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Precise segmentation of wheat spikes from a complex background is necessary for
obtaining image-based phenotypic information of wheat traits such as yield estimation
and spike morphology. A new instance segmentation method based on a Hybrid
Task Cascade model was proposed to solve the wheat spike detection problem
with improved detection results. In this study, wheat images were collected from
fields where the environment varied both spatially and temporally. Res2Net50 was
adopted as a backbone network, combined with multi-scale training, deformable
convolutional networks, and Generic ROI Extractor for rich feature learning. The
proposed methods were trained and validated, and the average precision (AP) obtained
for the bounding box and mask was 0.904 and 0.907, respectively, and the accuracy
for wheat spike counting was 99.29%. Comprehensive empirical analyses revealed
that our method (Wheat-Net) performed well on challenging field-based datasets
with mixed qualities, particularly those with various backgrounds and wheat spike
adjacence/occlusion. These results provide evidence for dense wheat spike detection
capabilities with masking, which is useful for not only wheat yield estimation but also
spike morphology assessments.

Keywords: wheat spike, instance segmentation, Hybrid Task Cascade model, challenging dataset, non-structural
field

INTRODUCTION

Wheat is the most widely cultivated cereal crop and also one of the most important food sources
for humans in the world. The spike is the most important component of the wheat plant because
it contains the seeds that are harvested and ultimately consumed. Therefore, in-field automated
wheat spike detection based on remote sensing is an important step toward yield estimation and
spike morphology assessments.
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To detect wheat spikes, the remote sensing imaging devices
are useful tools to replace traditional artificial detection (Aparicio
et al., 2000). Hyperspectral imaging cameras can provide rich
spectral information for wheat detection (Shen et al., 2021), but
the cost of hyperspectral imaging is expensive, which restricts
the application in various fields (Zhang et al., 2020). Thus, the
cheaper RGB imaging camera is a realistic alternative to achieve
effective wheat detection. Deep learning (DL) with strong feature
learning abilities has spawned a multitude of applications in RGB
images. It encodes the composition of lower-level features into
more discriminative higher-level features (Ni et al., 2019). DL
can solve more complex problems with higher precision and has
been successfully used in plant classification (Sun et al., 2019;
Yang et al., 2019; Khaki et al., 2020), yield prediction (Pound
et al., 2017; de Luna et al., 2020; Zhuang et al., 2020), growth
monitoring (Kovalchuk et al., 2017; Qiongyan et al., 2017),
and disease/pest detection (Senthilkumar et al., 2017; da Silva
et al., 2019; Desai et al., 2019). Thus, DL, with its advantages
of high precision and intelligence, is an attractive alternative to
conventional wheat spike detection methods (Germain et al.,
1995; Cointault et al., 2008a,b).

Recently, DL has been shown to perform well in a wide
variety of wheat spike detection studies. Some previous works
involving wheat detection have been conducted under laboratory
conditions and controlled environments (Hasan et al., 2018;
Sadeghi-Tehran et al., 2019; Chandra et al., 2020; Misra
et al., 2020). Laboratory-based experiments have good lighting
conditions and a clean background, which is not the case for field-
based research, which is more complicated and yields images
where the background usually contains a lot of disturbances
(including soil and weeds). The complicated background greatly
increases the difficulty of resolving individual wheat spikes but
represents the actual growing environment of wheat. Thus,
models developed from the field are more realistic of real-world
conditions for wheat cultivation. Several in-field spike detection
and counting studies have been conducted (David et al., 2020,
2021; Xu et al., 2020; Wang et al., 2021). Among them, David
et al. (2021) constructed a more diverse and less noisy Global
Wheat Head Detection (GWHD) dataset, which promoted the
development of wheat spike detection. The detection results
from these studies were based on bounding boxes, which can
be used for counting wheat spikes. However, the precise pixel
areas of wheat are often required in wheat management (such
as evaluation of spikes disease and accurate yield prediction),
which cannot be achieved by detecting the bounding box only
by segmentation. Segmentation provides information such as
size, shape, and relative location of the segments in the image,
which can be used for phenotypic traits such as spike size, shape,
distribution, and wheat yield potential. Therefore, it is necessary
to explore an approach of segmenting wheat spikes to meet the
needs for precise spike areas in wheat management.

There are some researchers who have used semantic
segmentation algorithms to segment wheat spikes in the field
with a simpler environment by controlling some factors in the
experiment. For example, in implementing a Fully Convolutional
Network (FCN) segmentation model of individual wheat spikes,
Zhang et al. (2019) positioned spikes to avoid occlusion–an

intervention that does not simulate the actual growing conditions
of wheat in the field. Alkhudaydi et al. (2019) employed FCN to
segment multiple wheat spikes, which achieved a Mean Accuracy
(MA) of classification of > 76%. However, their model performed
poorly under challenging conditions caused by variable lighting
and weather (Alkhudaydi et al., 2019). Tan et al. (2020)
performed simple linear iterative clustering (SLIC) for superpixel
segmentation of digital wheat images, which resulted in a high
accuracy (94.01%) under high nitrogen fertilizer level and a lower
accuracy (80.8%) under no nitrogen fertilizer application. Ma
et al. (2020) developed EarSegNet to segment multiple wheat
spikes from canopy images captured under field conditions and
realized a precision of 79.41%. However, semantic segmentation
algorithms cannot segment wheat spikes out individually when
they are obstructed by other spikes, which is a common situation
under field conditions.

Instance segmentation can effectively segment partially
obstructed wheat spikes. This method localizes objects of interest
in an image at the pixel level, which achieves both object detection
and semantic segmentation (Li et al., 2017; Chen et al., 2019).
With instance segmentation, the segmented objects are generally
represented by masks and a bounding box (bbox); however,
few studies have been advanced using instance segmentation for
detecting wheat spikes under field settings. Qiu et al. (2019) used a
Mask RCNN model to reliably detect wheat spikes (mean average
precision is 0.9201) with different shapes and features in the field.
However, to achieve these results, they used a background plate
to block complex backgrounds and also a shade shed to provide
even lighting, which reduced the complexities of image capture
and subsequent annotation. They also divided the original image
into many smaller images, which resulted in image distortion.
This, in turn, resulted in images with only partial objects or no
objects at all, which would destroy the integrity of the wheat
spikes. In our previous research (Su et al., 2021), we basically
realized the instance segmentation of wheat in a complex field
environment, but its low accuracy cannot meet the needs of
practical applications and further research is necessary to achieve
high-precision instance segmentation.

