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Soil extracellular enzymes play an important role in microbial functions and soil nutrient 
cycling in the context of increasing N deposition globally. This is particularly important for 
Chinese fir (Cunninghamia lanceolata) forests because of the decline in soil fertility induced 
by successive rotation. In this study, we aimed to determine the effects of simulated N 
deposition (N30: 30 kg ha−2 year−1; N60: 60 kg ha−2 year−1) and phosphorus addition (P20: 
20 mg kg−1; P40: 40 mg kg−1) on the activity and stoichiometry of soil extracellular enzymes 
related to soil C, N, and P cycling in Chinese fir. The results showed that N addition alone 
increased the activity of soil β-1,4 glucosidase (BG) but decreased the activity of N-acetyl-
β-d-glucosidase (NAG) and leucine aminopeptidase (LAP). N addition increased the ratios 
of soil enzymes, C:N and C:P, alleviated microbial N-limitation, and aggravated microbial 
C-limitation. P addition alone increased enzyme activity, and P40 addition increased the 
ratio of BG to soil microbial biomass carbon (MBC), and (NAG + LAP):MBC activity ratio, 
thereby aggravating C restriction. N and P co-addition significantly affected soil extracellular 
enzyme activity and stoichiometry. For instance, BG activity and BG:MBC activity ratio 
increased significantly under the N30 + P40 treatment, which intensified C-limitation. Soil 
pH was the main factor influencing enzyme activity, and these variables were positively 
correlated. The stoichiometric relationships of enzyme reactions were coupled with soil 
pH, total nitrogen (TN), and available phosphorus (AP). Our results indicate that changes 
in soil characteristics induced by N and P inputs influence the activities of soil microorganisms 
and result in changes in microbial resource acquisition strategies. This study provides 
useful insights into the development of management strategies to improve the productivity 
of Chinese fir forests under scenarios of increasing N deposition.
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INTRODUCTION

In recent decades, nitrogen (N) deposition in the atmosphere 
has increased dramatically owing to the burning of fossil fuels 
and the extensive use of N-based fertilizers. Global atmospheric 
N deposition has been predicted to increase to 200 Tg N year−1 
by 2050 (Galloway et al., 2008; Moorhead et al., 2013). Excessive 
N deposition negatively affects the N cycle and balance (Vitousek 
et  al., 2010), influencing soil nutrient status, soil microbial 
diversity, and vegetation productivity (Ullah et  al., 2019; Song 
et  al., 2020). In addition, phosphorus (P) is one of the most 
important elements in nature and is involved in the synthesis 
of biological cell membranes and the activation of enzymes 
(Vance et  al., 2003). Soil P is easily chemically bound to 
aluminum (Al) and iron (Fe) oxides and hydroxides present 
in soil, which strongly inhibits its release from soils, resulting 
in low P utilization (Lin et  al., 2020). Dramatically increased 
N deposition may aggravate (Vitousek et al., 2010; Dong et al., 
2019) or alleviate (Li et  al., 2021a) soil P limitation, which 
can further influence plant growth and ecosystem carbon (C) 
uptake (Liang et  al., 2020; Song et  al., 2020).

Soil extracellular enzymes play a key role in microbial 
functions and soil nutrient cycling (Sinsabaugh et  al., 2005; 
Xu et  al., 2017) and are important indicators of microbial 
nutrient demand and organic matter decomposition (Caldwell, 
2005). These enzymes are directly involved in the transformation 
of soil substances as well as nutrient release (Kelley et  al., 
2011; Burns et al., 2013). For example, soil extracellular enzymes 
are involved in the degradation of nucleic acids, proteins, and 
phospholipids (Sinsabaugh et al., 2008). The soil enzymes β-1,4 
glucosidase (BG), β-d-cellobiohydrolase (CBH), and β-1,4 
xylosidase (βX) are involved in the C cycle, and leucine 
aminopeptidase (LAP) and N-acetyl-β-d glucosamine (NAG) 
contribute to the N cycle, whereas alkaline phosphatase (AKP) 
and acid phosphatase (ACP) are responsible for the P cycle 
(Caldwell, 2005; Sinsabaugh et  al., 2008). Notably, numerous 
studies have shown that soil nutrient availability is significantly 
correlated with enzyme activity (Zheng et al., 2015; Guan et al., 
2020; Bai et  al., 2021). For example, N fertilizers can promote 
soil respiration and hydrolytic enzyme activity but inhibit soil 
oxidase activity (Li et  al., 2018) and reduce the activity of 
phenoloxidase and peroxidase (Jian et  al., 2016). Increasing P 
fertilizer application can significantly reduce soil phosphatase 
activity (Zheng et al., 2015) and affects β-glucosidase, N-acetyl-
glucosaminidase, and acid and alkaline phosphomonoesterase 
activity (Wang et al., 2020). Therefore, soil extracellular enzyme 
activity (EEA) depends on the physicochemical properties of 
the soil (Burns et  al., 2013). A more detailed characterization 
of soil enzymes and their responses to N deposition is needed 
to understand the mechanisms of forest-soil feedbacks to increase 
N deposition globally.

