CaCl2 (Buscher and Buscher, 2001). Cucurbitacin is a
unique substance of cucumbers. The mechanism of cucumber
bitterness must be clarified to combine the non-bitterness
characteristics with other excellent characteristics to cultivate
high-quality cucumbers.
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Nutritional Quality of Cucurbitaceae
Nutritional quality mainly refers to the nutrition and health
care ingredients needed by the human body. For cucumber,
pumpkin and other Cucurbitaceae crops, AsA, soluble solids,
soluble protein, soluble sugar and other traits are important
for the measurement of nutritional quality (Ge et al., 2017;
Gao et al., 2018; de Almeida et al., 2019; Buzigi et al., 2021).
ASCORBATE OXIDASE is a copper-containing enzyme localized
at the apoplast, where it catalyzes the oxidation of AsA to
dehydroascorbic acid (DHA) via a monodehydroascorbic acid
(MDHA) intermediate. Similar to solanaceous crops, AO can
also affect the content of AsA in Cucurbitaceae crops. The
reduction in AO activity increases the AsA content in melon
(Cucumis melo L.) fruit, which is due to the oxidation of AsA
and the expression of certain biosynthetic and recycling genes,
such as CmAPX1, CmMDHAR, and CmDHAR (Chatzopoulou
et al., 2020). Consequently, the ascorbate redox state is altered in
the apoplast. Interestingly, transgenic melon, which suppresses
AO expression, displays an increased ethylene production rate
coinciding with elevated activity and gene expression levels of
1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO),
which might contribute to early ripening; moreover, AO
participates in the rapid fruit growth of Cucurbitaceae in vivo
(Chatzopoulou et al., 2020). Sugars provide a strong, pleasant,
sweet taste and deliver energy when ingested; appetite regulatory
centers respond to the energy content of sugar, which has
a major influence on human health (Anderson, 1995). Thus,
studies on the soluble sugar content of vegetables are of great
significance. Comparing two cultivated pumpkin lines with
different sweetness, C. maxima inbred lines “98-2” and “312-2,”
the glucose content of “312-1” decreased rapidly in the early stage
of fruit development, which may have been related to the high
expression of sucrose INVERTASE (INV) and HEXOKINASE
(HK) at this stage. In contrast, FRUCTOSE KINASE (FK), which
is responsible for fructose metabolism, is differentially expressed
at different stages of fruit development. These results suggest that
INV, HK, and FK may serve important roles in promoting sucrose
biosynthesis during pumpkin fruit development (Wang et al.,
2020).

COMPLEXITY OF VEGETABLE QUALITY
REGULATION

From the above, many studies on the genes related to the
regulation of vegetable quality have been conducted, and genes
that are highly conserved or belong to the same gene family in
different varieties are likely to have close functional correlations
(Figure 2). For example, MDHAR, the key enzyme in AsA
synthesis, can catalyze the reduction of MDHA to AsA (Park
et al., 2016). When MDHAR was silenced in different species,
such as melon, acerola, and Chinese cabbage, the content of AsA
decreased (Eltelib et al., 2011). Moreover, SUN is one of the
main genes controlling tomato fruit shape and encodes a member
of the IQ67-DOMAIN (IQD) family of calmodulin-binding
proteins. When SUN expressed at high levels in the fruit, tomato
showed an elongated shape (Xiao et al., 2008). More precisely,

SUN controls tomato shape through redistribution of mass
that is mediated by increased cell division in the longitudinal
direction and decreased cell division in the transverse direction
of the fruit (Wu et al., 2011, 2015). The cucumber CsSUN
gene is also involved in the regulation of cucumber spherical
fruit development, and the round-fruited WI7239 had a 161-bp
deletion in the first exon of CsSUN. The expression of CsSUN
in round-fruited WI7239 was significantly lower than that in
long-fruited WI7238 (Pan et al., 2017). Although SUN has some
effect on the fruit shape of tomato and cucumber, SUN affects
the length of tomato and changes the width of cucumber fruits.
It is necessary to understand the specific mechanism of SUN in
different crops. Thus, although the genes regulating quality traits
are conserved in different vegetables, their mechanisms of action
remain to be further confirmed.

