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The unique flavonoids, quinochalcones, such as hydroxysafflor yellow A (HSYA) and
carthamin, in the floret of safflower showed an excellent pharmacological effect in
treating cardiocerebral vascular disease, yet the regulating mechanisms governing the
flavonoid biosynthesis are largely unknown. In this study, CtACO3, the key enzyme
genes required for the ethylene signaling pathway, were found positively related to the
flavonoid biosynthesis at different floret development periods in safflower and has two
CtACO3 transcripts, CtACO3-1 and CtACO3-2, and the latter was a splice variant
of CtACO3 that lacked 5’ coding sequences. The functions and underlying probable
mechanisms of the two transcripts have been explored. The quantitative PCR data
showed that CtACO3-1 and CtACO3-2 were predominantly expressed in the floret
and increased with floret development. Subcellular localization results indicated that
CtACO3-1 was localized in the cytoplasm, whereas CtACO3-2 was localized in the
cytoplasm and nucleus. Furthermore, the overexpression of CtACO3-1 or CtACO3-2 in
transgenic safflower lines significantly increased the accumulation of quinochalcones
and flavonols. The expression of the flavonoid pathway genes showed an upward
trend, with CtCHS1, CtF3H1, CtFLS1, and CtDFR1 was considerably induced in
the overexpression of CtACO3-1 or CtACO3-2 lines. An interesting phenomenon for
CtACO3-2 protein suppressing the transcription of CtACO3-1 might be related to the
nucleus location of CtACO3-2. Yeast two-hybrid (Y2H), glutathione S-transferase (GST)
pull-down, and BiFC experiments revealed that CtACO3-2 interacted with CtCSN5a. In
addition, the interactions between CtCSN5a and CtCOI1, CtCOI1 and CtJAZ1, CtJAZ1
and CtbHLH3 were observed by Y2H and GST pull-down methods, respectively.
The above results suggested that the CtACO3-2 promoting flavonoid accumulation
might be attributed to the transcriptional activation of flavonoid biosynthesis genes by
CtbHLH3, whereas the CtbHLH3 might be regulated through CtCSN5-CtCOI1-CtJAZ1
signal molecules. Our study provided a novel insight of CtACO3 affected the flavonoid
biosynthesis in safflower.
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INTRODUCTION

Flavonoids, as a group of secondary metabolites widely existing in
plants, improve the adaptation ability in the volatile and complex
environment of plants (Tahara, 2007; Petroni and Tonelli,
2011). Meanwhile, the flavonoid content in medicinal plants
received much attention because of its beneficial health properties
against a number of diseases (Rukh et al., 2019). Carthamus
tinctorius L., commonly known as safflower, is an important
medicinal plant and widely used in treating cardiocerebral
vascular disease in China. The flavonoids in safflower are
the main pharmacologically active compounds, especially the
unique quinochalcones, such as hydroxysafflor yellow A (HSYA)
and carthamin, which have high commercial and medicinal
value (Tu et al., 2015). For the deep investigation and wide
application of flavonoids in safflower, it is important to explore
their biosynthesis mechanism and further improve the flavonoid
content in plants.

The biosynthesis pathway of basic flavonoids skeleton and
the enzymes related to it have been well characterized, including
phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydrolase
(C4H), 4-coumarate:CoA ligase (4CL), chalcone synthase (CHS),
2-hydroxyisoflavanone synthase (IFS), 2-hydroxyisoflavanone
dehydratase (HID), chalcone isomerase (CHI), flavone synthase
(FNS), flavanone 3-hydroxylase (F3H), flavonol synthase (FLS),
flavonoid 3’-hydroxylase (F3’H), flavonoid 3’,5’-hydroxylase
(F3’5’H), dihydroflavonol 4-reducatase (DFR), anthocyanidin
synthase (ANS), leucoanthocyanidin 4-reductase (LAR),
especially in model plant Arabidopsis thaliana, and a range
of crop species, such as bean, tomato, maize, and rice (Tohge
et al., 2017). The most of channel enzyme genes in flavonoids
biosynthesis have been identified depending on transcriptome
of safflower, and the function in the HSYA accumulation of
CtCHS1, CtCHS4, CtCHI1, and CtF3H have been proved in vivo
of safflower (Tu et al., 2016; Guo et al., 2017, 2019; He et al.,
2018). There is broad consensus that the flavonoid pathways
are regulated mostly through the coordinated transcription
of structural genes by the interaction of MBW complex, such
as R2R3 MYB transcription factors, basic helix–loop–helix
(bHLH) transcription factors, and WD40 proteins (Payne
et al., 2000; Ramsay and Glover, 2005). Some studies have
reported that bHLH3, a bHLH transcription factor, played
an important role in regulating the anthocyanins, flavones,
and flavonols biosynthesis through the downstream channel
enzyme genes (Rahim et al., 2014; Li et al., 2020; An et al.,
2021).