Many studies of EEA (Aragón et  al., 2014; Hill et  al., 2018; 
Hu et  al., 2021) have examined the ecological stoichiometric 
relationships between soil enzymes (Sinsabaugh et  al., 2008; 
Xu et  al., 2021). Notably, EEA is related to microbial nutrient 
utilization and the availability of soil nutrients (Hill et  al., 
2012), which can be  used to explore key ecological processes 

for nutrient dynamics. The activities of different enzymes, such 
as BG, NAG, LAP, and ACP, are often used as indicators of 
C, N, and P acquisition (Sinsabaugh et  al., 2008; Peng and 
Wang, 2016; Chen et  al., 2018a). Furthermore, extracellular 
enzyme stoichiometry (EES) reflects the equilibrium between 
the microbial biomass and organic matter elemental composition 
of the soil (Sinsabaugh et  al., 2009; Sinsabaugh and Follstad, 
2012) and can indicate the nutrient utilization strategy of 
microorganisms (Hill et  al., 2012). For example, the BG:ACP 
activity ratio is related to soil P content and is negatively 
correlated with P availability (Allison and Vitousek, 2005), 
while the ratio of BG:(NAG + LAP) activity increases with soil 
available N (Guan et  al., 2020). Therefore, soil enzymes can 
mediate nutrient cycling between soils and plants and reflect 
environmental nutrient availability. Furthermore, studies of soil 
EES can contribute to a better understanding of how N deposition 
and P addition influence soil microbial demand for C, N, and 
P resources, providing insights into the influence of microbial 
mechanisms on nutrient cycling (Zhou et  al., 2017).

Chinese fir (Cunninghamia lanceolata) is a subtropical, fast-
growing timber species with the largest plantation area of 
artificial forests in China. However, due to successive rotation, 
these forests face a number of management problems including 
declines in productivity, soil fertility (Miao et  al., 2019), and 
biodiversity (Xu et  al., 2020). Previous studies have shown 
that these declines might be  related to the low soil nutrient 
availability (Ma et  al., 2007; Wu et  al., 2012). Most of the 
soils in the distribution area of the Chinese fir forest are 
P-deficient due to successive rotations (20–25 years for each 
Chinese fir rotation period; Wu et  al., 2011). Concurrently, 
the average N deposition in subtropical China has increased 
in recent decades. Increasing soil P deficiency and N excess 
have become the dominating factors that limit the high 
productivity in Chinese fir. As soil enzymes play a vital role 
in the decomposition of soil substances and nutrient cycling, 
the mechanism by which soil enzyme activity responds to soil 
nutrient limitation under scenarios of N deposition needs to 
be further explored. In this study, we focused on the stoichiometry 
of soil enzyme activity in Chinese fir forests under simulated 
N deposition and P addition. In addition to detecting patterns 
in soil enzyme activity, stoichiometry, and soil physicochemical 
properties, we  evaluated (1) the effects of N and P additions 
on the EEA ratios of various soil enzymes involved in C, N, 
and P cycling, and (2) the effects of N and P additions on 
the relative nutrient limitation of the soil. We sought to provide 
useful insights into the potential improvement of plantation 
productivity and management of Chinese fir forests under 
scenarios of increasing N deposition.

MATERIALS AND METHODS

Field Experiment
The experimental sites were established in Gaokan Village, Lin’an 
District, Hangzhou City (119°67′E, 30°21′N),  
Zhejiang Province, China, with an annual average precipitation 
of 1,420 mm and annual average temperature of 15.6°C  
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(Li et al., 2019). The local N deposition rate is 30.9 kg ha−2 year−1 
(Song et  al., 2015). A Chinese fir plantation was established 
here in 2007. The field experiments were conducted in January 
2017, as the average tree height was approximately 3 m and 
the average diameter at breast height (measured at 1.3 m above 
ground level) was 12–14 cm. Twenty-seven plots (3 × 3 m each) 
were selected with a distance of at least 6 m between each 
plot, and there was one C. lanceolata tree at the center of each 
plot. Each treatment was performed in three individual plots 
as three independent replicates as previously described (Liu 
et  al., 2019, 2021). Briefly, the plots were subject to a control 
treatment (no added N, N0, and no added P, P0, or N0 + P0) 
or eight different nutrient levels, as follows: no added N (N0), 
low N addition of 30 kg N ha−1 year−1 (N30), and high N addition 
of 60 kg N ha−1 year−1 (N60); no P addition (P0), low P addition 
of 20 mg P kg−1 (P20), and high P addition of 40 mg P kg−1 (P40); 
N30 with low or high P treatment (N30 + P20 and N30 + P40); 
and N60 treated with low or high P (N60 + P20 and N60 + P40).

In January 2017, after 30-cm deep plowing in each plot, 
calcium and magnesium phosphate fertilizers were sprayed 
uniformly to ensure that the soil available phosphorus (AP) 
concentration in the upper layer of the soil reached the required 
level (20 or 40 mg P kg−1). Between April 2017 and April 2020, 
to achieve the required N deposition level (30 or 
60 kg N ha−1  year−1), N fertilizers were evenly sprayed with 
dissolved NH4NO3 from the top of the trees in each plot at 
the beginning of each month, for a total of 36 equal applications. 
The trees in the control treatment were sprayed with the same 
volume of nitrogen-free water. All the plots were subject to 
the same environmental factors.