Constituting a common factor in vegetable quality regulation,
phytohormones have diverse effects on vegetable quality. The
same hormones can regulate the same phenotypes in different
species, but the mechanisms are not consistent; for example,
auxin can influence vegetable leaf or fruit size. CsFUL1 inhibited
the expression of the auxin transporters PIN1 and PIN7,
resulting in a decrease in auxin accumulation in fruit, thereby
affecting the fruit length of cucumber (Zhao et al., 2019).
BrANT responds to auxin and regulates downstream gene
expression of organogenesis and cell proliferation, indicating that
ANT promotes leaf growth by regulating cell division (Ding
et al., 2018). These observations suggest that auxin controls
many aspects of vegetable organ development in different ways
(Pattison et al., 2014). Additionally, the same quality traits of
vegetables may be affected by different phytohormones. Taking
tomato firmness as an example, Moneymaker (MM) tomato
has a higher compression resistance than Solanum lycopersicum
var. cerasiforme LA1310 (CC). Compared with the fruits of the
near-isogenic line with the CC qFIRM SKIN 1 (qFIS1) allele
(NIL-FIS1CC) Li et al. found that bioactive GAs, including
GA1, GA3, and GA7, were dramatically increased, whereas
the metabolic products of GA2-oxidases, including GA8 and
GA34, were decreased in the fruits of the near-isogenic line
with the MM qFIS1 allele (NIL-FIS1MM) (Li et al., 2020). By
spraying exogenous GA3 on NIL-FIS1CC mature green fruits,
researchers found significantly increased compression resistance
in treated fruits compared to untreated controls, indicating
that GA levels contribute to higher fruit firmness (Li et al.,
2020). Moreover, researchers treated wild type tomato fruit with
exogenous ABA and found that fruit firmness decreased, and
the suppression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE
(SlNCED1), which encodes a key enzyme in ABA biosynthesis,
significantly induced tomato fruit firmness (Sun et al., 2012).
GA and ABA can both affect tomato firmness, but the specific
mechanism of action and the connection between the two
require further analysis. Furthermore, there is extensive cross-
talk between different phytohormones that control growth
and development, such as auxin and GA. AUXIN RESPONSE
FACTORS (ARFs) are transcription factors that respond to auxin
signals and activate or repress downstream gene expression,
thus delivering the signal for the regulation of a set of genes
(Roosjen et al., 2018). As critical transcriptional downstream
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FIGURE 2 | Overview of the factors and genes related to vegetable quality, taking Brassicaceae, Solanaceae and Cucurbitaceae as examples. Phytohormones
represent the main factor that can influence fruit length (Cucurbitaceae), leaf size (Brassicaceae), firmness (Solanaceae) and cracking (Solanaceae). Cucurbitacin is a
unique substance of cucumbers that affects bitterness. Genes regulate different quality characteristics of vegetables, such as fruit length in cucumber (CsFUL1,
CsSUN, CsPIN1, CsPIN7 and CsSF2), cracks in tomato (Cr3a, SlPG and SlEXP1) and leaf size in Chinese cabbage (BrANT, BrAIL and BrERF4). Some homologous
genes such as MDHAR also play similar roles in vegetable quality, which affects the content of AsA in non-heading Chinese cabbage and melon.

targets of ARF2, CARBON-METABOLISM INVOLVED (GNC)
and GNC-LIKE (GNL) are involved in plant greening, flowering
time, and senescence (Richter et al., 2013). It has been reported
that the constitutive activation of GA signaling is sufficient to
suppress arf2 mutant phenotypes, causing increased chlorophyll
accumulation and delayed senescence through repression of
GNC and GNL (Richter et al., 2013). These and other aspects
of different pathways suggest complex crosstalk in multiple
phytohormone signals, reflecting their pleiotropic effects on
vegetable growth and ripening. Finally, phytohormones act as
common factors regulating vegetable quality, and deepening
the mechanistic understanding of molecular events related to
phytohormones will help to elucidate the regulatory networks
that affect vegetable quality.