In addition to the regulation of flavonoid metabolism channel
enzyme genes and transcription factors in plants, flavonoid
biosynthesis is also affected by plant hormones signaling
pathway, such as methyl jasmonate (JA), auxin, and ethylene.
Ethylene participates in many plants’ developmental processes
and stress responses, such as plant growth, germination,
flowering, fruit ripening, and senescence (Lin et al., 2009; Van de
Poel et al., 2015; Wen, 2015). It is worth to mention that ethylene
positivity regulates the accumulation of flavonoids implicated
with various evidence. Treatment with ethylene and its precursor,

1-aminocyclopropane carboxylic acid (ACC), induced the
flavonol and anthocyanin accumulation in Arabidopsis, apple,
black carrot, and tea (Watkins et al., 2014; Barba-Espín et al.,
2017; An et al., 2018; Ke et al., 2018), and isoflavone accumulation
in soybean (Yuk et al., 2016). In A. thaliana, the anthocyanin
levels were lower in the ein1-1, ein2-1, and the ein3/eil1 double
mutant than in normal plants. In apple, EIN3-like1, MYB1,
and ERF3 together modulate anthocyanin accumulation (An
et al., 2018). Meanwhile, others reported that ethylene negatively
affects anthocyanin biosynthesis. The inhibition of ethylene
synthesis by aminoethoxyvinylglycine treatment increased the
anthocyanin content in black rice at dark (Kumar et al., 2019).
ACC acid treatment suppressed the sugar and light-inducible
anthocyanin synthesis in Arabidopsis plants (Jeong et al., 2010).
Ethylene treatment inhibited the light-induced anthocyanin and
biosynthesis through the PpCTR1/PpETR1 system in the red pear
fruits (Ni et al., 2020). Tobacco plant carrying the mutated melon
CmETR1/H69A showed higher anthocyanin level than normal
plant (Keita et al., 2005). The ethylene treatment influenced
the accumulation of anthocyanin in blueberry, which might
depend on the cultivar (Costa et al., 2018). Accordingly, ethylene
regulated the biosynthesis of flavonols and anthocyanins, in
which ethylene signaling pathway has been suggested to be a
regulator of anthocyanin accumulation. However, these studies
have not come to an accordant conclusion, and there is little
evidence demonstrating the regulatory effect of ethylene on
another flavonoid biosynthesis, especially chalcones, which is the
principal component in safflower.

Increasing evidence showed that ACO (ACC oxidase) has
a rate-limiting role in ethylene biosynthesis, which belongs
to a multigene family (Zhang et al., 2012; Houben and Van
de Poel, 2019). Most ACOs were the biosynthetic structure
genes of ethylene, whereas others displayed some different
functions. For instance, SlACO5 and CsACO2, respectively,
played vital roles in low oxygen response in tomato (Sell
and Hehl, 2005) and sex determination in cucumber flowers
(Chen et al., 2016). In addition, the overexpression of PtACO1
in poplar caused cambial cell division (Jonathan et al.,
2009). In our previous study, the possibility of ethylene
synthesis pathway regulating the accumulation of flavonoids was
concerned in safflower. The overexpression of CtACO1 reduced
the accumulation of quinochalcone HSYA and carthamin,
kaempferol, and its glycosylated derivatives, whereas it increased
quercetin and its glycosylated derivatives (Tu et al., 2019).
In the present study, it was found that the expression of
CtACO3 was closely associated with flavonoid accumulation
in the floret of safflower at different development periods.
The overexpression of two CtACO3 splice variants, CtACO3-
1 and CtACO3-2, significantly increased the accumulation
of quinochalcone HSYA and carthamin, flavonol kaempferol
glycosylated derivatives, and quercetin glycosylated derivatives.
An interesting phenomenon for CtACO3-2 protein suppressing
the transcription of CtACO3-1 was also found. Furthermore, a
possible route of CtACO3-2 influenced flavonoid biosynthesis
pathway was preliminarily explored. The following is our first
report of the study.
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MATERIALS AND METHODS

Plant Materials
The safflower plant ZHH0119 (C. tinctorius L.), which floret with
orange-yellow color and major quinochalcones, was collected
from the Chinese Safflower Germplasm Resources in the
Academy of Agricultural Sciences of Xinjiang. The safflower
was identified by Prof. Meili Guo. It was repeatedly purified
in our laboratory. The plant was grown in the greenhouse at
23 ± 2◦C under the light of circadian rhythm (16-h/8- light–
dark cycle) in the Naval Medical University (Shanghai, China).
The voucher specimen was SMMU171201 and deposited at the
Naval Medical University.