Field Sampling
Soil samples were collected in April 2020. In each plot, nine 
soil cores measuring 3 cm in diameter and at a depth of 25 cm 
were collected randomly from around the roots of a selected 
tree and were manually homogenized as the soil sample of the 
selected tree. Fresh soil samples were transported to the laboratory 
and sieved through a 2-mm mesh to remove coarse material 
before further analysis. Some of the soil samples were frozen 
at −20°C to analyze soil water content (SWC) and soil microbial 
biomass carbon (MBC). The other soil samples were air-dried 
at room temperature (22–28°C) for a week for the analysis of 
BG, NAG, LAP, and ACP enzyme activity and soil physicochemical 
properties, such as soil pH, soil available nitrogen (AN), soil 
AP, soil total nitrogen (TN), and total phosphorus (TP) content.

Soil Physiochemical Properties
Soil moisture content (SMC) was determined as the mass loss 
after drying the isolates at 105°C for 24 h (de Knegt and van 
den Brink, 1998). Soil pH was determined in a 1:2.5 (w/v) 
soil-to-water extract using a digital pH meter (FE20, Mettler 
Toledo, Switzerland). Soil AP was extracted using the diacid 
method and quantified using the molybdenum-antimony 
colorimetric method (Murphy and Riley, 1962). The concentration 
of AN was analyzed using the NaOH hydrolysis diffusion 
method (Xiao et  al., 2018). AP was analyzed using the 

molybdenum blue method (Watanabe and Olsen, 1965). Soil 
organic carbon (SOC), TP, and TN were determined using an 
elemental analyzer (ElementarVario EL III, Germany).

Microbial Biomass Carbon and Soil 
Enzyme Activity Analysis
Microbial biomass carbon was determined using the chloroform 
(CHCl3) fumigation extraction method (Brookes et  al., 1985; 
Vance et al., 1987). Soluble organic C was extracted with 0.5 M 
K2SO4 with a soil:solution ratio of 1:3 (w/v) before and after 
24 h of CHCl3 fumigation. After filtration with medium-speed 
quantitative filter paper, the extractable organic C in the soil 
extracts was analyzed using a TOC analyzer (Elementar Vario 
EL III, Germany). MBC was calculated as the difference in 
organic C concentrations between non-fumigated and fumigated 
soils, and an efficiency factor of 0.45 was used to correct for 
incomplete extraction.

Soil extracellular enzyme activity (BG, NAG, LAP, and 
ACP) was assayed using a colorimetric 96-well microtiter 
plate assay based on the increase or decrease in the substrate 
concentration (Tabatabai and Bremner, 1969; Cui et al., 2015). 
Briefly, a soil suspension was prepared by homogenizing 
0.02 g of naturally air-dried soil with 10 μl of toluene. 
Subsequently, 130 μl of 0.05 mM p-nitrophenyl-β-d-
glucopyranoside (for measuring BG) or 4-nitrophenol-β-N-
acetylglucosamine (for measuring NAG) was added to the 
soil suspension, and the same amount of distilled water was 
added to the control group. Thereafter, citrate phosphate 
buffer (pH = 6.0) was added and mixed with the solution. 
After soaking at 37°C for 1 h and water bathing at 90°C 
for 5 min, the solution was centrifuged for 10 min at 25°C. 
Subsequently, 130 μl of 0.1 mM Na2CO3 solution was added 
to the supernatant for 2 min. Fluorescence was measured 
using a microplate fluorometer (Spectramax 190, United States) 
at 400 nm. For LAP measurements, 0.05 g of air-dried soil 
was weighed into 2-ml centrifuge tubes and mixed with a 
pH 7.2 modified universal buffer (Tris-HCl). The indicator 
substrate, 0.05 mM leucyl p-nitroanilide, was then added to 
the reaction system, followed by 1 h incubation at 37°C. The 
homogenate was centrifuged at 8,000 × g for 10 min at 4°C, 
and the absorbance of the supernatant was measured at 405 nm.

ACP activity was determined by measuring the release of 
p-nitrophenol from p-nitrophenyl phosphate (PNPP) as described 
by Tabatabai and Bremner (1969). Briefly, 0.1 g of air-dried 
soil was weighed into 50 μl toluene and 0.4 ml of 0.05 mM 
PNPP followed by 24 h incubation at 37°C. Then, a 1 ml mixture 
of 0.01 mM CaCl2 and 0.04 mM NaOH was added to stop the 
reaction. The homogenate was centrifuged at 8,000 g for 10 min 
at 25°C, and the PNP in the supernatant was measured using 
spectrophotometry at 405 nm.