GENETIC MANIPULATION APPLIED IN
VEGETABLE QUALITY

Many researchers have identified the key genes that affect
vegetable qualities. For example, Wiesner et al. (2014) identified
genes coding for polypeptide four of the cytochrome P450
(CYP) monooxygenase subfamily CYP81F and examined
their metabolic roles in indole glucosinolate biosynthesis in
Brassica rapa ssp. chinensis by microarray. Li et al. (2016)
found that exogenous auxin alters the expression patterns of

ethylene and auxin signaling-related genes that are induced
or repressed in the normal ripening process by Illumina
RNA sequencing. Kompetitive allele-specific PCR (KASP)
is a proprietary technology of LGC genomics that can
distinguish alleles at variant loci (Semagn et al., 2014; Steele
et al., 2018). Paudel et al. (2019) used the four loci to facilitate
marker-assisted selection (MAS) for watermelon seed coat
color. The results of these studies can be applied to actual
production processes to improve vegetable quality. With the
development of molecular biology technology, the regulation
of vegetable quality is not confined to traditional methods,
such as grafting techniques and the application of exogenous
fertilizers, but regulation at the molecular level is becoming
increasingly common.

DNA molecular marker technologies are marker techniques
based on nucleotide differences between individuals. This refers
to genetic markers based on DNA. In other words, direct response
to genetic material variation at the DNA level may accurately
reveal interspecific and intraspecific differences (Vieira et al.,
2007; Alim et al., 2011; Ferguson et al., 2012; Xu et al., 2019;
El-Mansy et al., 2021).

DNA molecular markers are widely used in vegetable breeding
research, including the construction of genetic maps to facilitate
the selection of breeding parents, the stable and objective analysis
of genetic relationships and plant origin and evolution, and the
mapping of agronomic trait genes (Table 1). Restriction fragment
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TABLE 1 | Different types of molecular markers.

Type Molecular markers References

Molecular hybridization RFLP Gebhardt et al., 1991; Sakamoto et al., 2000

PCR SSR SNP Shirasawa et al., 2010; Wang et al., 2012; Gharsallah et al., 2016; Ohyama et al., 2017;
Paudel et al., 2019; Zhang et al., 2020a

PCR and Restriction Enzyme Digestion Technology AFLP Xu et al., 2014

TABLE 2 | Application of transgenic and genome editing technology in vegetables.

Type Method Gene Quality Challenges

Transgenic technology RNAi SlABCG36 SlABCG42 Tomato has a thinner stratum corneum The safety of genetically modified vegetables is still
unclear

VIGS CaCCS CaPSY CaLCYB CaCRTZ Pepper fruits turn orange or yellow

Genome editing technology CRISPR SlFIS1 Increase tomato firmness Traits do not coexist with others

CsSF2 Shoot cucumber fruit The serious growth inhibition of homozygous plants

length polymorphism (RFLP) is the earliest DNA molecular
marker technology. By mapping chromosome-specific tomato
RFLP markers in potato and conversely mapping potato markers
in tomato, the different potato and tomato RFLP maps were
aligned, and the similarity of the potato and tomato genomes
was confirmed (Gebhardt et al., 1991). RFLP has also been
used for the identification of S-haplotypes of breeding lines
in broccoli and cabbage (B. oleracea L.) and in purity tests
of F1 hybrid seeds (Sakamoto et al., 2000). Simple sequence
repeat (SSR) markers have been widely used to obtain new
germplasm in recent years. When 32 SSR pairs of primers derived
from the A. thaliana chloroplast genome and another 21 SSR
primers from the B. napus mitochondrial genome sequences
were compared, six types of cabbage cytoplasmic male sterility
(CMS) were found, namely, NigCMS, OguCMSR (1), OguCMSR
(2), OguCMSR (3), OguCMSHY, and PolCMS (Wang et al.,
2012). Additionally, Gharsallah et al. (2016) genotyped cultivars
using nineteen polymorphic SSRs out of twenty-five tested to
produce a total of seventy alleles with an average of 3.68 alleles
per locus and polymorphism information content (PIC) values
ranging from 0.22 to 0.82 in saline tolerant, mildly tolerant and
saline sensitive tomatoes, so SSR marker-genotypes can be used
to find potential salt tolerance sources in tomato. Furthermore,
the single nucleotide polymorphism (SNP) markers screened in
tomato cultivar lines can be used to estimate the transferability
of these SNPs to other breeding materials (Shirasawa et al.,
2010). A core set of twenty-four SNPs can distinguish 99%
of the two hundred and sixty-one cucumber varieties (Zhang
et al., 2020a). These methods can be used comprehensively. For
example, amplified fragment length polymorphism (AFLP) and
SSR techniques combined with bulk segregant analysis (BSA)
can be used to map the RESTORER GENE (BrRFP) in heading
Chinese cabbage using the F2 segregating population developed
by crossing the polima (pol)-like CMS line 06J45 and the restorer
line 01S325 (Xu et al., 2014). Ohyama et al. (2017) identified
thirteen important agronomic quantitative trait loci (QTLs) in
tomato by SSR molecular markers. Xu et al. (2019) developed
thirty-five informative InDel markers that were successfully used
to analyze the genetic diversity of thirty-six cabbage germplasms,
providing molecular marker data for genetic mapping and

