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Since the assessment of wheat diseases (e.g., leaf rust and tan spot) via visual
observation is subjective and inefficient, this study focused on developing an automatic,
objective, and efficient diagnosis approach. For each plant, color, and color-infrared
(CIR) images were collected in a paired mode. An automatic approach based on the
image processing technique was developed to crop the paired images to have the
same region, after which a developed semiautomatic webtool was used to expedite
the dataset creation. The webtool generated the dataset from either image and
automatically built the corresponding dataset from the other image. Each image was
manually categorized into one of the three groups: control (disease-free), disease light,
and disease severity. After the image segmentation, handcrafted features (HFs) were
extracted from each format of images, and disease diagnosis results demonstrated
that the parallel feature fusion had higher accuracy over features from either type of
image. Performance of deep features (DFs) extracted through different deep learning
(DL) models (e.g., AlexNet, VGG16, ResNet101, GoogLeNet, and Xception) on wheat
disease detection was compared, and those extracted by ResNet101 resulted in the
highest accuracy, perhaps because deep layers extracted finer features. In addition,
parallel deep feature fusion generated a higher accuracy over DFs from a single-source
image. DFs outperformed HFs in wheat disease detection, and the DFs coupled with
parallel feature fusion resulted in diagnosis accuracies of 75, 84, and 71% for leaf rust,
tan spot, and leaf rust + tan spot, respectively. The methodology developed directly
for greenhouse applications, to be used by plant pathologists, breeders, and other
users, can be extended to field applications with future tests on field data and model
fine-tuning.
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HIGHLIGHTS

- Parallel feature fusion of different types of images improved
the accuracy of wheat disease diagnosis.

- Deep features outperformed handcrafted features in wheat
disease detection.

- Deep features extracted by deep-layered models produced
higher accuracy.

- A free semiautomatic webtool for expedited paired dataset
creation was developed and made available.

INTRODUCTION

Wheat (Triticum aestivum L.) is one of the world’s most
productive and important crops, which plays a crucial role
in food security (Curtis and Halford, 2014; Shewry and Hey,
2015). Currently, wheat production faces a number of challenges,
among which diseases are ranked among the top (Bolton et al.,
2008). In addition to reducing yield, wheat diseases could lower
the grain quality or even result in grain contamination due to
toxins produced by pathogens (Lu et al., 2017; Qiu et al., 2019).
Leaf rust and tan spot are common diseases that affect wheat
production in the United States and worldwide, which can cause
wheat yield losses of 10–40% (De Wolf, 2008; Sharma et al., 2016).

The two main approaches to manage wheat diseases
are breeding disease-resistant varieties and through chemical
applications (Kolmer, 1996; Ransom and McMullen, 2008; Figlan
et al., 2020). For both approaches, researchers conduct extensive
greenhouse work before transferring the most promising
materials or treatments to the field for further evaluation. Hence,
it is critical for researchers to obtain accurate information on the
disease conditions in the greenhouse (Abdulridha et al., 2020).
The current approach of wheat disease diagnosis relies on visual
observations by well-trained graders. This approach potentially
suffers from subjectivity (grader bias), inefficiency (slow speed of
observation), inter-grader variation (inconsistent results among
different graders), and fatigue (tiresome operation) (Lehmann
et al., 2015). Therefore, an automated, efficient, and objective
approach to accurately and quickly diagnose wheat diseases is
needed (Luvisi et al., 2016).

Leaf rust is characterized by the presence of rust-colored
pustules erupting at the crop leaves (Salgado et al., 2016).
Tan spot symptoms are oval or diamond-shaped to elongated
irregular spots on the leaf, and these spots enlarge and turn
tan with a yellow border and a small dark brown spot near the
center (McMullen and Adhikari, 2009). Many studies have taken
advantage of these visible symptoms and used color [red, green,
blue (RGB)] images, coupled with different classifiers, for disease
detection (Johannes et al., 2017; Lu et al., 2017; Saleem et al.,
2019; Su et al., 2020). Color images are the dominant type of
images used for crop disease detection because of their low cost
and easiness to acquire and handle (Gaikwad and Musande, 2017;
Barbedo, 2018; Qiu et al., 2019; Wiesner-Hanks et al., 2019). In
addition to color images, color-infrared (CIR) images have been
extensively used in crop disease detection (Lehmann et al., 2015).
Different from the color images consisting of RGB, CIR images