Soil Microbial Element Limitation
We tested common stoichiometric indicators to estimate the 
soil microbial element limitation. The nutrient distribution 
status of each enzyme synthesized by microorganisms was 
expressed as the ratio of enzyme activity to MBC. According 
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to Allison et  al. (2010), this ratio reflects the status of soil 
nutrients and changes in the nutrient acquisition strategy of 
microorganisms. Sinsabaugh et  al. (2009) showed that the 
activity of C, N, and P acquisition enzymes in all habitats is 
close to 1:1:1. When the nutrients that microorganisms can 
directly use in the soil are limited, corresponding enzymes 
are secreted to obtain nutrients (Allison and Vitousek, 2005), 
which changes the stoichiometry of the soil enzymes. The 
enzyme C:N, C:P, and N:P ratios were calculated as follows 
(Dong et  al., 2019):

 E BG NAG LAPC N: ln : ln� � � �� �

 E BG ACPC P: ln : ln� � � � �

 E NAG LAP ACPN P: ln : ln� �� � � �

Vector analysis of enzyme activity (vector length and vector 
angle) was used to test the relative nutrient limits, where a 
relatively long vector length indicates a larger C limit, and a 
vector angle of <45° or >45° indicates the relative nutrient 
limits of N or P, respectively. The calculation formulas of vector 
length (VL, dimensionless) and vector angle (VA, degrees) are 
as follows (Dong et  al., 2019):
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Statistical Analysis
Data analysis was performed using SPSS (version 20.0; SPSS 
Inc. Chicago, IL, United States). One-way analysis of variance 
(ANOVA) and least significant difference (LSD) tests were 
used to compare pH, SWC, SOC, TN, TP, AN, AP, BG, 
NAG + LAP, ACP enzyme activity, and stoichiometry under 
the different treatments. A two-factor ANOVA was used to 
evaluate the combined influence N and P addition on the 
experimental variables. The Pearson correlation coefficient 
was used to analyze the correlation between soil physical 
and chemical properties, enzyme activity, and enzyme 
stoichiometry. Redundancy analysis (RDA) was carried out 
using Canoco5 software (Braak and Smilauer, 2012) to 
evaluate the impact of environmental factors (soil physical 
and chemical properties) on the activity of the various soil 
enzymes, VA, VL, and enzyme extracellular activity ratios. 
All figures were drawn using Origin Pro 2018 (Origin 
Lab Corporation).

RESULTS

Changes in Soil Physicochemical 
Properties
The interaction of N addition, P addition, and N + P addition 
significantly affected soil pH, SOC, AN, and AP (Table  1). 
Compared with the control, N application significantly reduced 
soil pH (Table 2). N30 addition significantly reduced soil SOC 
content by 37.79% (p < 0.05) and N60 addition significantly 
increased AN and AP content by 14.99 and 28.09% (p < 0.05), 
respectively. P20 addition significantly reduced soil SOC content 
by 23.05% (p < 0.05), and P40 addition significantly reduced 
TN content but significantly increased soil pH, TP, and AP 

TABLE 1 | Two-way ANOVA of the effects of simulated nitrogen (N) deposition and phosphorus (P) addition on soil nutrient concentration, soil enzyme activity, and soil 
enzyme stoichiometry of Chinese fir.

Variables/factors
N addition P addition N + P addition

F-value p value F-value p value F-value p value

Soil pH 486.96 0.000*** 10.88 0.001** 11.69 0.000***
Soil SWC 3.72 0.044* 1.54 0.242 1.28 0.314
Soil SOC 5.36 0.015* 11.24 0.001** 15.27 0.000***
Soil TN 25.71 0.000*** 0.36 0.702 6.73 0.002**
Soil AN 80.34 0.000*** 39.45 0.000*** 18.91 0.000***
Soil TP 4.93 0.020* 57.57 0.000*** 2.60 0.071
Soil AP 7.69 0.004** 285.39 0.000*** 37.61 0.000***
BG 76.30 0.000*** 16.75 0.000*** 24.51 0.000***
NAG + LAP 54.86 0.000*** 15.76 0.000*** 9.06 0.000***
ACP 9.88 0.001** 15.23 0.000*** 2.93 0.050
EC:N 5.25 0.016* 3.65 0.047* 18.08 0.000***
EC:P 7.58 0.004** 16.38 0.000*** 0.70 0.603
EN:P 2.54 0.107 10.06 0.001** 4.54 0.010*
VL 10.04 0.001** 19.17 0.000*** 1.95 0.146
VA 2.65 0.098 10.15 0.001** 4.36 0.012*

SWC, soil water content; SOC, soil organic carbon; TN, total nitrogen; AN, available nitrogen; TP, total phosphorus; AP, available phosphorus; BG, β-glucosidase; NAG + LAP, the 
sum of soil N-acetyl-β-d-glucosidase and leucine aminopeptidase; ACP, acidic phosphomonoesterase; EC:N, ln(BG):ln(NAG + LAP); EC:P, ln(BG):ln(ACP); and EN:P, 
ln(NAG + LAP):ln(ACP). Repeatable two-way ANOVA was used to statistically test. *p < 0.05; **p < 0.01; ***p < 0.001.
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content. Under the N30 treatment, P addition significantly 
increased pH, SOC, and AN content. In comparison, under 
the N60 treatment, P addition significantly increased AP content 
(p < 0.05). Under the P20 treatment, N addition significantly 
increased soil SOC and AN content, while under the condition 
of P40 treatment, N application significantly reduced pH, AP, 
and TP content and significantly increased AN content (p < 0.05).