Plasmid Construction and Safflower
Transformation
The CDS of CtACO3-1 was cloned with primers (PMT39-
CtACO3-1F and CtACO3-1-PMT39R; Supplementary Table 1);
CtACO3-2 was cloned with primers (PMT39-CtACO3-2F and
CtACO3-2-PMT39R; Supplementary Table 1), and empty
vector PMT39 (pCAMBIA-1380-CaMV35S-MCS-EGFP-NOS)
was digested by NcoI and made a green fluorescent protein
(GFP) tag fused to the CDS of CtACO3-1 and CtACO3-2
and downstream of 35S promoter (Guo et al., 2017). The
Agrobacterium strain (GV3101) including the above vector was
introduced into safflower plants according to previous methods
to generate overexpressing safflowers (Guo et al., 2017). Then,
initial screening analyzed T1 transformants according to previous
methods, the identification using primers (35SIDF, CtACO3-
1IDR1, and CtACO3-2IDR1; Supplementary Table 1), the
forward primer is on CaMV35S promoter, and reverse primer is
on the CDS of target gene (Tu et al., 2019).

Bioinformatics Analysis
Multiple sequence alignment was aligned in Geneious (v9.1) by
the MUSCLE plugin. Then, the best-scoring maximum likelihood
tree was built with 1,000 bootstrap replicates using Geneious
(v9.1). Conserved protein domains were identified using SMART
(Letunic et al., 2015).

Subcellular Localization
The CDSs of CtACO3-1 and CtACO3-2 were cloned into
the PMT-39 vector; the recombinant and control plasmids
were transformed into the Agrobacterium strain GV3101.
Positive Agrobacterium was cultured and cocultured with onion
epidermal layers, and N. benthamiana leaves were injected
according to previous methods (Guo et al., 2019; Tu et al., 2019).
The GFP fluorescence of CtACO proteins was confirmed by a
confocal microscope (Leica TCS SP5).

RNA Extraction and Expression Analysis
The florets of CtACO3-1, CtACO3-2 transgenic safflowers plants,
and untreated safflower plants were collected at stage IV. Total
RNA was extracted from safflower floret samples by TransZol
reagents (the tubular flower without the ovary); first-strand
cDNA was synthesized with the manufacturer’s instruction

(TransGene Biotech, Beijing, China). Quantitative real-time PCR
(qRT-PCR) was worked using TransStart Green qPCR Supermix
(TransGene Biotech, Shanghai, China) with ABI7300 Real-Time
PCR system (Applied Biosystems, Foster City, CA, United States).
When designing Real-Time PCR primers for the transcription
levels analysis of CtACO3-1 and CtACO3-2, there is one pair
of primers in their same region and one in the CtACO3-1-
specific region. The relative expression level of CtACO3-2 was
confirmed by the difference between the expression level of
CtACO3-1 and CtACO3-2 shared region and the expression
level of the CtACO3-1-specific region. Primers used are listed
in Supplementary Table 1. A quantitative reverse transcriptase–
PCR thermal cycle was followed as per manufacturer’s instruction
(Tm at 58◦C). The results were calculated according to 2−11Ct,
whereas Ct60s gene (GenBank accession no. KJ634810) was used
as a housekeeping gene.

Ultra-High Performance Liquid
Chromatography With Quadrupole
Time-of-Flight Mass Spectrometry
Detection in Safflower Samples
The preparation of above plant samples, chemicals, and
reagents was followed according to previous methods (Tu
et al., 2019). Agilent 6538 Accurate Mass Quadrupole Time-
of-Flight MS and Agilent 1290 Infinity LC System (Agilent,
Santa Clara, CA, United States) was used for Ultra-high
performance liquid chromatography with quadrupole time-of-
flight mass spectrometry (UHPLC-QTOF-MS) analysis. XBridge
TM BEH C18 column (2.5 µm, 2.1 mm × 100 mm; Waters,
Milford, MA, United States) was used for chromatographic
separations. Previous methods were followed for the methods,
mass spectrometer, positive ion mode, and gradient elution used
for the quantification (Guo et al., 2017). The eight standard
compounds were confirmed, such as D-phenylalanine (m/z
165.079), kaempferol-3-O-glucoside (m/z 448.1006), quercetin-
3-O-glucoside (m/z 464.0955), rutin (m/z 610.1534), and
HSYA (m/z 612.1690), purchased from Yuanye Bio-Technology
(Shanghai, China), and carthamin (m/z 910.2168) was extracted
in our laboratory. Agilent MassHunter quantitative analysis
software was used for metabolite data.