In summary, the object detection of wheat is insufficient for
accurate phenotype study and semantic segmentation cannot
segment common occlusive wheat spikes. Instance segmentation
methods can solve the above problems, but the conventional
instance segmentation methods of wheat are either in laboratory
conditions or controlled environments or have low accuracy,
etc., which may not be suitable for phenotyping spikes under
complex field environment. Therefore, it is necessary to explore
a more applicable and accurate approach for segmenting
wheat spikes under field conditions. Therefore, the specific
objectives of this study were to: construct a new instance
segmentation model (called Wheat-Net) based on a multi-task
Hybrid Task Cascade (HTC) model (Chen et al., 2019) that
can precisely instance segment wheat spikes in high densities
in the field. Comprehensive empirical analyses reveal that
Wheat-Net achieved excellent performance on a challenging
dataset with various complex backgrounds and a high level
of obstruction. In a complex, unstructured environment, our
method not only accurately detected the wheat spikes with
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bounding boxes but also extracted spike regions from the
background at the pixel level.

MATERIALS AND METHODS

Data Collection
Wheat genotypes were sown in field plots on the St. Paul
campus of the University of Minnesota (UMN) in 2019. These
genotypes included mostly breeding lines from the UMN hard
red spring wheat breeding program, which can vary for different
spike morphology traits such as color, shape types as well as
spike density. The images at the late flowering stage (July 11)
to the milk stage of maturity (August 2) were collected from
the field including 20 wheat genotypes, which can enhance the
adaptability of the model to different wheat genotypes. In the
complex field environment, we used the camera of Canon EOS
Rebel T7i (autofocus single-lens reflex, pixels: 6,000 × 4,000) to
collect image data under different weather conditions (including
sunny and cloudy days). The exposure time, white balance, and
ISO speed were automatically set based on the automatic mode
of camera. The distance from the object is about 1–2 m. The
wheat images collected had complex backgrounds, including
weeds, soil, blurred wheat, blue sky, and white clouds. We expect
that users take images of the wheat/barley trial plots with very
loose image acquisition requirements (e.g., imaging angle and
distance). Therefore, we acquired the current dataset with various
angles and distances, which also can increase the diversity of data
and enhance the adaptability and robustness of the model.

Wheat is typically a dense crop and the images (Figure 1A)
collected contained as many as 124 spikes per image. In
addition, it was common that portions of images had insufficient
illumination (blue box with zoom-in shown in Figure 1B).
Moreover, the above factors also resulted in many problems such
as spike adjacence (Red box with zoom-in shown in Figure 1C),
occlusion, variation in spike size, and partial spikes on the image
edge (Yellow box with zoom-in shown in Figure 1D). The spike
occlusion problem was the most serious problem and included
various scenarios such as spikes over spikes (Figure 2A), leaves
over spikes (Figure 2B), stems over spikes (Figure 2C), and
awns over spikes (Figure 2D). Although the above factors greatly

increase the segmentation difficulty, they encompass the true field
environment and are helpful to improve the robustness of the
spike segmentation model.

The high complexity of the images brings great challenges
to artificial annotation. The artificial image annotation software,
Labelme (Russell et al., 2008), was used to label the ground truth
for wheat spikes using polygons. Figure 3 shows the annotation
of the images in this paper. To obtain high-quality annotated
datasets, we enlarged the image about 200% or larger and selected
the dense points along the outside edge of every spike to form an
accurate spike region. However, there are still several very blurred
spikes in the enlarged picture, which cannot be distinguished
by the humans and are not annotated. Our group put a lot of
effort in annotation and we believe this dataset can promote
further wheat phenotypic studies. These annotated images were
used to calculate the loss and optimize the model parameters
during model training. In machine learning, about 2/3 to 4/5
of the datasets are usually used for training, and the remaining
images are used for testing. Therefore, there are 524 images in the
training set (12,591 spikes) and 166 images in the test set (4,934
spikes) in this paper.

Methods of Wheat Instance
Segmentation
Architecture of Wheat-Net
In this study, instance segmentation was the key protocol
implemented to reliably detect and segment wheat spikes in
a complex non-structural environment. We built the wheat
spike instance segmentation model, Wheat-Net, for our high-
complexity dataset based on the HTC model (Chen et al., 2019),
which is a novel cascade architecture for instance segmentation.
The HTC model has a powerful cascade structure that enhanced
performance on various tasks. It solved the problem of
insufficient information flow between mask branches at different
stages in Cascade Mask RCNN, which is a direct combination
of Cascade RCNN (Cai and Vasconcelos, 2021) and Mask
RCNN (He et al., 2017). The HTC model effectively integrated
cascade into instance segmentation by interweaving detection
and segmentation for joint multi-stage processing, achieving
outstanding performance on COCO (Common Objects in

FIGURE 1 | (A) An example of an original image of a wheat plot indicating sections (blue, red, and yellow boxes) enlarged to show (B) an area with incomplete
illumination, (C) adjacent spikes in close proximity, and (D) partial spikes on the edge of the images.
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FIGURE 2 | Examples of various spike occlusion scenarios: (A) spike over spike, (B) leaf over spike, (C) stem over spike, and (D) awns over spike.

FIGURE 3 | Annotation of wheat spikes: (A) the original image of a wheat plot, (B) the image with annotated wheat spikes, and (C) details of a single annotated
spike.

FIGURE 4 | The architectures of Wheat-Net. “POOL” region-wise feature extraction, “B” bounding box, and “M” mask. “S” is semantic segmentation branch.

Context) test-dev and test-challenge (Lin et al., 2014). We
cascaded three Mask RCNN networks to build the Wheat-
Net (Figure 4). The advantages of this model can be ascribed
to three key aspects. (1) It interleaved the box and mask
branches (the green lines in Figure 4) based on Cascade Mask
RCNN. This improvement allowed the mask branch to take
advantage of the updated bbox. For instance segmentation of

wheat spikes, the bbox information is very important for wheat
mask segmentation. If bbox detects two adjacent spikes as the
same object, the model will difficult to segment them. Therefore,
the interleaving of box and mask branches can help to achieve
more accurate wheat spike segmentation. (2) It made full use
of the mask feature of the preceding stage by adding a direct
information flow between mask branches (the blue lines in
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Figure 4). The direct information flow can learn more abundant
multi-scale information of wheat from complex images, which
further improved the accuracy of wheat segmentation. (3) It
explored more contextual information by adding a semantic
segmentation branch (the red lines in Figure 4), which can help
the wheat spikes to be segmented accurately from the complex
background. The above optimizations are combined (Equations
1–5) for better predictions, which effectively improved the
utilization of information and enhanced performance.

rt = Bt(xboxt ) (1)

xboxt = p (x, rt−1)+ p(S (x) , rt−1) (2)

xmask
t = p (x, rt)+ p(S (x) , rt) (3)

mt = Mt(F(xmask
t , m−t−1)) (4)

F
(

xmask
t , m−t−1

)
= xmask

t + gt(m−t−1) (5)

Where x is the feature of the backbone network, xbox
t and

xmask
t denote box and mask features of x and the input Region

of Interest (RoI). S indicates the semantic segmentation head.
The box and mask heads of each stage take the RoI features
extracted from the backbone as input. p (·) is a pooling operator,
Bt and Mt indicate the box and mask head at the t-th stage.rt
and mt represent predictions of box and mask, respectively. m−t−1
indicates the intermediate feature of Mt−1. F is a function that
combines the features of the current stage and the preceding one.
gt denotes a 1× 1 convolutional layer.