include three bands, namely, near-infrared (NIR), red, and green
bands. The CIR images take advantage of the fact that disease
lesions (chlorotic or necrotic) cause biochemical changes on the
plant tissue, which can significantly affect the energy reflection
on NIR of the electromagnetic spectrum (Roberts et al., 1993;
Franke and Menz, 2007; Azadbakht et al., 2019). Healthy plants
on the CIR images usually display high reflectance on the NIR
band and low reflectance on the red band, while an opposite band
reflectance pattern is observed on the unhealthy plants (Carlson
and Ripley, 1997). Based on this principle, vegetation indices can
be calculated from CIR images. Among them, the Normalized
Difference Vegetation Index (NDVI) has been extensively used
for monitoring the crop health condition (Bravo et al., 2003;
Franke and Menz, 2007; Su et al., 2018; Yang, 2020). CIR
images were utilized for wheat and cotton disease detection, with
practical application of the results (Bajwa and Tian, 2001, 2002;
Moshou et al., 2004; Yang, 2020). Although both RGB and CIR
images have been extensively used for crop disease detection,
few studies were conducted to compare their performance on
wheat disease detection and further improve the methodology
and detection accuracy.

After collecting color or CIR images, handcrafted features
(HFs), which are extracted from images using algorithms to
represent the physical characteristics of the plants, would serve
as the basis for classification purposes (Zhang et al., 2016, 2020b;
Jahan et al., 2020). Numerous studies associated with crop disease
diagnosis have been carried out based on the HFs, including
vegetation indices (Ashourloo et al., 2014; Chen et al., 2018),
texture (Wood et al., 2012; Sun et al., 2019; Wan et al., 2020),
and color (Patil and Kumar, 2011; Gaikwad and Musande, 2017).
The HFs-based classification requires domain knowledge on
feature selection, as the classification accuracy mainly determines
whether the selected features have a good representation of the
diseases (Zhang et al., 2020a). One approach to get rid of the
domain knowledge required by the HFs-based classification is
through deep learning (DL).

During the last decade, DL has experienced significant
progress regarding image classification, with the convolutional
neural networks (CNNs) having been the core (Zhang et al.,
2020b). The CNNs enabled the implementation of algorithms
for automatic feature extraction, which does not require
domain knowledge. Very recently, deep features (DFs; features
automatically extracted by CNNs) have been used in crop disease
detection, and the literature in this field is limited. Lu et al.
(2017) extracted DFs and applied them to discriminate wheat
diseases, such as leaf blotch, smut, stripe rust, and black chaff,
but the algorithms’ performance on disease severity diagnosis was
not reported. In addition, DFs have been used for the detection
of apple scab disease (Khan et al., 2018) and rice leaf disease
(Sethy et al., 2020). However, few studies have reported the
application of DFs to differentiate and assess the severity of
wheat leaf rust and tan spot diseases. Furthermore, the diagnosis
accuracies based on selected features (HFs and DFs), which
influence classification performance, were unavailable.

Features (usually from a single-source image) were extracted
and then fed into classifiers for classification (Yang et al., 2003;
Sethy et al., 2020). Features extracted from color images were
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used to detect tomato leaf diseases (Patil and Kumar, 2011) and
corn diseases (Wiesner-Hanks et al., 2019), while CIR images
were used for assessing cotton rot disease (Yang, 2020). Since
a certain type of image might only provide partial information
to aid plant diseases classification, researchers (Bulanon et al.,
2009; Castanedo, 2013) had been experimenting with data fusion
techniques by combining features from different types of images
to improve the model accuracy. Color image blended with
NIR image detected the freshness level of food products and
demonstrated an improved classification accuracy over either
single-source image (Huang et al., 2016). Integration of color
and thermal images improved the field orange detection accuracy
(Bulanon et al., 2009). In the color images, oranges were not
well differentiated from leaves because of similarities between
them. However, they had different temperatures, which were
obtained via thermal images. Thus, the fusion of the features
from color and thermal images led to a higher accuracy. Even
though the use of data fusion techniques has resulted in higher
classification accuracy, few studies have fused color and CIR
images information for wheat disease diagnosis.

With an overall goal of developing and implementing an
automated solution to assess greenhouse wheat diseases (e.g., leaf
rust, tan spot, and leaf rust + tan spot), this study proposes an
innovative methodology of using deep features and their parallel
fusion from color and CIR images. Specific objectives of this study
were: (1) to compare the performance of features from color and
CIR images, and their parallel fusion in wheat disease diagnosis;
(2) to compare the accuracies of DFs extracted from different DL
models on wheat disease diagnosis and select the one generating
the highest accuracy; and (3) to compare the accuracies of HFs
and DFs in wheat disease detection.

MATERIALS AND METHODS

The various process steps followed in this study to improve
wheat disease diagnosis accuracy using feature fusion and DFs
are illustrated in Figure 1. After collecting color and CIR
images for the same plants in a paired mode, the region
of interest (ROI) was automatically determined using image
processing techniques. We developed a webtool to expedite
the dataset generation—while manually cropping either type of
images (color or CIR), the corresponding image of the other
type would be generated automatically (paired dataset). After
generating the dataset, features (HFs and DFs) extracted from
single-source images (color or CIR) and their fusion were fed
into a support vector machine (SVM) for accuracy comparison.
Finally, the methodology yielding the highest accuracy would
be recommended for future application. The following sections
describe the processes in detail.