Yeast One-Hybrid Assay
Yeast one-hybrid (Y1H) assays were performed according to the
manufacturer’s instruction of Matchmaker One-Hybrid Library
Construction and Screening Kit (Clontech). The safflower cDNA
library cloned in the prey vector pGAD-T7 (AD) was made by
the OE BioTech. In brief, the promoter fragment of CtACO3
(Figure 4A) was cloned into the pAbAi-bait vector, which
was introduced into the yeast strain Y1H GOLD, and were
cultured on SD/–Ura medium. Positive clones were sequence-
verified by Matchmaker Insert Check PCR Mix 1 (Clontech),
the yeast-based transcriptional activation test was followed.
The screen was performed by using pAbAi-bait Y1H stain
and the safflower cDNA-pGADT7-DEST library. These yeast
strains were cultured on SD/–Leu medium containing 100 ng/ml
AbA (Clontech). Positive clones were diluted and spotted
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on SD/–Leu medium containing 250 ng/ml AbA (Clontech),
then sequence-verified by Matchmaker Insert Check PCR
Mix 2 (Clontech).

Dual-Luciferase Reporter Assay
To confirm the interaction between CtACO3-2 and the promoter
of CtACO3, the CDS of CtACO3-2 was inserted into pGreenII 62-
SK, and the promoter pACO3 (-500 to -1) of CtACO3 was cloned
into pGreen 0800-LUC.

The constructed effector pGreenII 62-SK-CtACO3-2, reporter
plasmids pACO3-LUC and control vector pGreenII 62-SK, and
pGreen 0800-LUC were introduced into Agrobacterium strain
GV3101 (pSoup-19T), respectively. Mixed bacteria solution
harbored the effector and reporter (1:1), which was injected
into tobacco leaves. After 4 days, a dual-luciferase assay kit was
used to measure LUC and REN luciferase activities (Promega)
following Liu et al. (2013) Three biological repeats were assayed
for each combination. The results were calculated using the
ratio of LUC to REN.

Yeast Two-Hybrid Assay
Yeast two-hybrid (Y2H) screening and Y2H assays were
performed following the manufacturer’s instructions (Clontech,
Mountain View, CA, United States). The CDS of CtACO3-
2, CtCSN5a, CtCOI1, CtJAZ1, and CtbHLH3; the C-terminal
of CtCOI1 and CtbHLH3; and the N-terminal of CtCOI1 and
CtbHLH3 were inserted into the pGBKT7 or pGADT7 vector to
fuse with the DNA-BD and AD, respectively (primers are listed
in Supplementary Table 1). Autoactivation and suppression of
autoactivation of the bait constructs were tested by cultured
in SD/-Trp medium 40 mg/ml X-α-Gal. Then, bait constructs
without self-activation were transformed into Y2H GOLD strain
with prey constructs using the lithium acetate method and
cultured in DDO (SD/-Leu/-Trp) medium containing 125 ng/ml
AbA and 40 mg/ml X-α-Gal for 5 days. Then, transformed
positive colonies were plated onto QDO (SD/-Ade/-His/-Leu/-
Trp) medium containing 125 ng/ml AbA and 40 mg/mL X-α-Gal,
and positive clones were verified by using a Matchmaker Insert
Check PCR Mix 2 (Clontech).

Glutathione S-Transferase Pull-Down
Assay
For the construction of GST-CtCSN5a, GST-CtCOI1, GST-
CtbHLH3N, His-CtACO3-2, and His-CtJAZ1 expression vectors,
the CDS of CtCSN5a, CtACO3-2, CtCOI1, CtJAZ1, and
CtbHLH3N was cloned into pGEX-6P-1 or pET-32a, respectively.
To test whether CtACO3-2 interacts with CtCSN5a protein,
CtCSN5a interacts with CtCOI1, CtCOI1 interacts with CtJAZ1,
and CtJAZ1 interacts with CtbHLH3N, according to the
manufacturer’s instruction for the Pierce GST Protein Interaction
Pull-Down Kit (Thermo Scientific). Briefly, His-bait fusion
protein was incubated with GST-prey fusion proteins with
slowly shaking for a night. Then, beads were washed five
times and heated for 5 min in 100◦C. Sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and

Western blotting were used to confirm the proteins by anti-
GST (Beyotime, 1/1,000) and anti-His (Beyotime, 1/1,000)
antibodies, respectively.

Bimolecular Fluorescence
Complementation Analysis
The CDSs of CtACO3-1 and CtACO3-2 were inserted in
the pCAMBIA1300-35S-NY173 vector to create CtACO3-1-
nYFP and CtACO3-2-nYFP constructs. Similarly, the CDSs
of CtCSN5a were inserted in the pCAMBIA1300-35S-YC155
vector. The specific primers used for CtACO3-1-nYFP, CtACO3-
2-nYFP, and CtCSN5a-cYFP construction are described in
Supplementary Table 1. Then, the construction was introduced
into Agrobacterium GV3101 strain subsequently. The mixed
bacteria solution containing nYFP and cYFP pairs was injected
into tobacco leaves with a syringe and grown for 4 days. The
confocal microscope was used for YFP fluorescence detection
(Leica TCS SP5).