Changes in Soil MBC and EEA
N addition, P addition, and the interaction of N + P addition 
affected soil MBC, BG activity, NAG + LAP activity, and ACP 
activity (Figure 1). Compared with the control, the P20 treatment 

significantly increased NAG + LAP and ACP activities (p < 0.05), 
while P40 treatment significantly increased BG activity (p < 0.05; 
Figure  1). Under the N30 treatment, P20 addition significantly 
increased BG, NAG + LAP, and ACP activities (p < 0.05), and 
P40 application significantly increased BG activity (p < 0.05). 
Under the N60 treatment (p < 0.05), P20 significantly increased 
MBC, P application significantly reduced BG activity (p < 0.05), 
and the P40 treatment significantly reduced ACP activity (p < 0.05).

Compared with the control, under the P40 treatment, the 
BG:MBC ratio increased significantly (p < 0.05; Figure  2). A 
combined treatment of N30 and P20 significantly increased 
the ACP:MBC ratio (p < 0.05), and the combined addition of 
N30 and P40 significantly increased the BG:MBC ratio (p < 0.05). 

A B

C D

FIGURE 1 | The effect of simulated nitrogen (N) deposition and phosphorus (P) addition on microbial carbon content and soil enzyme activity. (A) Soil microbial 
biomass carbon. (B) The activity of soil β-glucosidase. (C) The activity of soil N-acetyl-β-D-glucosidase and soil leucine aminopeptidase. (D) The activity of soil acid 
phosphatase. N0, 0 kg N ha−2 year−1; N30, 30 kg N ha−2 year−1; N60, 60 kg N ha−2 year−1; P0, 0 mg P kg−1; P20, 20 mg P kg−1; P40, 40 mg P kg−1; MBC, soil microbial 
biomass carbon; BG, Soil β-glucosidase; NAG + LAP, the sum of soil N-acetyl-β-d-glucosidase and soil leucine aminopeptidase; and ACP, soil acid phosphatase. 
Different lowercase letters indicate significant differences between P addition rates at identical N addition rates. Different capital letters indicate significant differences 
between N addition rates at identical P addition rates (p < 0.05).

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Liu et al. N/P Addition Affected Ecoenzymatic Stoichiometry

Frontiers in Plant Science | www.frontiersin.org 6 March 2022 | Volume 13 | Article 834184

Under the N60 treatment, P application significantly reduced 
the BG:MBC ratio (p < 0.05), while P40 addition significantly 
reduced the ACP:MBC ratio (p < 0.05).

Soil Enzyme Stoichiometric Ratio and 
Relative Nutrient Limitation
We analyzed the stoichiometry of BG, NAG + LAP, and ACP 
activity (Figure  3). The ln(BG):ln(NAG + LAP) ratio, an 
indicator of potential C:N acquisition activity, was less than 
1 under the N0, P20, N30, N30 + P20, and N60 + P40 treatments. 
The corresponding C:P ratio, represented by the ratio of 
ln(BG):ln(ACP) activity under all treatments, was greater than 
1. The N:P ratio, ln(NAG + LAP):ln(ACP), activity under all 
treatments was also greater than 1 (Figure  3). In general, 
compared with the control, EC:N decreased under the P20 
treatment (p < 0.05), and EC:P increased under the P40 treatment 
(p < 0.05). The N60 treatment increased the EC:N ratio (p < 0.05). 
Under the N30 treatment, P40 treatment significantly increased 
the EC:N ratio (p < 0.05). Under the N60 treatment, P40 treatment 
reduced EC:N and increased EC:P and EN:P (p < 0.05). The vector 
analysis showed that compared with the control, P20 addition 
significantly reduced VL values, while P40 addition significantly 
increased VL values (p < 0.05; Figure  4). The VA values were 
less than 45° under all treatments, indicating that the 
microorganisms were N-restricted.

Effect of N and P Addition on Soil Enzyme 
Performance
The RDA results show (Figure  5) that the first axis explains 
61.46% of the variables, and the second axis explains 18.20% 
of the variables. Soil pH (47.8%; F = 22.9, p = 0.002), TN (10%; 
F = 5.7, p = 0.004), and AP (8.5%; F = 5.8, p = 0.004) were 
significant factors affecting soil enzyme activity and the enzyme 
stoichiometric ratio (p < 0.01). There was a significant positive 
correlation between pH and BG, NAG + LAP, and ACP activities 
(p < 0.01; Table  3). Moreover, there was a significant positive 
correlation between TN and BG activity (p < 0.05). TP was 
significantly positively correlated with EC:P, EN:P, and VL 
(p < 0.05) and significantly negatively correlated with VA 
(p < 0.05).