Optimization of Wheat-Net
Different backbones have an important effect on the performance
of the model because of their differences in feature extraction
ability. Res2Net50 (Gao et al., 2021; Figure 5B) represents multi-
scale features at a granular level and increases the range of
receptive fields for each network layer, which is different from
the concurrent bottleneck structure shown in Figure 5A, such as
ResNet (He et al., 2016). Specifically, it replaces the 3× 3 filters of
n channels with a set of smaller filter groups, which are connected
in a hierarchical residual-like style to increase the number of
scales that the output features can represent. It can capture
more details and global features of wheat without increasing
calculations for wheat segmentation. ResNeXt (Xie et al., 2017)
is an improved model of ResNet (Figure 5C), and is constructed
by repeating a building block and the transformations to be
aggregated, all of the same topology. It is a simple, homogeneous,
and multi-branch architecture, which can extend to any large
number of transformations without specialized designs. In the
experimental part of this paper, we compare the performance of
the above-mentioned backbones in our dataset.

Deformable convolutional networks (DCN) (Dai et al., 2017)
were integrated into our model because they provide a solution
to model dense spatial transformations and are effective for

sophisticated vision tasks. DCN allowed free deformation of
the sampling grid as shown in Figure 6, which added offsets
learned from target tasks to the regular sampling grid of
standard convolution without additional supervision. DCN can
help to solve the geometric deformation and enhance the
robustness of the model for segmenting various sizes and angles
of wheat spikes.

In our model, feature pyramid networks (FPN) (He et al.,
2017) extracted RoI features from different levels of the feature
pyramid by using a top-down architecture. These different
features, generated and fused by FPN, comprised the inputs of
the Region Proposal Network (RPN) (Ren et al., 2017). RPN
predicted object bounds and objectness scores to efficiently
generate region proposals with a wide range of scales and
aspect ratios. Generic RoI Extractor (GRoIE) (Rossi et al., 2020)
was used to extract the RoI. Since all layers of FPN retain
useful information of wheat spikes, non-local building blocks
and attention mechanisms were introduced to extract more
information of wheat and overcome the limitations of existing
RoI extractors, which select only one (the best) layer from
FPN. They also can be integrated seamlessly with the two-
stage architectures for instance segmentation tasks for superior
performance compared to traditional RoI extractors (Pont-Tuset
et al., 2017). Multi-task learning (Caruana, 1997) combined all
tasks into a single model: that is, what is learned for each task
can help other tasks be learned better. In this paper, we used
multi-task learning to achieve both target detection and semantic
segmentation of wheat spikes. Hence, Multi-task learning can
improve learning efficiency and prediction accuracy by learning
multiple objectives from a shared representation.

As an important part of the object detection pipeline, non-
maximum suppression (NMS) could sort the detection bbox
based on their scores (Rosenfeld and Thurston, 1971), select the
detection bbox with the highest score and suppress all other bbox
that had significant overlap (using a predefined threshold) with
it. However, NMS might lose the objects that are within the
predefined overlap threshold. Due to wheat is dense plant, there
are a lot of overlap wheat spikes in the images. NMS might only
detect one spike between two overlap spikes. Bodla et al. (2017)
proposed a Soft-NMS algorithm to prevent objects from being
eliminated. It decayed the detection scores of all other objects as
a continuous function of their overlap. In the experimental part
of this paper, we conducted a comparative experiment between
NMS and Soft-NMS.

The size of the input image had a significant impact on model
performance. Because we collected images with various shooting
distances and angles, the dataset contained many small spikes. In
our paper, small and big spikes are labeled as ground truth, which
is more in line with the actual field of wheat. Because the feature
map generated by the network was much smaller than the original
image, the model may lose features of small spikes and unable
to detect small spikes. Therefore, if the model fails to detect
small wheat spikes, the performance of the model will be affected.
Multi-scale training (He et al., 2015), which defines several fixed
scales in advance and randomly selects a scale for training in each
epoch, can effectively improve this limitation. Therefore, we used
images of multiple scales for training to improve the robustness
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FIGURE 5 | Comparison between different backbones for Wheat-Net. (A–C) Are the block of ResNet, Res2Net, and ResNeXt, respectively.

FIGURE 6 | Different calculation positions under: (A) standard convolution (blue points); (B) deformable convolution (with green points). (C,D) Are special cases of
(B), showing that the deformable convolution generalizes scale and rotation transformations.

and accuracy of our model. Due to memory constraints, the
short-side of the input images was randomly selected from 416
to 1,184, and another side’s size was calculated according to the
aspect ratio of the original image’s size.

Learning rate (LR) was one of the most important
hyperparameters in training. If the LR is large at the beginning of
training, the model may become unstable, making it difficult to
reach the optimal solution. To address this, we used warm-up LR
(He et al., 2016) to improve the training situation. Warm-up LR
allows the LR to gradually increase from a small value in the first
few epochs until the initial LR is reached. In this way, the model
can gradually stabilize, and the convergence speed becomes faster
after stabilization.

As an important hyperparameter in deep learning, LR could
determine whether and when the model can converge. A large LR
will make the model fluctuate greatly, and it is difficult to reach
the optimal solution. In addition, as the number of iterations
increases, the LR will continue to decay to reduce fluctuations of
model. We chose two popular LR decay methods and compared
them in the experimental chapter: one was MultiStepLR, which
used the dynamic step to update the LR, and the other was
CosineAnnealingLR, which decayed the LR periodically based on

the cosine function. Hyperparameters of the model were adjusted
and optimized based on multiple experiments. Finally, the initial
LR was set to 0.0025 and adjusted every 20 epochs with a decay
factor of 0.5. The other hyperparameters of the model are shown
in Table 1.

Eventually, a new wheat spike segmentation method based
on the HTC model combined with the backbone of Res2Net50,
deformable convolutional networks, and Generic RoI Extractor
was constructed (Figure 4). During the model training, each
image was augmented using multiple methods (including

TABLE 1 | Hyperparameter values which optimized through training.

Parameter Value

Optimization algorithm SGD

Momentum 0.9

Initial learning rate 0.0025

Warmup_iterations warmup_ratio = 0.001 500

Warmup_ratio 0.001

Optimal epoch 38

Batch size 1
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FIGURE 7 | The curve of precision and recall.