Image Acquisition
The experiment was conducted at the North Dakota State
University, Agricultural Experiment Station Research
Greenhouse Complex (Fargo, ND, United States). Since the
greenhouse is enclosed with a transparent roof and windows, the
crop growing light conditions can be considered as semi-natural

illumination. Two wheat varieties (Prosper for leaf rust disease
and Jerry for tan spot disease) were planted in pots (Deepot D40:
6.4 × 25.4 cm; Stuewe and Sons, Inc., Tangent, Oregon). For the
two disease groups, crops were properly inoculated and then kept
in the incubation chamber for 24 h for expedited development of
the diseases. The control group was kept in another incubation
chamber with the same conditions and time as the disease group.
After inoculation, the two diseases required different amounts of
time to display symptoms—about 10 days for leaf rust and 6 days
for a tan spot. Immediately after the initial observation of disease
symptoms, the data collection started and continued for the next
12 consecutive days, with images being collected between 10:00
a.m. and 12:00 p.m.

Two off-the-shelf cameras were used for data collection—
a Canon EOS Rebel T7i camera (Ota City, Tokyo, Japan) for
color images (6,000 × 4,000 pixel resolution) and a multi-
band camera (LDP LLC, Carlstadt, NJ, United States) for CIR
images (5,184 × 3,456 pixel resolution) (Figure 2). A frame
(60× 60× 90 cm) built to facilitate image collection was used as
a reference for image collection for both cameras—the diameter
of the hole at the top sheet of the frame was a little wider than
the diameter of the camera lens, allowing them to go through to
capture the images. A rack that could hold 8 pots was placed at
the center of the frame bottom for the collection of both color
and CIR images, after which the rack was replaced. That process
was repeated until all plants were imaged. There were 10 racks for
each variety of plants, for a total of 160 pots of plants (8 pots× 10
racks× 2 varieties).

Color and Color-Infrared Image Datasets
Creation
Automatic Raw Image Cropping
After collecting color and CIR images, the next step was to
prepare the paired datasets (the same portion of plants shown
in both color and CIR images). A critical requirement during
the paired dataset preparation was to have the color image to
be corresponding to the CIR image. Since the two cameras had
different field of views and resolutions, as well as the image
collection positions were not exactly the same for the two
cameras, the views of the two images were different, as shown
in Figures 2C,E. It is thus necessary to keep the views of the
two images the same for further paired dataset generation by
proper cropping. Previous research used a manual approach
for image cropping (Bulanon et al., 2009), which is inefficient
and inaccurate. In this study, an automatic raw image cropping
approach was developed and applied, which used the aluminum
square base of the experimental frame as a reference. The frame
was first detected using color thresholding, and then, the mask
was generated (after noise removal) for each type of image. Only
the image section within the square base was kept, and detailed
procedures and parameters for image processing are shown in
Figure 3.

Webtool for Paired Image Dataset Creation
After the paired images were automatically cropped, they covered
the same view. While creating the paired dataset, it required
certain plant regions to be present in the paired color and CIR
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FIGURE 1 | Overall process flowchart of wheat disease diagnosis. ROI, CIR, DL, HFs, DFs, and SVM represent the region of interest, color-infrared, deep learning,
handcrafted features, deep features, and support vector machine, respectively.

FIGURE 2 | Experimental setup for image collection. A fabricated frame (A; 60 × 60 × 90 cm) to hold cameras on the top at the same locations and hold rack of
pots at the bottom; a color camera (B) with a sample collected image (C); and a color-infrared camera (D) with a sample collected image (E).

images. Manually processing the images to create the paired
dataset presents many issues: (i) manually cropping both the
color image and the CIR image can be a laborious process; (ii)

users’ manual switching between the two images is inefficient;
and (iii) manual cropping method is inaccurate since it is very
difficult to replicate the same ROI onto the corresponding image.

Frontiers in Plant Science | www.frontiersin.org 4 March 2022 | Volume 13 | Article 834447

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-834447 March 5, 2022 Time: 13:30 # 5

Zhang et al. Data Fusion for Wheat Disease

FIGURE 3 | Automatic procedures of using image process techniques to generate the corresponding two types of images with the same view. NIR, near-infrared; R,
red; G, green; B, blue.