Statistics
The data are presented as mean ± standard deviation (SD) or
mean ± standard error of mean (SEM) and analyzed using
GraphPad Prism 8 software (GraphPad Software, La Jolla, CA,
United States). A paired two-tailed Student’s t-test was used to
compare group differences. The value of p < 0.05 was regarded
as statistically significant.

RESULTS

Expression of CtACOs Was Related to
the Accumulation of Safflower
Flavonoids
In our previous study, a normalized cDNA library and gene
chip data of safflower were analyzed systematically (Guo et al.,
2017). Three genes were annotated as ACO enzymes in safflower
line, there were two CtACO3 splice variants, CtACO3-1 and
CtACO3-2. We analyzed the transcription levels of CtACOs and
the contents of main flavonoids at different flowering times
(Figures 1A,B). The coexpression analysis of “gene metabolites”
is displayed in Figure 1C. Results indicate that CtACO family
genes are positively related to most of flavonoid in safflower lines.

CtACOs Phylogeny and Residue Analysis
There were a few reports that classified three distinct phylogenetic
groups in the ACOs (Jafari et al., 2012). CtACOs and some
homologous proteins from other plants were analyzed by
phylogenetic tree analysis, showing three clusters of ACOs
(Houben and Van de Poel, 2019). CtACO3 within the type I ACO
cluster which exhibits high sequence similarity with AcoACO1,
OsACO1, and OsACO2, but CtACO1 and CtACO2 are not within
any ACO clusters of these three types (Figure 1D). Furthermore,
a detailed residue analysis of these ACO alignments is presented
in Supplementary Figure 1. It has been reported that the ACO
types can be classified by the intermediate residue presented in
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FIGURE 1 | The expression pattern of ACO genes in safflower. (A) Different developmental stages of safflower lines. I: the day before flowering, II: the first day of
flowering, III: the second to third day of flowering, IV: the full bloom. (B) Four CtACOs expression patterns at different developmental stages of safflower lines, signal
values by gene chip. (C) The correlation coefficients between CtACOs and flavone glycoside compounds. The color key was set from –1 to +1. kaempferol-3-G:
kaempferol-3-O-glucoside, kaempferol-3-R: kaempferol-3-rutinoside, quercetin-3-G: quercetin-3-O-glucoside. (D) Maximal likelihood phylogenetic tree for ACO
protein sequences of Carthamus tinctorius (Ct), Arabidopsis thaliana (At), Solanum lycopersicum (Sl), Malus domestica (Md), Oryza sativa (Os), Ananas comosus
(Aco), and Citrus sinensis (Ci). Type I ACO is shown in blue, Type II ACO is shown in yellow, and Type III ACO is shown in green, CtACOs are plotted. (E) Schematic
diagram of CtACO3 splice variants indicating introns and exons.

the conserved RXS motif, such as type I (R-M-S), type II (R-
L/I-S), and type III (R-R-S) (Houben and Van de Poel, 2019).
Interestingly, CtACO1 and CtACO2 consist of R-V-S, which was

different from those three types. In parallel, all of CtACOs have
conserved 2-His-1-carboxylate Fe (II) binding motif. Residues
Q273, K284, K321, and F400 are conserved in CtACOs, which are
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important for ACO activity according to DR (Dilley et al., 2013).
This could partially account for the different roles of CtACOs on
flavonoid accumulation in safflower.

Molecular Characterization of CtACO3
Splice Variants
The CtACO3-1 (GenBank accession no. MH67444) is a full-
length transcript corresponding to the coding sequence of
CtACO3 and was predicted to encode a protein of 345 amino
acids, with a molecular mass of 36.16 kD and a calculated
pI of 6.57. The CtACO3-2 transcript (GenBank accession no.
MW075467) encodes a truncated protein of 110 amino acid,
with a molecular mass of 12.48 kD and a calculated isoelectric
point (pI) of 7.40, in which the start codon is located at the
4th exon, lacking the 235 N-terminal residues (Figure 1E).
Conserved domain analyses indicate that in the C-terminal
regions, CtACOs contain a conserved C3HC4 RING finger
domain (Supplementary Figure 1).

To detect the expression patterns of CtACO3-1 and CtACO3-
2 at different flowering times (I, II, III, and IV) and specific
tissues (flower, leaf, bracteole, and stem), the plant materials were
collected. The transcript levels of CtACO3-1 and CtACO3-2 in
flowers increased continuously with the floret flowering, shown
in Figure 2A. Both CtACO3-1 and CtACO3-2 showed the highest
transcript level in flower (Figure 2B), whereas CtACO1 had the
highest level in leaf (Tu et al., 2019).

The CtACO3-1 and CtACO3-2 were coexpressed with GFP
in onion epidermal cells and Nicotiana benthamiana leaves to
identify the subcellular localization. The result indicates that
CtACO3-1 localized to the cytoplasm, and CtACO3-2 localized
to the cytoplasm and nucleus (Figure 2C and Supplementary
Figure 2), which were different from the cytosol location of
CtACO1.