VerticalFlip, RandomBrightnessContrast, RGBShift RGB,
HueSaturationValue, ChannelShuffle, Blur, and MedianBlur) and
the Res2Net50 backbone was pretrained based on the ImageNet
dataset (Deng et al., 2009) using transfer learning, which was
suitable for solving the problem of a small training dataset. The
overall loss function takes the form of multi-task learning and
was defined as Equation (6).

L =
T∑
t=1

at
(
Ltbbox + Ltmask

)
+ βLseg (6)

Where: Lt
bbox is the loss of the bounding box predictions at

stage t. Lt
mask is the loss of mask prediction at stage t. Lsegis

the semantic segmentation loss in the form of cross-entropy.
Because we cascade 3 Mask RCNN networks to build the Wheat-
Net architectures, T was set to 3. In addition, to balance the
contributions of different stages and tasks, we set α = [1, 0.5, 0.25]
and β = 1 by default [31].

Evaluation Metric
The performance of Wheat-Net was evaluated by average
precision (AP), which is the area under the curve of precision-
recall (PR) (Equations 7–9). A high AP value indicates that a
model has both high precision and high recall. AP stood out as the
most-used metric due to its representativeness and simplicity. AP
was calculated (Equation 10) by using the method of the COCO
dataset, which interpolated through all points. In this research,
we evaluated the performance of Wheat-Net based on the IOU
(Equation 11) threshold of 0.5, which is commonly used for
instance segmentation model. The evaluation metrics are defined
as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

pinterp (rn+1) = max
r̃:̃r≥rn+1

p (̃r) (9)

AP =
∑
n=0

(rn+1−rn)pinterp(rn+1) (10)

IoU (A,B) =

∣∣∣∣A⋂B
A
⋃

B

∣∣∣∣ (11)

Where TP indicates the correct detection of wheat spikes, FP
is the wrong detection of wheat spikes, and FN represents the
ground truth of wheat spikes not detected. Precision indicates
how many wheat spikes detected by the model are real wheat
spikes. Recall indicates how many real wheat spikes are detected
by model in all real spikes. p (r∼) is the measured precision
at recall (r.)∼ IOU is the intersection over union between two
bboxes. A represents the bbox labeled manually and B represents
the bbox generated based on Wheat-Net.

RESULTS

The data analysis was performed with the deep learning
development framework of PyTorch. An Intel (R) Core (TM)
i7-6700 processor, a 16GB random-access memory card, and a
graphic card (NVIDIA GeForce GTX1080Ti 11GB) were used for
the modeling process.

To determine the appropriateness of the model, the test set was
used to assess the model. The AP of bbox and mask reached 0.904
and 0.907, respectively. In the case of dense wheat spike detection
from complex backgrounds, false positives tended to happen
more often than false negatives. Therefore, we used the PR curve
(Figure 7), which emphasized the evaluation of the prediction
model on positive examples to evaluate the performance of the
model. This step confirmed the effectiveness of Wheat-Net for
detecting wheat spikes in the complex field environment.

In addition, we visualized the detection results of the
complex image shown in Figure 8A. As shown in Figure 8,
in the non-structural field, the model showed outstanding
performance for complex backgrounds, dense spikes, adjacency,
and occlusion (Figure 8B), insufficient illumination (Figure 8D),
and incomplete spikes on the edge of images (Figure 8C).

The model can effectively solve the problem of various
occlusion scenarios, which is one of the most challenging areas in
the field of object detection. Figure 9 demonstrated the detection
results of various occlusion scenarios including: when a spike is
obstructed by another spike; when a spike is occluded by a leaf;
when a spike is occluded by a stem; and when a spike is occluded
by awns from another spike. Comparing the total number of
spikes (4,899) detected by the model with the actual number of
spikes manually labeled (4,934), 99.29% of the manually labeled
wheat spikes (clearly visible to humans) are detected. It should be
noted that the main goal of this paper is to accurately segment
wheat spikes in complex environments, so the datasets and
scenarios may different from pure wheat counting studies. This
demonstrates that Wheat-Net was effective for automatic wheat
spike detection under complex field conditions. In addition, the
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FIGURE 8 | Annotation images vs. detection results. (A) Overall detection results, (B) detail 1—area of adjacence and occlusion, (C) detail 2—area of incomplete
spikes in image, (D) detail 3—area of insufficient illumination of spikes.

instant segmentation algorithm is used to segment wheat spikes
out of plot images. Segmentation provides information such as
size, shape, and relative location of the segments in the image,
which can be used for phenotypic traits such as spike size, shape,
distribution, and wheat yield potential.

Ablation Study
Ablation study is an effective way to see how a method
affects the performance of the entire model by removing that
specific method from the model. To perform this analysis,
we used multi-scale training, DCN, and GRoIE methods to
improve the performance of the model. To more accurately
evaluate the effect of each method, we conducted the ablation
study experiments with the Wheat-Net based on Res2net50
(LR = 0.0025, batch size = 1, image scale = 2,100∗1,184) and
compared the performances on the test set.

The experimental results (Table 2) showed that multi-
scale training, DCN, and GRoIE had various effects on the
performance of Wheat-Net. Specifically, the AP (both IOU = 0.5
and IOU = 0.75) were significantly improved by multi-scale
training, although it increased some test times. The improvement
of DCN for IOU = 0.75 was greater than that for IOU = 0.5, which
showed that DCN had a more significant effect on a large IOU
threshold. In addition, GRoIE increased AP with IOU = 0.5 and
decreased AP with IOU = 0.75. The experimental results showed
that GRoIE did not work for our dataset when using a larger
threshold of IOU.

Comparative Evaluation
To make full use of the advantages of the Wheat-Net to achieve
better performance, we conducted experiments to select the
best backbone to build the Wheat-Net. As shown in Table 3,
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FIGURE 9 | Detection results of various occlusions. (A) One spike (under purple mask) is occluded by another spike, (B) one spike (under red mask) is occluded by
a wheat leaf, (C) one spike is occluded by a wheat stem, (D) One spike (under orange mask) is occluded by awns from another spike.

TABLE 2 | The results of ablation study.

Multi-scale DCN GRoIE AP (IOU = 0.5) AP (IOU = 0.75) Epoch Train time/h Test time/s

Bbox Mask Bbox Mask

− − − 0.868 0.872 0.722 0.677 20 7.5 2,988
√

− − 0.891 0.899 0.772 0.745 40 14 4,775
√ √

− 0.897 0.904 0.794 0.768 40 14 4,791
√ √ √

0.904 0.907 0.790 0.747 38 16 2,560

TABLE 3 | Comparative experimental results.