DISCUSSION

Effect of Nitrogen Addition on Soil Enzyme 
Activity
We examined the effect of N and P addition on the soil 
enzymes involved in C, N, and P cycling using a 3-year 
simulation of N deposition and P addition in a Chinese fir 
forest. The results suggested that N addition had a significant 
effect on soil EEA in the studied Chinese fir forest. We observed 
that N addition increased BG activity, which is involved in 
C-cycling, and decreased NAG + LAP activity, which is involved 
in soil N cycling. Our results were in agreement with previous 
reports that the addition of exogenous nutrients changes the TA
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activity of extracellular enzymes (Li et  al., 2021b; Shi et  al., 
2021; Xiao et  al., 2021). These results can be  explained by 
the resource allocation theory of enzyme production that N 
addition inhibits the activity of N-cycling enzymes and increases 
the activity of other enzymes (Sinsabaugh and Moorhead, 1994; 
Allison and Vitousek, 2005). However, N addition had no 
significant effect on soil ACP enzyme activity, which is 
inconsistent with other studies showing that N addition enhances 
soil phosphatase activity (Saiya-Cork et  al., 2002; Wang et  al., 
2011; Fan et  al., 2020).

Our results also showed that the activity of soil BG, NAG + LAP, 
and ACP was positively correlated with soil pH, which is consistent 
with previous reports (Sinsabaugh et  al., 2008; Dong et  al., 2015; 

Xiao et al., 2020), and shows that N application affected soil enzyme 
activity by reducing soil pH. Many studies have found significant 
responses of soil and microbial activity to N addition and suggest 
that the negative effects of N on soil microorganisms are mainly 
driven by soil acidification (Treseder, 2008; Liu and Greaver, 2010; 
Chen et  al., 2016). For instance, Li et  al. (2021b) reported that 
N fertilization increased soil NH4

+, and activity of BG and ACP. 
Wu et  al. (2019) observed that N addition changed soil pH and 
the content of NH4

+-N and AP, which elicited a negative effect 
on microbial activity. Changes in soil pH and soil C:P are likely 
to affect the ACP activity and its response to N addition (Zhang 
et  al., 2018; Li et  al., 2021c), although ACP activity was not 
significantly affected by N addition in our study. The increased 

A

C

B

FIGURE 2 | The effect of simulated nitrogen (N) deposition and phosphorus (P) addition on the nutrient distribution of enzymes. (A) The ratio of BG activity to MBC. 
(B) The ratio of NAG and LAP activity to MBC. (C) The ratio of ACP activity to MBC. N0, 0 kg N ha−2 year−1; N30, 30 kg N ha−2 year−1; N60, 60 kg N ha−2 year−1; P0, 
0 mg P kg−1; P20, 20 mg P kg−1; P40, 40 mg P kg−1; BG, Soil β-glucosidase; NAG + LAP, the sum of soil N-acetyl-β-d-glucosidase and soil leucine aminopeptidase; 
ACP, soil acid phosphatase; and MBC, soil microbial biomass carbon. Different lowercase letters indicate significant differences between P addition rates at identical 
N addition rates. Different capital letters indicate significant differences between N addition rates at identical P addition rates (p < 0.05).
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A

C

B

FIGURE 3 | The effect of simulated nitrogen (N) deposition and phosphorus (P) addition on the stoichiometric ratio of soil enzymes. (A) The enzyme C:N 
ratio. (B) The enzyme C:P ratio. (C) The enzyme N:P ratio. N0, 0 kg N ha−2 year−1; N30, 30 kg N ha−2 year−1; N60, 60 kg N ha−2 year−1; P0, 0 mg P kg−1; P20, 
20 mg P kg−1; P40, 40 mg P kg−1; BG, Soil β-glucosidase; NAG + LAP, the sum of soil N-acetyl-β-d-glucosidase and soil leucine aminopeptidase; and ACP, soil 
acid phosphatase. Different lowercase letters indicate significant differences between P addition rates at identical N addition rates. Different capital letters 
indicate significant differences between N addition rates at identical P addition rates (p < 0.05).

soil AP content with nitrogen addition suggests that N addition 
affects the soil AP and less P is obtained from microorganisms, 
which results in the no obvious change in ACP activity. Another 
possible explanation for the different effects of N addition on soil 
enzyme activity is that the trees in our plots were in the young, 
fast-growing stage with a large demand for N (Wu et  al., 2020), 
and the soil had not yet reached the N-saturation state.

In addition, the soil enzyme C:N and C:P ratios were 
generally altered by N addition. N addition increased the 
ratios of soil enzymes EC:N and EC:P (Figure  3), and VL 
(Figure  4A), which implies that C will become limiting 
relative to N, and that microorganisms will produce more 
C-cycling enzymes to satisfy metabolic requirements (Chen 

et  al., 2018b). N fertilization-induced soil acidification may 
also lead to reinforced microbial C-limitation (Ning et  al., 
2021). As microorganisms change the way they allocate 
resources to adapt to environmental changes (Schimel et  al., 
2007), N addition alters the microbial nutrient acquisition 
strategy and promotes the secretion of C-cycle enzymes. 
Taken together, N addition mitigated microbial N-limitation 
and enhanced microbial C-limitation.