To address these issues, we developed a webtool that can expedite
the workflow and improve the process accuracy. The graphical
user interface (GUI) of the developed webtool is shown in
Figure 4A and can be accessed via this webpage.1 Following the
GUI instructions, users needed to upload a pair of images (auto-
cropped color and CIR image; Figure 3). The webtool would then
automatically resize the two images to make their dimensions
similar (image size; Figure 4B). Then, users can draw the ROI
(any closed polygonal or irregular shape) at the top image (red
irregular shape in Figure 4C), after which the corresponding
image of the other type would be generated and saved (a sample
pair shown in Figure 4D). This free webtool can be accessed by
users for a similar image processing workflow.

Visual Disease Classification
After the image dataset for each type of disease was generated,
each pair of the image was visually classified into one of
the three following classes: control (disease-free), disease light
(light infection), and disease severe (severe infection). The
standards used for classifying leaf rust disease grade are shown
in Supplementary Appendix I: If no disease symbol was shown,
it was classified as control; if the rust severity level was below 10
of the modified Cobb Scale B, it was classified as disease light;
otherwise, it was classified as disease severe (Peterson et al.,
1948; Gebremariam et al., 2016). Samples of visually graded
leaf rust diseases with different severity levels are shown in
Supplementary Appendix I. For the tan spot visual grading,
the following protocols were followed: If no disease symbol was
shown, it was classified as control; if the disease area (discolored
portion) was less than 30% of the total leaf area, it was classified as
disease light; otherwise, it was classified as disease severe. Samples

1https://github.com/jithin8mathew/RGB_CIR_imageCropping_tool

of visually graded tan spot diseases with different severity levels
are shown in Supplementary Appendix II. Since visual disease
classification requires domain knowledge, in this study, three
individual graders were trained by professional plant pathologists
and then voted for the classification of each image. For each
image, the grade with more than two votes was assigned as the
final grade. There were no cases that the three graders assigned
three different grades for the same image.

Segmentation of Color and Color-Infrared Images
After creating and grading the datasets, the segmentation of the
plant from the noisy background, including fertilizer, peat, plastic
grid, and aluminum frame, was performed. Color images were
first converted to Lab (L for lightness and a and b for the color
dimensions) format, and then, proper thresholding was applied
to generate a binary image. After removing small area noises, a
binary mask was generated, which was applied to the original
image to obtain the segmented color image (Figure 5).

Since the paired color and CIR images are of the same size, the
easiest approach to segment the CIR image was to directly apply
the binary mask generated during the color image segmentation
to the corresponding CIR image. However, considering that most
studies used the raw CIR images for disease detection (Bajwa
and Tian, 2002; Yang, 2020) and few studies reported CIR image
segmentation methods, our interest was to develop a general
approach for CIR image segmentation that could be referred by
other researchers. After preliminarily testing several approaches,
the K-means clustering algorithm was selected. A key parameter
while applying this algorithm was the selection of proper number
of clusters. In this study, “3” was applied as pixels can be
categorized into three clusters, namely, plant, background, and
noise (Figure 5). Since three images (clusters) were randomly
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FIGURE 4 | Introduction to the webtool developed to expedite the paired dataset generation accurately. (A) Graphical user interface, (B) uploaded a pair of images
with different formats (color and color-infrared), (C) manual image cropping on color image (red irregular shape), and (D) sample of a paired dataset.

FIGURE 5 | Image segmentation procedures of the color and color-infrared paired images. ∗ refers to the auto-generated image from the webtool (Figure 4).

generated after implementing the algorithm, it was necessary to
develop a solution that would automatically select the proper
cluster with plants (not background or noise). In the NIR
channel, plants had a stronger signal over the background and
noise, which made it a good parameter to differentiate the plant
cluster from noise and background clusters. The average intensity
for the NIR channel of each image was calculated, and the image
with the highest value was selected as the plant cluster. After
small objects as noises were removed, the leaf in the CIR image

was segmented, and then, the dataset was prepared for further
analysis. The dataset size is shown in Table 1.

Handcrafted Features Extraction
Based on domain knowledge and reported results (Lu and Lu,
2018; Wang et al., 2019), color, vegetation fraction, and texture
were the extracted HFs features in this study. Although both color
and CIR images contain red and green channels, based on our
preliminary comparisons of the same channel images from two
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TABLE 1 | Datasets (region of interest) of paired images and their sizes.

Leaf rust disease dataset Number of
images

Tan spot
disease
dataset

Number of
images

Free color 226 Free color 237

Free color-infrared 226 Free
color-infrared

237

Light color 171 Light color 182

Light color-infrared 171 Light
color-infrared

182

Severe color 200 Severe color 200

Severe color-infrared 200 Severe
color-infrared

200

cameras, they were not exactly the same (probably due to slight
differences in band center and width of the two cameras).

For the color images in RGB format, they were also converted
into HSI (hue, saturation, intensity) and Lab formats, and the
normalized average intensity of each channel was calculated (a
total of 9 HFs). For the CIR images, since the original image
consists of 3 channels (e.g., R, G, and NIR), the normalized
average intensity of each channel was calculated. Then, the CIR
image was converted into HSI and Lab formats, with another 6
color features obtained (a total of 9 HFs).