Type AP (IOU = 0.5) AP (IOU = 0.75) Epoch Train time/h Test time/s

Bbox Mask Bbox Mask

ResNet50 0.894 0.897 0.761 0.693 60 17 2,393

ResNet101 0.871 0.876 0.696 0.632 20 7 3,302

ResNeXt50 0.893 0.897 0.788 0.733 66 18 2,299

ResNeXt101 0.872 0.875 0.706 0.624 40 14 2,251

Res2Net50 0.904 0.907 0.790 0.747 38 16 2,560

NMS 0.904 0.907 0.790 0.747 38 16 2,560

Soft-NMS 0.903 0.906 0.795 0.750 38 16 3,385

CosineAnnealingLR 0.891 0.895 0.786 0.753 70 18 3,134

MultiStepLR 0.904 0.907 0.790 0.747 38 16 2,560

Wheat-Net 0.904 0.907 0.790 0.747 38 16 2,560

Optimized mask RCNN 0.884 0.884 0.755 0.690 60 10 3,186

Optimized cascade mask RCNN 0.899 0.900 0.785 0.754 40 14 2,673

we selected ResNet50, ResNet101, ResNeXt50, ResNeXt101,
and Res2Net50 for comparative experiments. By comparing
the results of ResNet50 and ResNet101 (or ResNeXt50 and
ResNeXt101), we found that increasing the depth of the backbone
could not improve the performance of wheat spike detection.
In general, the more layers the deep neural network has, the

stronger the fitting ability of the model will be. In practice,
there is not only ground truth but also noise in the image.
The stronger the fitting ability of the model, the stronger the
ability to learn noise. In particular, the noise in this paper
(such as blurry spikes, leaf, stem, and awns) is similar to the
ground truth in color and texture, which makes it more difficult
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FIGURE 10 | The Demonstration of experimental error. (A) The error of spike bottom. (B) The error at the junction of different spikes.

for the model to distinguish between noise and ground truth.
Therefore, in the situation of this paper, just increasing the
depth of the backbone may not represent a better effect. The test
results (Table 3) showed that Res2Net50 and ResNeXt50 have
more outstanding performance than other backbone networks.
Furthermore, ResNeXt50 required a shorter test time, while
Res2Net50 had higher AP values. Both of the two networks
can be used as the backbone of our model based on different
criteria. In this paper, based on the requirement of precision,
we chose Res2Net50 as the backbone network of Wheat-Net
for segmenting wheat spikes in the complex field. In practical
applications, if there is a higher requirement for the model speed,
ResNeXt50 will be suitable to be the backbone network.

In object detection, the model will generate a lot of region
proposals, and the suppression algorithm is needed to remove
redundant region proposals to reduce the number of parameters
in the model. In this paper, we conducted a comparative
experiment between NMS and Soft-NMS to achieve the better
performance of Wheat-Net. As shown in Table 3, the Wheat-Net
with NMS achieved a higher AP with IOU = 0.5 within a much
shorter test time compared to Soft-NMS. Therefore, although
Soft-NMS could help the Wheat-Net to achieve slightly higher AP
with IOU = 0.75, we chose to use NMS based on the best balance
between precision and speed.

In the training process, if the LR is too large, the model will
be difficult to converge, if the LR is too small, the convergence
speed will be slow. Therefore, the dynamic decay of LR is
extremely important to make the model faster and more stable
to convergence. In order to choose a more suitable method
of LR decay, we conducted a comparative experiment between
MultiStepLR and CosineAnnealingLR to select the suitable LR
decay method for Wheat-Net. From Table 3, we can see
that the MultiStepLR was superior to CosineAnnealingLR in
terms of AP. In addition, MultiStepLR converged faster and

required a shorter test time than CosineAnnealingLR. Therefore,
MultiStepLR was better than CosineAnnealingLR in terms of
accuracy and speed for our model of wheat spike detection, so we
chose MultiStepLR to decay the learning rate and further improve
the performance of our model.

In order to evaluate the advantages of the hybrid cascade
structure of Wheat-Net, we first used the same optimization
method (including multi-scale training, DCN, and GRoIE) to
optimize the Mask RCNN and Cascade Mask RCNN, and then
conducted a comparative experiment. As shown in Table 3, we
can seen that the box AP and mask AP of the Wheat-Net are
better than the other two models. In addition, although the
train time of the Wheat-Net was slightly longer, the Wheat-Net
was more satisfactory in terms of test time and converged in
the lowest number of epochs. The above analysis proves that
the hybrid cascade structure of Wheat-Net is very effective for
segmenting wheat spikes in the field environment.

DISCUSSION

Analysis of Experimental Error
Although Wheat-Net showed excellent performance for wheat
segmentation in the complex environment, there were still errors,
which we subsequently analyzed. As shown in Figure 10A, the

TABLE 4 | Comparison of the AP of Wheat-Net vs. other models in
wheat detection.

Model AP (IOU = 0.5)

Bbox Mask

Su et al. (2021) 0.567 0.572

Wheat-Net 0.904 (↑0.337) 0.907 (↑0.335)
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FIGURE 11 | The visualization results of barley detection. (A,B) The two examples of barley detection.

model had some segmentation errors at the bottom of the wheat
spikes. The sparse florets at the bottom of the spike led to some
differences between the texture characteristics of the bottom and
other parts. This in turn caused inaccurate segmentation for the
bottom of the spikes.

Due to the complexity of our dataset, the problem of adjacence
and occlusion of wheat was very common in most images.
Segmentation of adjacent objects was one of the most challenging
tasks in the field of crop phenotyping. From Figure 10B, we
can see that the two spikes were adhesive and the lower one
was occluded by a wheat stem. Our method achieved a good
segmentation result in such a complex situation, but there were
still errors at the junction. The color, texture, and shape of the
adherent spikes were very similar, which made the dividing line
unclear. As a result, this made the positive objects at the junction
annotated as negative, which increased the number of False
Negatives (FN) and reduced Recall. When multi-scale training
and DCN were used (GROIE was not used), the AP value with
IOU of 0.75 was the highest (Table 3). We chose this model for
visual testing (shown in Figure 10) and found that it could greatly
reduce the above-mentioned experimental errors (including the
bottom and junction errors) compared to when IOU = 0.5.
Regardless of the ability to detect wheat spikes, it achieved better
performance for accurately segmenting the wheat spike.

Evaluation of Wheat-Net on Barley Spike
Detection
The phenotypic characteristics of wheat and barley are quite
different in both the shape and size of the kernel and the length
of the awn. In order to verify the generalized applicability of
the model, we constructed a test set containing 29 barley images
to test the detection ability of the model to barley spikes. The
experimental results showed that the AP of bbox and mask for
barley detection achieved 0.799 and 0.812, respectively. From
Figure 11, we can see that the model achieved acceptable
visualization results for barley, especially for the detection
of adjacence and occlusion (red boxes in Figure 11). Thus,
our model has the potential to segment barley spikes as well
demonstrating strong robustness to a variety of spike shapes and
colors. However, due to the similar phenotypic characteristics of
adhesive spikes, there were still errors at the junction of spikes.
In addition, similar to the errors encountered with wheat spike

detection, there were also some errors at the top and bottom of
barley spikes. It is expected that the performance of segmenting
barley spikes will be improved by retraining our model using a
barley training dataset. This study also established the protocol of
a pretraining model for the detection of other inflorescences of
small grain cereal crops such as the panicles of oat and rice.