Profiling of Flavonoid Accumulation in
CtACO3-1-Overexpression Safflower and
CtACO3-2-Overexpression Safflower
To explore the function of CtACO3-1 and CtACO3-2 in vivo
of safflower, transgenic safflower plants that overexpressed
CtACO3-1 and CtACO3-2 under cauliflower mosaic virus
(CaMV) 35S promoter were generated. In total, 10 independent
positive CtACO3-1-overexpression transgenic lines and eight
independent positive CtACO3-2-overexpression transgenic lines
were screened out by genomic DNA PCR (Supplementary
Figures 3, 4) and compared with untreated safflower lines (wild
type); the relative transcription level of CtACO3-1 increased
significantly in CtACO3-1-overexpression plants and had the
highest expression level in ovx7 (∼10.5-fold), whereas a higher
level was found in ovx2 (∼8.3-fold) and ovx3 (∼6.12-fold)
lines (Figure 3A); the relative transcription level of CtACO3-
2 showed the highest expression level in ovx10 (∼4.7-fold),
whereas a higher level was found in ovx8 (∼3.2-fold) and ovx4
(∼2.5-fold) lines (Figure 3D). As shown in Supplementary
Figure 5, there was almost no difference in plant appearance
and growth status between the untreated and the transgenic
plants. Five CtACO3-1-overexpression lines (nos. 2, 3, 4, 12,

14) and five CtACO3-2-overexpression lines (nos. 4, 5, 8,
10, and 11) were used to further analyze the profiling of
flavonoids in safflower. The levels of flavonoid metabolites
were measured by UPLC–electrospray ionization–QTOF-MS.
It is shown that most of flavonoid accumulation enhanced
in CtACO3-1-overexpression safflower lines and CtACO3-2-
overexpression ones, especially the four mage compounds,
quinochalcones (HSYA and carthamin), and flavonols (quercetin-
3-O-glucoside and kaempferol-3-O-glucoside). In CtACO3-1-
overexpression safflower lines, HSYA increased 56.79, 36.77,
and 21.45% in ovx-2, ovx-3, and ovx-12 lines, respectively.
Moreover, carthamin increased most robustly in the ovx-
2 line (∼27.29%) and second most robustly in the ovx-7
line (∼26.21%). Quercetin-3-O-glucoside and kaempferol-3-
O-glucoside were increased in each overexpression CtACO3
safflower plant (50–160%) (Figure 3B). Besides, in CtACO3-
2-overexpression safflower lines, HSYA increased 59.34, 43.67,
and 35.69% in ovx-4, ovx-10, and ovx-8 lines, respectively.
Moreover, quercetin-3-O-glucoside increased most robustly in
the ovx-11 line (∼600%) and second most robustly in the ovx-
10 line (∼500%), whereas carthamin was slightly increased in
each overexpression CtACO3-2 overexpression safflower plant
(Figure 3E). In brief, the overexpression of CtACO3-1 and
CtACO3-2 in safflower resulted in the most increase of flavonoids
in flowers, and the metabolic flux of the flavonoid pathway
was suggested to be directed into both the quinochacone and
flavonol branch.

Transcriptional Expression of Associated
Genes in CtACO3-1-Overexpression
Safflower and CtACO3-2-Overexpression
Safflower
To further explore the flavonoid biosynthesis in CtACO3-
1-overexpression safflower and CtACO3-2-overexpression
safflower, the transgenic plants were used to investigate the
transcript abundance of flavonoid biosynthesis–related genes,
such as CtPAL1, CtC4H1, CtCHS1, CtCHI1, CtF3H1, CtFLS1,
and CtDFR1, which displayed different expression pattern
in CtACO3-1-overexpression safflower lines and CtACO3-
2-overexpression safflower lines. As shown in Figure 3C, the
transcript levels of upstream genes of the flavonoid pathway, such
as CtPAL1, CtC4H1, and CtCHI1, shown an upward trend with
CtCHS1 significantly increased in the CtACO3-1-overexpression
lines. The expression of downstream genes CtF3H1 and CtFLS1
was considerably induced. Similarly, the transcript levels of
CtC4H1 and CtCHI1 in CtACO3-2-overexpression safflower
lines shown an upward trend as well, the expression of CtCHS1,
CtF3H1, CtFLS1, and CtDFR1 was induced (Figure 3F). Overall,
the transcript abundance of flavonoid biosynthesis–related
genes performed similar trends after CtACO3-1 or CtACO3-2
overexpression. An additional interesting phenomenon was
unraveled when we analyzed the transcript levels of other
CtACOs in CtACO3-1 or CtACO3-2-overexpression safflower.
Interestingly, CtACO3-1-overexpression safflowers had a
higher transcript level of CtACO3-2, whereas the level of
CtACO3-1 was lower in CtACO3-2-overexpression safflowers.
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FIGURE 2 | The molecular characterization of CtACO3 splice variants. (A) Relative abundance of CtACO3-1 and CtACO3-2 in different tissues. (B) Relative
abundance of CtACO3-1 and CtACO3-2 in different floret developmental stages. (C) Subcellular localization of the CtACO3-1/-2-PMT39 fusion protein in Nicotiana
benthamiana leaves. Data were expressed as means ± SD (n = 3).