After extracting the color features, the vegetation fraction
features were extracted. For the color image, it included
Normalized Difference Index (NDI), Excess Green (E × G),
Excess Red (E × R), Color Index of Vegetation Extraction
(CIVE), Modified Excess Green (ME × G), and Normalized
Excess Green (NE × G). For the CIR image, due to the lack
of blue channel information, the features of E × G, CIVE,
ME × G, and NE × G could not be extracted. However, with
the NIR channel information, NDVI and Green Normalized
Difference Vegetation Index (GNDVI) features were obtained.
For the texture features, they were extracted using the gray-level
co-occurrence matrix (GLCM), including correlation, contrast,
dissimilarity, energy, entropy, and homogeneity. Details of all the
features extracted, as well as their calculation formulas, have been
described in Wood et al. (2012); Wang et al. (2019), and Aballa
et al. (2020).

Deep Features Extraction
In contrast to HFs that require domain knowledge to decide
which type of features to extract, the extraction of DFs is domain
knowledge-free. Although different trained CNNs can be used to
extract DFs, it was unknown which one could extract appropriate
DFs that can better represent crop diseases. Hence, several DL
models, including AlexNet, VGG16, ResNet101, GoogLeNet, and
Xception, were used to extract DFs, which were then fed into a
classifier to select the one with the highest accuracy. Since model
training is time-consuming, this study took advantage of these
trained models for DFs extraction (Aballa et al., 2020). Since
each model has many deep layers (consisting of CNNs and fully
connected layers), it was necessary to decide which layer to use for
DFs extraction. Since previous studies demonstrated that shallow
layers mainly reserved spatial and general shape information

TABLE 2 | Information of deep learning models used for extracting deep features.

Model
information

AlexNet VGG16 ResNet101 GoogLeNet Xception

Number of deep
layers

8 16 101 22 71

Feature pooling
layer name

drop7 drop7 pool5 pool5-
drop_7 × 7_s1

avg_pool

Number of features
extracted

4,096 4,096 2,048 1,024 2,048

(might not be significantly related to disease detection) (Jiang
and Li, 2020), this study extracted DFs using the layer before the
last fully connected layer of each model. The layer name and the
number of extracted DFs for each model are presented in Table 2.

Parallel Feature Fusion
Many data fusion techniques have been used to improve model
accuracy. One approach is to first register images from different
sources and then fuse them using the Laplacian Pyramid
Transform (LPT) or Fuzzy Logic into one composite image
(Bulanon et al., 2009). Then, the extracted features from the
composite images are fed into classifiers. In another approach,
on a first step decisions based on different feature sets (from
different types of images) are made, after which the decisions are
reconciled or combined to generate a global decision (decision
fusion) (Peli et al., 1999; Yang et al., 2003). In yet another
approach, features from different types of images are fused
parallelly (concatenated) and then fed into classifiers (Yang
et al., 2003; Khan et al., 2018). In our case, preliminary tests
revealed that the first method resulted in a poor performance,
which was probably caused by the loss of color information
during the fusion process. Since the second approach has not
been extensively used and the performance is unavailable, we
decided to use the third method for its robustness and proved
performance, which included all the information from both types
of images (Khan et al., 2018).

Feature Selection and Classifier
The relevance of extracted features (HFs or DFs) for the
classification is unknown beforehand. Feeding irrelevant features
to the model would decrease the accuracy, as well as increase the
computation load. To select relevant features, ReliefF algorithm
was applied to calculate the weights of individual features
(Kononenko et al., 1997). The ReliefF algorithm uses K nearest
neighbors (KNN) for the weight calculation (the study used
k = 3). The higher the weight of a feature, the more relevant
it is to the classification. Since a negative weight indicates an
insignificant role, this study used only features with positive
weights for modeling.

A large number of classifiers have been used in addressing
classification issues, including SVM, neural network (NN),
random forest (RF), and KNN. Among these classifiers, an SVM
classifier (multi-class) (Aballa et al., 2020; Zhang et al., 2020a) was
selected because many studies have shown that it outperformed
others (Sajedi et al., 2019; Jahan et al., 2020). For the diagnosis
of different types of diseases (e.g., leaf rust, tan spot, and leaf
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rust + tan spot), the dataset was randomly partitioned into
training (80%) and testing (20%) for model development.