Comparison of Wheat Detection
Methods
Compared with the conventional wheat detection methods
(Alkhudaydi et al., 2019; Qiu et al., 2019; Zhang et al., 2019;
Ma et al., 2020; Tan et al., 2020; Su et al., 2021), the proposed
Wheat-Net in this paper showed a preferable performance for
instance segmentation in various complex scenes, including
complex backgrounds, insufficient illumination, dense wheat
spikes, spike adjacency, and occlusion. In our previous research
(Su et al., 2021), we basically realized the instance segmentation
of wheat in a complex field by using only a single Mask RCNN.
However, since the method with a single Mask RCNN cannot
learn sufficient features from our complex datasets, it had a poor
effect (especially for segmentation of partial spikes of the image
edge and occlusive spikes). Therefore, we spent a year devoted
to improving the performance of previous study. Eventually,
compare with only a single Mask RCNN of Su et al. (2021),
we cascaded three Mask RCNN to construct the Wheat-Net of
hybrid cascade structure, and with Res2Net50 as the backbone
network, multi-scale training, DCN, and GRoIE were used to
learn abundant features of different scales. From the bold values
in Table 4, we can see that the AP of bbox is increased by 0.337
(from 0.567 to 0.904), and the AP of mask is increased by 0.335
(from 0.572 to 0.907). In addition, we can see from Figures 8, 9
that Wheat-Net achieved excellent performance for partial spikes
of the image edge and occlusive spikes, which had a poor effect
on the method of Su et al. (2021). The above experiment shows
that our method can overcome various challenges in the complex
field and achieve accurate and efficient instance segmentation
of wheat spikes.

CONCLUSION

Due to the high complex dataset (complex backgrounds, serious
occlusion), an effective instance segmentation method based on
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the HTC model was established to automatically segment wheat
spikes in the fields. The proposed method with a hybrid cascade
structure to make full use of rich mask and box information.
With Res2Net50 as the backbone network, multi-scale training
was used to learn features of different scales, and deformable
convolutional networks (DCN) and Generic RoI Extractor
(GRoIE) were trained to improve model accuracy. Based on the
methodology, the difficulties of complex backgrounds, serious
occlusion, and incomplete spikes on the edge were solved with AP
of 0.904 and 0.907 for bbox and mask, respectively. The accuracy
rate for wheat spike counting was 99.29%. Comprehensive
empirical analyses revealed that the proposed method was
particularly effective for the detection of wheat spikes with
frequent adjacence, overlapping, occlusion, and other complex
growth states. This study achieved excellent performance for
dense wheat spike segmentation with complex field, which is
conducive to promoting production and management of wheat.
However, field data collection is limited to only the crop season,
which is 3 months per year in Minnesota. One solution is to
expand the data collection window by conducting multi-site data
collection across regions. In addition, we will study the method of
data augmentation based on the Generative Adversarial Network
(GAN). Our models will also be used in the large-scale wheat field
trials. We expect that our proposed method will be expanded to
the broader agricultural research area, including detection of the
seed-bearing inflorescences of other crops.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

JZ, AM, CY, and BS: conceptualization. JZ, AM, QM, and CY:
methodology and formal analysis. JZ, AM, CY, and JW: software.
JZ, QM, AM, CY, and JW: validation. CY, CH, W-HS, and BS:
investigation. JZ, AM, CY, CH, JA, and BS: data curation. JZ:
writing-original draft preparation. JZ, AM, CY, QM, BS, CH, and
JA: writing-review and editing. CY, BS, W-HS, and QM: project
administration. All authors have read and agreed to the published
version of the manuscript.

FUNDING

This work was supported by the USDA-ARS United States
Wheat and Barley Scab Initiative (Grant No. 59-0206-0-181), the
Lieberman-Okinow Endowment at the University of Minnesota,
and the State of Minnesota Small Grains Initiative. The research
was also supported by Provincial Natural Science Foundation
Project (Grant No. ZR2021MC099).

REFERENCES
Alkhudaydi, T., Reynolds, D., Griffiths, S., Zhou, J., and Iglesia, B. (2019). An

exploration of deep-learning based phenotypic analysis to detect spike regions
in field conditions for UK bread wheat. Plant Phenomics 2019, 1–17. doi: 10.
34133/2019/7368761

Aparicio, N., Villegas, D., Casadesus, J., Araus, J. L., and Royo, C. (2000). Spectral
vegetation indices as nondestructive tools for determining durum wheat yield.
Agron. J. 92, 83–91. doi: 10.2134/agronj2000.92183x

Bodla, N., Singh, B., Chellappa, R., and Davis, L. S. (2017). “Soft-NMS —
improving object detection with one line of code,” in Proceedings of the 2017
IEEE International Conference on Computer Vision (ICCV), (Venice: IEEE),
5562–5570.

Cai, Z., and Vasconcelos, N. (2021). Cascade R-CNN: high quality object detection
and instance segmentation. IEEE Trans. Pattern Anal. Mach. Intellig. 43, 1483–
1498. doi: 10.1109/TPAMI.2019.2956516

Caruana, R. (1997). Multitask learning. Mach. Learn. 28, 41–75. doi: 10.1023/A:
1007379606734

Chandra, A., Desai, S. V., Balasubramanian, V., Ninomiya, S., and Guo, W. (2020).
Active learning with point supervision for cost-effective panicle detection in
cereal crops. Plant Methods 16:34. doi: 10.1186/s13007-020-00575-8

Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., et al. (2019). “Hybrid
task cascade for instance segmentation,” in Proceedings of the 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), (Piscataway,
NJ: IEEE), 4969–4978.

Cointault, F., Guerin, D., Guillemin, J., and Chopinet, B. (2008a). In-field Triticum
aestivum ear counting using colour-texture image analysis. N. Zeal. J. Crop
Hortic. Sci. 36, 117–130. doi: 10.1080/01140670809510227

Cointault, F., Journaux, L., Destain, M.-F., and Gouton, P. (2008b). “Wheat
ear detection by textural analysis for improving the manual countings,” in
Proceedings of the 5th IASTED International Conference on Signal Processing,
Pattern Recognition and Applications (SPPRA), Innsbruck.

da Silva, L. A., Bressan, P. O., Gonçalves, D. N., Freitas, D. M., Machado,
B. B., and Gonçalves, W. N. (2019). Estimating soybean leaf defoliation using

convolutional neural networks and synthetic images. Comput. Electron. Agric.
156, 360–368. doi: 10.1016/j.compag.2018.11.040

Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., et al. (2017). “Deformable
convolutional networks,” in Proceedings of the 2017 IEEE International
Conference on Computer Vision (ICCV), (Piscataway, NJ: IEEE), 764–773.