These results indicate a feedback regulation between CtACO3-
2 and CtACO3-1, and CtACO3-2 may be the reason that
CtACO3-2 and CtACO3-1 overexpression resulted in different
flavonoid accumulation.

CtACO3-2 Regulates the Transcription of
CtACO3-1 in vitro and in vivo
The promoter of CtACO3-1 contained many cis-elements
(Supplementary Figure 6), such as G-box (5′-CACGTG-3′).
To determine whether the molecules related to flavonoid

biosynthesis directly regulate the transcription of CtACO3-
1, Y1H assays were conducted. The promoters of CtACO3
were divided into three fragments, namely, pCtACO3 (-1,500
to -1,000), pCtACO3 (-1,000 to -500), and pCtACO3 (-500
to -1), and fused to the pAbAi vector, respectively; only
promoter pCtACO3 (-500 to -1) exhibited no transcriptional
activation activity in the yeast-based transcriptional activation
test. Moreover, the results showed that CtACO3-2 could
specifically bind to the promoter pCtACO3 (-500 to -1) of
CtACO3-1 (Figure 4A).
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FIGURE 3 | Stimulatory effect of CtACO3-1 overexpression and CtACO3-2 overexpression on main active compounds content in safflower. (A) Relative expression
levels of CtACO3-1 and CtACO3-2 in WT and CtACO3-1 overexpression transgenic lines determined by quantitative PCR (qPCR). (B) Ultra-high performance liquid
chromatography with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) analysis of main active compounds content in WT and CtACO3-1
overexpression transgenic lines. (C) The expression levels of flavonoid-related genes in WT and CtACO3-1 overexpression transgenic lines determined by qPCR.
(D) The relative expression levels of CtACO3-1 and CtACO3-2 in WT and CtACO3-2 overexpression transgenic lines determined by qPCR. (E) UPLC-QTOF-MS
analysis of main active compounds content in WT and CtACO3-2 overexpression transgenic lines. (F) The expression levels of flavonoid-related genes in WT and
CtACO3-2 overexpression transgenic lines determined by qPCR. Data were expressed as mean ± SEM (n = 3), **p < 0.01, and *p < 0.05.
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FIGURE 4 | CtACO3-2 regulate the transcription of CtACO3-1. (A) Diagram of the promoter fragments of the CtACO3 promoter. CtACO3-2 binds to the -500∼-1
fragment of CtACO3 promoter using Y1H assay. Y1H assays were repeated for three times. (B) The effects of CtACO3-2 on CtACO3 promoter deactivation.
CtACO3 promoter pCtACO3 (-500∼-1) was fused to LUC reporter and the promoter activity was determined by a transient Dual-LUC assay in N. benthamiana. The
relative LUC activity was normalized to the reference Renilla (REN) luciferase. (a): Reporter, (b): effector, c: pGreenII0800-LUC, d: pGreenII 62-SK. Data were
expressed as mean ± SD (n = 3), **p < 0.01, and *p < 0.05.

To further clarify the regulatory effect of CtACO3-2 on
CtACO3-1 transcription, pCtACO3 (-500 to -1) was fused to the
LUC to generate reporter constructs pCtACO3:LUC. Meanwhile,
CtACO3-2 driven by CaMV 35S promoter was used as an effector
construct. The pairs of effector and reporter were coexpressed in
tobacco. When there was a presence of CtACO3-2 protein in the
infiltration mixture, the luciferase (LUC)/Renilla (REN) values
were significantly decreased by 49% for pCtACO3 (-500 to -1),
compared with the control (Figure 4B). This resulted from the
dual-luciferase assays that suggested CtACO3-2 downregulated
CtACO3-1 at the transcriptional level.

CtACO3-2 Interacts With the COP9
Signalosome Subunit 5
To understand how CtACO3-1 and CtACO3-2 participate in
affecting the flavonoid accumulation in safflower, we used the
Y2H system to identify its potential interaction partners. The
CDS of CtACO3-2 constructed a bait vector [CtACO3-2-binding
domain (BD)]. The bait and a library of cDNAs containing
inserts for prey proteins fused to GAL4–activation domain
(AD) were cotransformed to Y2H GOLD. After screening, 12
independent clones were identified, and the information is shown
in Supplementary Table 2 and Supplementary Figure 7. To
confirm the interaction of the clones about flavonoid biosynthesis
with CtACO3-2 in yeast, the CDS of CtCSN5a was fused to AD
vector and cotransformed into Y2H GOLD with CtACO3-2-BD;
the interactions were reconstructed (Figure 5A).