In this study, Python language (V3.8) was used to develop the
semiautomatic webtool (see text footnote 1) to assist paired image
dataset creation (Figure 4). For all other data processing (e.g.,
image segmentation, feature extraction, and model development
and execution), MATLAB R© 2019a (The Mathworks, Inc., Natick,
MA, United States) was used. A desktop computer was used for
data processing, which was configured with Windows 10 OS,
Intel(R) Core(TM) i7-8700 CPU, 32 GB RAM, Intel(R) UHD
Graphics 630, and 16 G GPU memory.

RESULTS AND DISCUSSION

Diagnosis Accuracies Based on
Handcrafted Features
Disease detection accuracies based on HFs from different types
of images (color and CIR) and their parallel fusion are shown
in Figure 6. For the statistical analysis and visualization of the
whole data, the effects of features from different types of images
for the same disease (Figure 6A) and the effects of disease type for
the features extracted from a certain type of image (Figure 6B)
are presented. For leaf rust and leaf rust + tan spot (Figure 6A)
disease diagnosis, the CIR (accuracy about 53%) did not perform
as satisfactorily as the color images (accuracy about 60%).
One possible reason was that the leaf rust disease’s symptoms
were relatively small in size, and the difference between the
diseased and healthy regions was unobvious of the CIR images.
This assumption is supported by the results regarding tan spot
disease, where the performance of CIR and color images was not
significantly different (Figure 6A), as the tan spot symptoms were
large and more obvious, hence identified with a better accuracy
(about 75%). Compared with the single-source features from CIR
or color images, for all the three types of diseases, the parallelly
fused features resulted in the highest accuracies. Since one type
of image can only represent partial information, the parallel
fused features from images collected by both cameras provided
more meaningful information and features that best described
the diseases. For the leaf rust, tan spot, and leaf rust + tan
spot, the accuracy improvement using parallelly fused features
over CIR image features was 21, 8, and 27%, respectively, and
over color image features was 9, 10, and 4%, respectively. Such
good accuracy improvements indicate the superiority of applying
parallel feature fusion techniques for disease diagnosis.

Regarding detection accuracy for different diseases
(Figure 6B) with the same type of features, it can be observed
that tan spot was consistently the disease detected with the
highest accuracy across the three types of features. The obvious
difference of the tan spot symptoms from the healthy portion of
the leaves and large area of discolored tissues might be the reason
for the more accurate detection. On the contrary, the symptoms
of leaf rust are usually small in discolored area (not significant).
The overall accuracy for the leaf rust + tan spot is a little higher
than that of the leaf rust alone, which is because the combined
dataset contained the tan spot disease sub-dataset as well. For the
CIR features, color features, and parallelly fused features, the tan

spot detection accuracies were 46, 28, and 31% higher over leaf
rust, respectively, and 47, 18, and 25% higher over leaf rust+ tan
spot, respectively.

The confusion matrices presented in Figure 7 provide
more detailed information on the classification/misclassification
results. For the leaf rust disease severity detection, the model had
difficulties in classifying the leaf rust light (light disease) correctly.
A total of 31 cases (8, 12, and 11 from Figures 7A–C, respectively)
of leaf rust light were misclassified as leaf rust control (disease-
free), and a total of 33 cases (10, 18, and 5 from Figures 7A–C,
respectively) of leaf rust light were miscategorized as leaf rust
severe. The light condition may have played a big role on those
results, making it very difficult to accurately assess the disease
occurrence and severity. Our findings further demonstrated
that disease detection on its early stages of development is
challenging, which is supported by previous literature reports
(Singh and Misra, 2017). For the tan spot disease detection, the
major misclassifications occurred as light disease predicted as
severe (30 cases; 12, 6, and 12 from Figures 7D–F, respectively).
The difficulties can further support the previous assessment
that it is a challenge to accurately detect and assess severity
on its early stage of infection. The results (Figures 7G–I)
showed a good performance in identifying the disease type
(tan spot or leaf rust). For the CIR features, color features,
and parallelly fused features, the disease misclassification rates
(leaf rust classified as a tan spot or tan spot classified as leaf
rust) were 19% (28 cases in Figure 7G), 11% (16 cases in
Figure 7H), and 9% (14 cases in Figure 7I), respectively. Thus,
the parallelly fused features have a more satisfactory performance
in disease type identification. This piece of information is critical
for researchers and farmers to select proper chemicals for
disease management.

Model Selection for Deep Features
Extraction
The diagnosis accuracies based on DFs from five DL models are
shown in Figure 8. For all the 15 settings (5 DL models× 3 types
of diseases), the fused features resulted in the highest accuracy
in eight settings (e.g., AlexNet TS and LR + TS, GoogLeNet TS
and LR + TS, ResNet101 LR + TS, VGG16 TS, and Xception
TS and LR + TS, where TS and LR are tan spot and leaf rust,
respectively), while for the other seven settings, fused features
together with color image features lead to the highest accuracies.
The results indicate that, similar to the HFs, parallelly fused deep
features could increase the model accuracy over deep features
from a single type of image.