David, E., Madec, S., Sadeghi-Tehran, P., Aasen, H., Zheng, B., Liu, S., et al.
(2020). Global Wheat Head Detection (GWHD) dataset: a large and diverse
dataset of high resolution RGB labelled images to develop and benchmark
wheat head detection methods. Plant Phenomics 2020:3521852. doi: 10.34133/
2020/3521852

David, E., Serouart, M., Smith, D., Madec, S., Velumani, K., Liu, S., et al. (2021).
Global Wheat Head Dataset 2021: More diversity to improve the benchmarking
of wheat head localization methods. Plant Phenomics 2021:9846158.

de Luna, R., Dadios, E., Bandala, A., and Vicerra, R. (2020). Tomato growth stage
monitoring for smart farm using deep transfer learning with machine learning-
based maturity grading. Agrivita J. Agric. Sci. 42, 24–36. doi: 10.17503/agrivita.
v42i1.2499

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “ImageNet:
a large-scale hierarchical image database,” in Proceedings of the 2009 IEEE
Conference on Computer Vision and Pattern Recognition, (Piscataway, NJ:
IEEE), 248–255. doi: 10.1109/TMI.2016.2528162

Desai, S. V., Balasubramanian, V. N., Fukatsu, T., Ninomiya, S., and Guo, W.
(2019). Automatic estimation of heading date of paddy rice using deep learning.
Plant Methods 15:76. doi: 10.1186/s13007-019-0457-1

Gao, S.-H., Cheng, M.-M., Zhao, K., Zhang, X.-Y., Yang, M.-H., and Torr, P. (2021).
Res2Net: a new multi-scale backbone architecture. IEEE Trans. Pattern Anal.
Mach. Intellig. 43, 652–662. doi: 10.1109/TPAMI.2019.2938758

Germain, C., Rousseaud, R., and Grenier, G. (1995). “Non destructive counting
of wheatear with picture analysis,” in Proceedings of the Fifth International
Conference on Image Processing and Its Applications, (Piscataway, NJ: IEEE),
435–439.

Hasan, M. M., Chopin, J. P., Laga, H., and Miklavcic, S. J. (2018). Detection and
analysis of wheat spikes using convolutional neural networks. Plant Methods
14:100. doi: 10.1186/s13007-018-0366-8

Frontiers in Plant Science | www.frontiersin.org 12 February 2022 | Volume 13 | Article 834938

https://doi.org/10.34133/2019/7368761
https://doi.org/10.34133/2019/7368761
https://doi.org/10.2134/agronj2000.92183x
https://doi.org/10.1109/TPAMI.2019.2956516
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1023/A:1007379606734
https://doi.org/10.1186/s13007-020-00575-8
https://doi.org/10.1080/01140670809510227
https://doi.org/10.1016/j.compag.2018.11.040
https://doi.org/10.34133/2020/3521852
https://doi.org/10.34133/2020/3521852
https://doi.org/10.17503/agrivita.v42i1.2499
https://doi.org/10.17503/agrivita.v42i1.2499
https://doi.org/10.1109/TMI.2016.2528162
https://doi.org/10.1186/s13007-019-0457-1
https://doi.org/10.1109/TPAMI.2019.2938758
https://doi.org/10.1186/s13007-018-0366-8
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-834938 February 5, 2022 Time: 15:14 # 13

Zhang et al. Instance Segmentation of Wheat Spikes

He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). “Mask R-CNN,” in
Procedings of the 2017 IEEE International Conference on Computer Vision
(ICCV), (Piscataway, NJ: IEEE), 2980–2988.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Spatial pyramid pooling in deep
convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach.
Intellig. 37, 1904–1916. doi: 10.1109/TPAMI.2015.2389824

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), (Piscataway, NJ: IEEE), 770–778.

Khaki, S., Wang, L., and Archontoulis, S. (2020). A CNN-RNN framework for crop
yield prediction. Front. Plant Sci. 10:1750. doi: 10.3389/fpls.2019.01750

Kovalchuk, N., Laga, H., Cai, J., Kumar, P., Parent, B., Lu, Z., et al. (2017).
Phenotyping of plants in competitive but controlled environments: a study
of drought response in transgenic wheat. Funct. Plant Biol. 44, 290–301. doi:
10.1071/FP16202

Li, X., Liu, Z., Luo, P., Loy, C. C., and Tang, X. (2017). “Not all pixels are equal:
difficulty-aware semantic segmentation via deep layer cascade,” in Proceedings
of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), (Piscataway, NJ: IEEE), 6459–6468.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).
“Microsoft COCO: common objects in context,” in Computer Vision – ECCV
2014, eds D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars (Berlin: Springer
International Publishing), 740–755. doi: 10.1089/big.2021.0262

Ma, J., Li, Y., Liu, H., Du, K., Zheng, F., Wu, Y., et al. (2020). Improving
segmentation accuracy for ears of winter wheat at flowering stage by semantic
segmentation. Comput. Electron. Agric. 176:105662. doi: 10.1016/j.compag.
2020.105662

Misra, T., Arora, A., Marwaha, S., Chinnusamy, V., Rao, A., Jain, R., et al. (2020).
SpikeSegNet-a deep learning approach utilizing encoder-decoder network with
hourglass for spike segmentation and counting in wheat plant from visual
imaging. Plant Methods 16:40. doi: 10.1186/s13007-020-00582-9

Ni, C., Wang, D., Vinson, R., Holmes, M., and Tao, Y. (2019). Automatic inspection
machine for maize kernels based on deep convolutional neural networks.
Biosyst. Eng. 178, 131–144. doi: 10.1016/j.biosystemseng.2018.11.010

Pont-Tuset, J., Arbeláez, P., Barron, T., Marques, F., and Malik, J. (2017).
Multiscale combinatorial grouping for image segmentation and object proposal
generation. IEEE Trans. Pattern Anal. Mach. Intellig. 39, 128–140. doi: 10.1109/
TPAMI.2016.2537320

Pound, M., Atkinson, J., Wells, D., Pridmore, T., and French, A. (2017). Deep
learning for multi-task plant phenotyping. bioRxiv [Preprint]. doi: 10.1101/
204552

Qiongyan, L., Cai, J., Berger, B., Okamoto, M., and Miklavcic, S. J. (2017). Detecting
spikes of wheat plants using neural networks with Laws texture energy. Plant
Methods 13:83. doi: 10.1186/s13007-017-0231-1

Qiu, R., Yang, C., Moghimi, A., Zhang, M., Steffenson, B., and Hirsch, C. (2019).
Detection of fusarium head blight in wheat using a deep neural network and
color imaging. Remote Sens. 11:2658. doi: 10.3390/rs11222658

Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-CNN: towards real-
time object detection with region proposal networks. IEEE Trans. Pattern Anal.
Mach. Intellig. 39, 1137–1149. doi: 10.1109/TPAMI.2016.2577031

Rosenfeld, A., and Thurston, M. (1971). Edge and curve detection for visual scene
analysis. IEEE Trans. Comput. 20, 562–569. doi: 10.1109/T-C.1971.223290

Rossi, L., Karimi, A., and Prati, A. (2020). “A novel region of interest extraction
layer for instance segmentation,” in Proceedings of the 2020 25th International
Conference on Pattern Recognition (ICPR), (Piscataway, NJ: IEEE).