germplasm identification and promoting genetic improvement in
cabbage breeding.

Transgenic Technology to Regulate the
Quality of Vegetables
Transgenic technology involves the use of modern biotechnology
to artificially separate, recombine, introduce, and integrate
required target genes into the genome of organisms, thereby
improving the original traits or providing new desirable traits
(Kumar et al., 2020). Given that the essence of transgenic
technology and traditional technology is genetic improvement
through the acquisition of excellent genes, the close combination
of transgenic technology and conventional breeding techniques
can enable breeding of new varieties with multiresistance, high
quality, high yield and high efficiency. This approach can
greatly improve the efficiency of variety development, reduce the
input of pesticides and fertilizers, and enable great potential in
alleviating resource constraints, ensuring food safety, protecting
the ecological environment and expanding agricultural functions
(Ndimba et al., 2017).

Transgenic experiments play an important role in the
verification of gene function (Table 2). The tomato genes ATP-
BINDING CASSETTE TRANSPORTER G 36 (SlABCG36) and
SlABCG42, which encode proteins that are highly homologous
to AtABCG32, can be downregulated using RNAi techniques,
resulting in the deposition of the stratum corneum in the
tomato fruit and the formation of a thinner stratum corneum;
ABCG transporter protein affects the transport of keratin
precursors (Elejalde-Palmett et al., 2021). Zhang et al. (2020b)
used A. thaliana as a material and overexpressed AtMYB49
to improve the ability of plants to resist oxidative stress.
Arce-Rodriguez and Ochoa-Alejo designed a virus-induced
gene silencing (VIGS) system for Capsicum, providing a new
means for the study of gene function in this genus (Arce-
Rodriguez and Ochoa-Alejo, 2020). The pepper color genes
CAPSANTHIN/CAPSORUBIN SYNTHASE (CCS), PHYTOENE
SYNTHASE (PSY), LYCOPENE-BETA-CYCLASE (LCYB), and
BETA-CAROTENE HYDROXYLASE (CRTZ) were silenced
separately through VIGS technology, and pepper fruits from red
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fruit cultivars turned orange or yellow. Moreover, these four
genes were silenced simultaneously; the fruits did not show the
normal red color ation (Tian et al., 2014). Recently, researchers
applied VIGS of pepper genes via a pTRV2-GFP-CaPDS vector,
which can visualize TRV spread and monitor VIGS efficiency,
thereby enriching the research methods for vegetable germplasm
resources (Zhou et al., 2021).

Gene Editing Technology to Regulate the
Quality of Vegetables
Gene editing, also known as genome editing or genome
engineering, is a relatively accurate genetic engineering
technology or process that can modify specific target genes
in the genome of organisms (Schindele and Puchta, 2020).
Clustered regularly interspaced short palindromic repeats/Cas
(CRISPR/Cas) technology is the third generation of genome
editing technology developed in recent years. It is a means
to study gene function and improve crop yield. Gene editing
shows great potential in gene research and genetic improvement
because it can efficiently edit the targeted genome (Li et al., 2021).