To assist decision-making on which DL model should be
selected for DFs extraction, the experimental results of Figure 8
were rearranged as shown in Figure 9 for better comparison
of different models and statistical analysis. In each of the
nine settings (3 diseases × 3 types of features), DFs extracted
by ResNet101 consistently resulted in the highest accuracy
(letter a in all 9 settings). The high diagnosis accuracy was
due to the extracted features that were good representations
of the crop diseases. A potential reason that the DFs by
ResNet101 outperformed the DFs extracted by AlexNet, VGG16,
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FIGURE 6 | Accuracy performance of features from color and color-infrared image, and their parallel fusion on leaf rust (LR), tan spot (TS), and LR + TS (two
diseases combination) detection in terms of different image types (A) and diseases (B). Whiskers on bars represent two standard deviations calculated from 20
replicates. Bars with different letters are significantly different by Tukey’s test at a significance level of 0.05.

FIGURE 7 | Confusion matrices of color-infrared (CIR) image features, color image features, and parallelly fused features on leaf rust (LR), tan spot (TS), and LR + TS
(their combination) disease detection based on handcrafted features. (A–I) Represent a subset of three confusion matrices for CIR image features, color image
features, and parallelly fused features on LR, TS, and LR + TS disease detection, respectively.

GoogLeNet, and Xception was because the ResNet101 has more
deep layers—ResNet101, AlexNet, VGG16, GoogLeNet, and
Xception consist of 101, 8, 16, 22, and 71 deep layers, respectively
(Table 1). With more layers, the extracted DFs could represent
more detailed (fine) information of the plant diseases, while
the features from shallow layers mainly reserved spatial and
general information (Jiang and Li, 2020). Hence, the ResNet101

should be used for DFs extraction to serve the purpose of wheat
disease diagnosis.

Since DFs extracted by ResNet101 would lead to the
highest diagnosis accuracy compared with other DL models,
its performance was further studied in the form of confusion
matrices to reveal the detailed classification/misclassification
results (Figure 10). For the leaf rust disease diagnosis, a majority
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FIGURE 8 | Performance of deep features (DFs) from different types of images and their parallel fusion on different wheat diseases detection. DFs were extracted by
five different models. CIR, color-infrared images; LR, leaf rust; TS, tan spot; and LR + TS, combined disease datasets (without the control datasets). Whiskers on
bars represent two standard deviations calculated from 20 replicates. Bars with different letters are significantly different by Tukey’s test at a 0.05 significance level.

FIGURE 9 | Accuracies of deep features (DFs) extracted by different deep learning models on different wheat disease diagnoses. Fusion means the parallelly fused
features of color-infrared (CIR) and color images. LR, leaf rust; TS, tan spot; and LR + TS, combined disease dataset (without the control datasets). Whiskers on bars
represent two standard deviations calculated from 20 replicates. Bars with different letters are significantly different by Tukey’s test at a significance level of 0.05.

of the misclassification cases occurred as the severe infection
cases predicted as light (33 cases consisting of 14, 13, and
6 cases from Figures 10A–C, respectively). The pattern of
misclassification was different from the HFs as mentioned in
Figure 7, where light infection cases were misclassified as severe
or free of infection. The different types of misclassification
indicate that the DFs represented the images differently from the
HFs. For the tan spot disease diagnosis, most misclassifications
that happened as severe infections were predicted as light
(34 cases consisting of 13, 10, and 11 from Figures 10D–F,
respectively). This type of misclassification was also different
from the HFs (Figure 7), supporting the previous assessment that
DFs represented the images differently from the HFs. The DF
had a satisfactory performance in distinguishing the combined
scenario of two diseases, and the misclassification ratios were only
6.6% (10 cases in Figure 10G), 5.3% (8 cases in Figure 10H), and
4.6% (7 cases in Figure 10I) for the CIR image DFs, color image
DFs, and the parallelly fused DFs, respectively.

Accuracy Comparison Between
Handcrafted and Deep Features
Results shown so far have demonstrated that parallel feature
fusion could improve the model accuracy for wheat disease
diagnosis for both HFs and DFs, and the DFs extracted by
ResNet101 resulted in higher accuracy over the other four
models, namely, AlexNet, GoogLeNet, VGG16, and Xception.
To make a better assessment of that, we did a side-by-side
comparison of HFs and DFs (extracted by ResNet101) on
the detection of diseases using the parallelly fused features

(Figure 11). For the leaf rust and leaf rust + tan spot disease
diagnosis, DFs resulted in higher accuracies of 19 and 8% over
HFs, respectively. A potential explanation for those results is that
the symptoms for leaf rust were not very obvious (could not be
manually selected), and DFs were able to extract fine features
that could better represent the diseases. For the tan spot disease
diagnosis, the accuracies by DFs were not significantly different
from HFs, which might be because the TS symptoms were clear
and obvious. Overall, it is recommended to use the DFs, instead of
HFs, for wheat disease detection, coupled with the parallel feature
fusion technique.