Russell, B. C., Torralba, A., Murphy, K. P., and Freeman, W. T. (2008). LabelMe:
a database and web-based tool for image annotation. Int. J. Comput. Vis. 77,
157–173. doi: 10.1007/s11263-007-0090-8

Sadeghi-Tehran, P., Virlet, N., Ampe, E., Reyns, P., and Hawkesford, M. (2019).
DeepCount: in-field automatic quantification of wheat spikes using simple
linear iterative clustering and deep convolutional neural networks. Front. Plant
Sci. 10:1176. doi: 10.3389/fpls.2019.01176

Senthilkumar, T., Jayas, D. S., White, N. D. G., Fields, P. G., and Gräfenhan, T.
(2017). Detection of ochratoxin A contamination in stored wheat using near-
infrared hyperspectral imaging. Infrared Phys. Technol. 81, 228–235. doi: 10.
1016/j.infrared.2017.01.015

Shen, Y., Yin, Y., Li, B., Zhao, C., and Li, G. (2021). Detection of impurities in wheat
using terahertz spectral imaging and convolutional neural networks. Comput.
Electron. Agric. 181:105931. doi: 10.1016/j.compag.2020.105931

Su, W.-H., Zhang, J., Yang, C., Page, R., Szinyei, T., Hirsch, C., et al. (2021).
Automatic evaluation of wheat resistance to fusarium head blight using dual
mask-RCNN deep learning frameworks in computer vision. Remote Sens. 13,
1–21. doi: 10.3390/rs13010026

Sun, J., Di, L., Sun, Z., Shen, Y., and Lai, Z. (2019). County-level soybean yield
prediction using deep CNN-LSTM model. Sensors 19:E4363. doi: 10.3390/
s19204363

Tan, C., Zhang, P., Zhang, Y., Zhou, X., Wang, Z., Ying, D., et al. (2020). Rapid
recognition of field-grown wheat spikes based on a superpixel segmentation
algorithm using digital images. Front. Plant Sci. 11:259. doi: 10.3389/fpls.2020.
00259

Wang, Y., Qin, Y., and Cui, J. (2021). Occlusion robust wheat ear counting
algorithm based on deep learning. Front. Plant Sci. 12:645899. doi: 10.3389/fpls.
2021.645899

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). “Aggregated residual
transformations for deep neural networks,” in Proceedings of the 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), (Piscataway,
NJ: IEEE), 5987–5995.

Xu, X., Li, H., Yin, F., Xi, L., Qiao, H., Ma, Z., et al. (2020). Wheat ear counting
using K-means clustering segmentation and convolutional neural network.
Plant Methods 16:106. doi: 10.1186/s13007-020-00648-8

Yang, Q., Shi, L., and Lin, L. (2019). “Plot-scale rice grain yield estimation using
UAV-based remotely sensed images via CNN with time-invariant deep features
decomposition,” in Proceedings of the IGARSS 2019 - 2019 IEEE International
Geoscience and Remote Sensing Symposium, (Piscataway, NJ: IEEE),
7180–7183.

Zhang, D., Wang, D., Gu, C., Jin, N., Zhao, H., Chen, G., et al. (2019).
Using neural network to identify the severity of wheat fusarium head
blight in the field environment. Remote Sens. 11:2375. doi: 10.3390/rs112
02375

Zhang, J., Ma, Q., Cui, X., Guo, H., Wang, K., and Zhu, D. (2020). High-
throughput corn ear screening method based on two-pathway convolutional
neural network. Comput. Electron. Agric. 175:105525. doi: 10.1016/j.compag.
2020.105525

Zhuang, S., Wang, P., Jiang, B., and Li, M. (2020). Learned features of leaf
phenotype to monitor maize water status in the fields. Comput. Electron. Agric.
172:105347. doi: 10.1016/j.compag.2020.105347

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhang, Min, Steffenson, Su, Hirsch, Anderson, Wei, Ma and Yang.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 13 February 2022 | Volume 13 | Article 834938

https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.3389/fpls.2019.01750
https://doi.org/10.1071/FP16202
https://doi.org/10.1071/FP16202
https://doi.org/10.1089/big.2021.0262
https://doi.org/10.1016/j.compag.2020.105662
https://doi.org/10.1016/j.compag.2020.105662
https://doi.org/10.1186/s13007-020-00582-9
https://doi.org/10.1016/j.biosystemseng.2018.11.010
https://doi.org/10.1109/TPAMI.2016.2537320
https://doi.org/10.1109/TPAMI.2016.2537320
https://doi.org/10.1101/204552
https://doi.org/10.1101/204552
https://doi.org/10.1186/s13007-017-0231-1
https://doi.org/10.3390/rs11222658
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/T-C.1971.223290
https://doi.org/10.1007/s11263-007-0090-8
https://doi.org/10.3389/fpls.2019.01176
https://doi.org/10.1016/j.infrared.2017.01.015
https://doi.org/10.1016/j.infrared.2017.01.015
https://doi.org/10.1016/j.compag.2020.105931
https://doi.org/10.3390/rs13010026
https://doi.org/10.3390/s19204363
https://doi.org/10.3390/s19204363
https://doi.org/10.3389/fpls.2020.00259
https://doi.org/10.3389/fpls.2020.00259
https://doi.org/10.3389/fpls.2021.645899
https://doi.org/10.3389/fpls.2021.645899
https://doi.org/10.1186/s13007-020-00648-8
https://doi.org/10.3390/rs11202375
https://doi.org/10.3390/rs11202375
https://doi.org/10.1016/j.compag.2020.105525
https://doi.org/10.1016/j.compag.2020.105525
https://doi.org/10.1016/j.compag.2020.105347
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Wheat-Net: An Automatic Dense Wheat Spike Segmentation Method Based on an Optimized Hybrid Task Cascade Model
	Introduction
	Materials and Methods
	Data Collection
	Methods of Wheat Instance Segmentation
	Architecture of Wheat-Net
	Optimization of Wheat-Net

	Evaluation Metric

	Results
	Ablation Study
	Comparative Evaluation

	Discussion
	Analysis of Experimental Error
	Evaluation of Wheat-Net on Barley Spike Detection
	Comparison of Wheat Detection Methods

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