Effect of P Addition on Soil Enzyme Activity
Phosphorus (P) is an important limiting factor in subtropical 
ecosystems and plays an important role in regulating the C 
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and N cycles (Vance et  al., 2003). Given that P showed 
maximum limitation in most subtropical ecosystems (Hou 
et  al., 2020; Du et  al., 2021), we  expected that P addition 
would enhance the soil enzyme activity. Indeed, soil enzyme 
activity related to C, N, and P cycling all responded to P 
addition. Furthermore, we found a positive correlation between 
the effect of P addition on enzyme activity and soil pH 

(Table  3). These results are consistent with previous studies 
showing that P addition increases soil microbial activity and 
the secretion of various enzymes by altering the characteristics 
of the soil. For instance, Lin et  al. (2019) found that P 
addition enhanced soil enzymes (BG and NAG) in a natural 
subtropical evergreen broad-leaved forest, and Yuan et  al. 
(2020) found that P addition increased BG enzyme activity 
in tropical coastal forests.

We observed the ratio of the natural logarithm of C-, 
N-, and P-acquiring enzymes is approximately 1.3:1.3:1  in 
this study, which diverged from the ratio of 1:1:1 on a 
global scale (Sinsabaugh et  al., 2009). Cui et  al. (2021) 
revealed the relationships of C:N:P-acquiring enzyme activities 
far from the widely recognized mean ratio of 1:1:1 in different 
ecosystems. Low-concentration P fertilizers addition resulted 
in the drift of the ratio to 1.2:1.3:1, indicating that 
microorganisms are still co-limited by C and N (Yang et  al., 
2020). Moreover, the RDA results also showed that the VL 
values were reduced and the VA values were lower than 
45° after P20 addition. This indicates that the application 
of low amounts of P alleviated the limiting influence of 
microbial-available C but had no significant effect on 
N-limitation. These results indicate that the soil was still 
relatively deficient in C and N after the addition of low 
concentrations of P, which may be  partly explained by the 
associated increase in microbial activity, which reduced soil 
C retention (Chen et  al., 2021). Increased EC:P ratios show 
that soil microbial activity related to C-cycling enzymes 
was inhibited after the addition of high concentrations of 
P. Increased VL values also show that P40 addition intensified 
soil C restriction. This indicates that the addition of high 
concentrations of P lead to insufficient soil C availability 
and increase the microbial demand for C. Therefore, our 
results indicate that the soil microorganisms changed their 
nutrient acquisition strategy and increased BG production 
to alleviate C restriction.

Furthermore, the input of a large amount of exogenous 
P reduces the microbial demand for P, thereby reducing 
the secretion of phosphatase (Olander and Vitousek, 2000; 
Allison and Vitousek, 2005; Marklein and Houlton, 2012; 
Shi et  al., 2021). However, we  did not find a significant 
effect of P40 on ACP activity or the ratio of ACP:MBC. 
Although the mechanisms underlying the responses of soil 
ACP to P addition are unclear, soil pH and C:P are likely 
to affect the activity of ACP and its response to P addition. 
The ratios of EC:P increase with the addition of high 
concentrations of P, providing additional evidence of no 
significant microbial production of phosphatase to acquire 
P in Chinese fir forests. In addition, the sources of ACP 
may be  soil microorganisms, mycorrhiza, and roots, but 
we still have limited knowledge to determine the main source 
(McGill and Cole, 1981). Piotrowska and Wilczewski (2012) 
and Stursova et  al. (2006) found that the activity of various 
soil enzymes was largely affected by tree species after the 
application of various nutrients, suggesting that ACP enzymes 
may have been derived from plants under high P concentration 
treatments, which needs to be  further studied.

A

B

FIGURE 4 | Vector analysis of enzyme activity to indicate the effect of 
nitrogen (N) deposition and phosphorus (P) addition on the relative nutrient 
limitation of the soil. (A) Vector length indicates soil C limitation. (B) Vector 
angle indicates the relative nutrient limitation of N or P. VL, vector length; VA, 
vector angle. N0, 0 kg N ha−2 year−1; N30, 30 kg N ha−2 year−1; N60, 
60 kg N ha−2 year−1; P0, 0 mg P kg−1; P20, 20 mg P kg−1; and P40, 40 mg P kg−1. 
Different lowercase letters indicate significant differences between P addition 
rates at identical N addition rates. Different capital letters indicate significant 
differences between N addition rates at identical P addition rates (p < 0.05).
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FIGURE 5 | Redundancy analysis (RDA) of soil enzyme activity and enzyme stoichiometric ratio. BG, Soil β-glucosidase; NAG + LAP, the sum of soil N-acetyl-β-d-
glucosidase and soil leucine aminopeptidase; and ACP, soil acid phosphatase. EC:N, ln(BG):ln(NAG + LAP); EC:P, ln(BG):ln(ACP); EN:P, ln(NAG + LAP):ln(ACP); VL, vector 
length; VA, vector angle; SWC, soil water content; SOC, soil organic carbon; TN, total nitrogen; AN, available nitrogen; TP, total phosphorus; AP, available 
phosphorus; Soil C:N, the ratio of soil SOC to TN; Soil C:P, the ratio of soil SOC to TP; and Soil N:P, the ratio of soil TN to TP.