The accuracies of several wheat disease detection (e.g., smut,
leaf blotch, and black chaff) studies varied greatly from 50 to 99%
(Lu et al., 2017; Su et al., 2018, 2019; Wiesner-Hanks et al., 2019;
Abdulridha et al., 2020; Mi et al., 2020). From this study, the
recommended application of parallel fusion of CIR image DFs
and color image DFs extracted from ResNet 101 resulted in the
accuracies of 75, 84, and 72% for wheat leaf rust, tan spot, and leaf
rust + tan spot disease detection, respectively (Figure 11). Due
to the differences in the datasets applied and models employed
in this study as compared with other published studies, it is
nearly impossible to make a direct and objective comparison.
However, the accuracy of the methodologies by Chen et al.
(2018); Su et al. (2018), and Wiesner-Hanks et al. (2019) might
be improved by incorporating the outcomes of this research—
DFs (from ResNet101) coupled with parallel feature fusion for
diagnosis accuracy improvement.

This study developed the methodology specifically for
greenhouse applications. However, it also has the potential to
be applied for field use in real-time mode, which can help
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FIGURE 10 | Confusion matrices of color-infrared (CIR) image deep features (DFs), color image DFs, and their parallelly fused DFs on leaf rust (LR), tan spot (TS),
and LR + TS (their combination) disease detection. DFs extracted by ResNet101 and sub-figures (A–I) represent three confusion matrices of CIR HFs, color HFs,
and fusion for LR, TS, and LR + TS, respectively.
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FIGURE 11 | Comparison of handcrafted features (HFs) and deep features (DFs; extracted from ResNet101) on different wheat diseases detection with parallel
feature fusion. Whiskers on bars represent two standard deviations calculated from 20 replicates. Bars with different letters are significantly different by Tukey’s test at
a significance level of 0.05.
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breeders, plant scientists, and growers to obtain the wheat disease
conditions. Thus, the current methodology should be tested
using field data. Considering the variable lighting conditions
during infield use, a color calibration/adjustment procedure at
the beginning of the data process should be added to improve the
model’s robustness (Sunoj et al., 2018). Furthermore, a desktop
was used for the data process in this study, which should be
replaced by an embedded system for infield use. Thus, a trade-
off between model size, computation time, and model accuracy
should be made, instead of using one parameter (accuracy) to
judge the model performance.

CONCLUSION

A methodology for the diagnosis of leaf rust, tan spot, and leaf
rust+ tan spot diseases with handcrafted and deep features from
the color image, color-infrared (CIR) image, and their parallel
fusion along with SVM classifier was successfully developed and
compared. A webtool was developed, hosted (see text footnote
1), and used in this study for paired datasets (the same view
for color and CIR images) creation. Fused features (parallel
mode in this study obtained via concatenating) resulted in
a higher disease detection accuracy over the features from a
single type image (either color or CIR). It was found that
deep features (automatically selected by DL algorithms with
free domain knowledge) generated higher diagnosis accuracies
over handcrafted features (manually selected using domain
knowledge), due to extraction of fine features by DFs that would
be missed by HFs. In addition, while selecting DL models for
DFs extraction, it is recommended to use the efficient ResNet101
DL model generating more deep layers, as shallow features can
only reserve spatial and general information. The developed
methodology based on DFs and parallel feature fusion efficiently
detected wheat disease conditions with accuracies of 74, 84, and
72% for leaf rust, tan spot, and leaf rust + tan spot, respectively.
This methodology, which can be readily used in greenhouse
applications by plant pathologists, breeders, and other users,
presents a pathway toward the development of automatic and
objective wheat disease diagnosis applications. Furthermore, the
field application of the methodology can be achieved with further
tests of field data and fine-tuning of model parameters.

This study successfully and satisfactorily segmented color and
CIR images using the developed general algorithms. However,
the segmentation results between color and CIR images were
not compared. Future studies, such as comparing overlapping
ratio, should be conducted in this field. Furthermore, the
mask generated for segmentation color images should be
tested on the CIR image, and vice versa. This study took
advantage of ReliefF for the feature section, and under some

conditions, the elimination of features may not improve the
model accuracy. Therefore, future studies should compare the
model accuracy between the feature selection and non-selection.
This study mainly focuses on the model accuracy, and it lacks
a comprehensive comparison among different models, such as
training time and model size. Future research should compare the
models more comprehensively. This study took advantage of the
SVM as the classifier for its proven performance. Further studies
should be conducted to compare the performance of different
classifiers, such as neural network and random forest.
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