At present, CRISPR technology has been applied to the
targeted editing of genomes of various organisms (Table 2). Li
et al. (2020) used CRISPR/Cas9 technology to edit FIS1 to verify
its effect on tomato firmness (Li et al., 2020). SHORT-FRUIT 2
(SF2) encodes histone deacetylase proteins, which participate in
diverse and tissue-specific developmental processes by forming
various corepressor complexes with different regulatory subunits.
Researchers knocked out the SF2 gene by CRISPR/Cas9 and
proved that SF2 controls fruit cell proliferation by targeting
the biosynthesis and metabolism of cytokinin and polyamines
(Zhang et al., 2020c).

PERSPECTIVES

Currently, there are new demands for vegetable quality in terms
of diversity and nutritional health. Improving vegetable quality is
an important topic in contemporary vegetable research. Scientists
have conducted in-depth research on the molecular development,
regulatory mechanisms and biosynthesis of vegetable quality
traits. Studies have mainly included the identification of
candidate genes, and their loci, which are responsible for fruit
quality traits of different varieties of vegetables, as well as the
physiological and metabolic pathways that directly or indirectly
affect fruit quality traits. In addition, the establishment of efficient
genetic transformation methods and the use of gene-editing
technology help verify the function of these determinants or
regulators. These applications for improving quality attributes
make sense when traditional breeding is difficult because of the
reproductive isolation between species.

Studies have shown that molecular breeding combined with
genome editing technology is growing rapidly, and that this
approach can shorten the breeding cycle and greatly improve
breeding efficiency, which has become a new direction in
vegetable breeding (Ueta et al., 2017). Genome editing has
been generally applied in horticulture, and gene edited crops
mainly include Solanum lycopersicum, Solanum pimpinellifolium,

Solanum tuberosum, Brassica oleracea, Brassica napus, Brassica
carinata, Lettuce sativa, Cucumis sativus, Camelina sativa, Daucus
carota, etc. (Xu et al., 2019). Through the application of
genome editing technology, new germplasms have been created,
such as lettuce with high AsA and strawberry with different
sugar contents, and de novo domestication of tomato was
realized (Li et al., 2018; Zhang et al., 2018; Xing et al., 2020).
However, gene manipulation technologies still face challenges
in improving vegetable quality. However, whether or not gene-
edited vegetables should be regulated as transgenic vegetables
has aroused international controversy (Hashimoto et al., 1999;
Friedrichs et al., 2019). Thus, gene-edited vegetables are in
urgent need of policy support to promote the industrialization of
new technologies and products. On the other hand, the precise
regulatory mechanisms of complex vegetable traits still need
to be further explored. Important agronomic traits might be
regulated by multiple gene loci, and one gene may be involved
in multiple agronomic traits. For example, SF2, which encodes
histone deacetylase protein, not only affects fruit quality but also
participates in the normal growth of plants. The cucumber sf2
knockout mutant exhibits severely hindered growth and cannot
develop further. The application of CRISPR technology can
only be used to analyze the functional mechanism by which
CsSF2 regulates cucumber fruit length and cannot be applied to
the actual production process (Zhang et al., 2020c). Therefore,
one of the biggest challenges facing future gene manipulation
technologies is to identify precise trait regulatory networks and
disrupt the unwanted linkages between different traits.

Furthermore, the development of genomics, molecular
biology, imaging, remote sensing informatics, and big data
technology will promote the development of breeding science
(Mahlein et al., 2012; Boukar et al., 2019; Walter et al., 2019;
Zhao et al., 2019). In particular, the application of big data
technology in gene breeding plays a huge role in screening for
functional variants, since it improves the efficiency and accuracy
of variant detection. The target of genetic variation detection in
plants has shifted from single SNP to structural variation and
insertion or deletion allelic variation though big data technology
(Wong et al., 2019). In summary, although challenges remain, the
application of genetic manipulation in horticultural crop species
improvement will further create and enhance vegetable quality
through the inclusion of desirable traits.
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