Interaction of N and P Additions on Soil 
Enzyme Activity
In this study, N + P addition significantly affected the activity 
of BG, NAG + LAP, and ACP, indicating that these enzymes are 
easily stimulated by substrates (Dong et  al., 2015). We  found 
that the interactive effect of N and P addition on soil characteristics 
(soil pH, SOC, TN, and AP) was significant, most likely due 
to the significant response of soil enzyme activity (Kuypers et al., 
2018; Dai et  al., 2020) to N and P addition. Our results are 
consistent with those of Dong et  al. (2015) who reported that 
N and P co-addition had significant effects on soil extracellular 
enzymes involved in C, N, and P cycling in subtropical forests, 
indicating that soil microorganisms show differential demand 
for N and P at different concentrations of N and P addition.

The observed changes in soil properties may be  a major 
explanatory factor for the significant responses of soil enzymes 
to N and P addition. Indeed, soil nutrient availability affects 
the utilization efficiency of nutrients by microorganisms and 
stimulates changes in enzyme stoichiometry (Zheng et  al., 2015; 
Zhang et al., 2018). In our study, high N and various P treatments 

reduced the soil TN content and increased the TP and AP 
content, and the changes in the ratio of enzyme activity to 
MBC were consistent with the changes in enzyme activity. This 
indicates a negative feedback effect between soil enzyme activity 
and high nutrient concentrations (McGill and Cole, 1981). The 
vector analysis shows that the application of low amounts of P 
under the condition of high N alleviated N-limitation, while 
the application of high P increased the N restriction. The increased 
SOC content and the BG:MBC ratio under the N30 + P40 
treatment indicates that the low N and high P concentration 
treatments stimulated BG enzyme production by microorganisms 
related to C acquisition (Allison et al., 2010). Ullah et al. (2019) 
found that soil enzyme activity related to C cycling is affected 
by soil organic matter content. In addition, the redundancy 
analysis provides strong evidence that the low N and high P 
concentration treatments aggravated soil C-limitation. This 
indicates that N and P addition changed the soil nutrient content, 
which stimulated a change in the microbial nutrient acquisition 
strategy, whereby soil enzyme activity was altered to adapt to 
nutrient limitation (Schimel et  al., 2007).
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Soil pH is an important factor that influences soil enzyme 
activity (Burns et  al., 2013; Wang et  al., 2014; Li et  al., 
2021b), with soil enzymes showing a clearly defined optimal 
pH range (Frankenberger and Tabatabai, 1980). Although 
we did not find any significant negative relationships between 
soil pH and the EC:N, EC:P, and EN:P ratios, soil enzyme activity 
(BG, NAG + LAP, and ACP) and soil pH were positively 
correlated, which is consistent with the results of Li et  al. 
(2021b). Specifically, the higher N and P inputs caused changes 
in soil pH, which affected the migration of P and ultimately 
led to changes in soil P content and EC:P and EN:P ratios. 
These effects of soil pH on soil enzyme activity reflect the 
influence of nutrient addition on soil properties and microbial 
communities (Chen et  al., 2019).

N and P addition likely provided more exogenous resources 
to the soil microorganisms, causing changes in the C:N:P ratio 
that likely affected soil N and P availability (Tu et  al., 2014) 
and resulting in the shift to N-limitation and C-limitation. These 
changes of microorganisms are linked to the soil characteristics 
(soil pH, TN, and AP, which explained most of the variation 
in soil EES), influencing the metabolism of microorganisms 
(Yang et  al., 2020). Under projected global change scenarios, 
the expected EEA changes could have the important impacts 
on the nutrient cycling in the soil. Indeed, our study provides 
evidence that soil EES can be  used to interpret the changes in 
microbial nutrient limitation resulting from inputs of exogenous 
resources. More broadly, the response of microbes under N 
deposition and P addition responsible for soil C acquisition will 
help predict ecosystem resilience to future global changes. Overall, 
our study should help develop management strategies by controlling 
soil C and nutrient cycling for the improvement of plantation 
productivity of Chinese fir forests under scenarios of increasing 
N deposition. In addition, seasonal variation and biological 
interactions should have potential impact on the soil enzyme 
activity. Therefore, future studies are needed to investigate the 
responses of soil enzyme activity to N deposition in the site-
specific seasonal changes, plants, soil, and microbial  
characteristics.

CONCLUSION

Our results show that N addition alone increased BG activity 
and BG:MBC, decreased NAG + LAP activity, and increased 
the EC:N and EC:P ratios, thereby alleviating microbial 
N-limitation and aggravating microbial C-limitation. P addition 
alone increased enzyme activity. N and P co-addition 
significantly affected EEA and EES. Soil pH was the main 
factor influencing enzyme activity overall, and the 
stoichiometric relationships of enzymes were coupled with 
soil pH, TN, and AP. These results indicate that changes in 
soil characteristics induced by N and P inputs influence the 
activities of soil microorganisms and result in changes in 
microbial resource acquisition strategies. Our results provide 
useful insights into the improvement of C. lanceolata plantation 
productivity by controlling soil C and nutrient cycling in 
forests subject to increasing N deposition.TA
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