Our research then demonstrated that CtACO3-2 was
associated with CtCSN5a (GenBank accession no. MW075465)
using pull-down assay in vitro and BiFC assay in vivo

(Figures 5B,C). Therefore, these results strongly indicate
that CtACO3-2 is physically associated with CtCSN5a
in vitro and in plant.

CSN Subunit 5 Interacts With CtCOI1
and CtCOI1 Regulating the Flavonoid
Accumulation Through CtJAZ1 and
CtbHLH3 in vitro
Wei et al. (2018) have reported that CSN subunit 5 enhanced
MYB75 and suppressed GL2 and other genes associated
with the TTG1/basic helix–loop–helix (bHLH)/MYB complexes
to regulate anthocyanin accumulation. To understand how
CtCSN5a participated in flavonoid accumulation regulation in
safflower, Y2H screening assay was used to search the proteins
that interact with CtCSN5a-BD. After screening and confirming,
CtCOI1 (GenBank accession no. MW075466) interacted with
CtCSN5a (Supplementary Table 3). COI1 as a subunit of SCF
(COI1) E3 ubiquitin ligase encodes an F-box protein, which
is required for JA responses. It has been reported that COI1
interacted directly with CSN (Feng et al., 2003). Therefore,
we speculated that CtCSN5a regulated the accumulation of
flavonoids in safflower through interaction with CtCOI1
(Figures 6A–C).

Jasmonate ZIM-domain (JAZ) protein family as a key
regulator of JA signaling has been reported physically interacting
with SCFCOI1 (Thines et al., 2007). There is broad consensus
that the flavonoid pathways are regulated mostly through the
coordinated transcription of structural genes by the interaction of
MBW complex, such as R2R3 MYB transcription factors, bHLH
transcription factors, and WD40 proteins (Payne et al., 2000;
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FIGURE 5 | CtACO3-2 interacts with the COP9 signalosome (CSN) subunit 5. (A) Yeast two-hybrid (Y2H) assay showing that CtACO3-2 interact with CtCSN5a.
(B) Glutathione S-transferase (GST)-pull down assay showing that CtCSN5 associates with CtACO3-2 in vitro. Purified GST-CtACO3-2 or GST proteins were bound
to glutathione-sepharose beads, and then incubated with His-CtCSN5a. Here, we show the protein bands of resulting pull-down products after western blotting with
anti-GST and anti-His antibodies. (C) Bifc assay showing that CtCSN5 interact with CtACO3-2 but not CtACO3-1 in vivo.

Ramsay and Glover, 2005). An et al. reported that JAZ protein
interacts with MdbHLH3, which belongs to MBW complex,
to regulate the accumulation of anthocyanins in apple (Ni
et al., 2020). In the present study, the overexpression of
CtACO3-2 resulted in the higher level of downstream structural
genes. It is consistent with previous studies in which bHLH3
increased the transcription of downstream structural genes
in mulberry fruits and apples (Li et al., 2020; An et al.,
2021). The results therefore provided strong evidence for the
hypothesis. To further test the hypothesis that JAZ1 interacts

with SCFCOI1 and bHLH3 in safflower, we examined a possible
physical interaction between CtCOI1 and CtJAZ1, CtbHLH3,
and CtJAZ1 using the Y2H system, respectively (Figure 6A). To
determine whether JAZ proteins interact with COI1 or bHLH3
in vitro, CtCOI1-GST and CtbHLH3N-GST were performed
with CtJAZ1-HIS (Figures 6D,E). Taken together, it was
demonstrated that CtJAZ1 (GenBank accession no. MW075468)
could physically interact with CtCOI1 and CtbHLH3 (GenBank
accession no. MW075469), respectively. It should be noted that
these interactions have been examined only in vitro, and the
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FIGURE 6 | Preliminary molecular mechanism of CtACO3-2 regulates the biosynthesis pathway of flavonoids. (A) Yeast two-hybrid assay showing the
protein–protein interaction of CtCSN5-CtCOI1-CtJAZ1-CtbHLH3. (B–E) Demonstration of CtCSN5-CtCOI1-CtJAZ1-CtbHLH3 interaction by GST pull-down assay.
Purified GST-CtCOI1, GST-CtbHLH3N, or GST proteins were bound to glutathione-sepharose beads, and then incubated with His-CtCSN5a or His-CtJAZ1. Here,
we show the protein bands of resulting pull-down products after western blotting with anti-GST and anti-His antibodies. (F) The relative transcript levels of CtCSN5a,
CtCOI1, CtJAZ1, and CtbHLH3 in CtACO3-2 overexpression lines. Data were expressed as mean ± SD (n = 8), **p < 0.01. (G) Schematic diagram illustrating the
preliminary molecular mechanism of CtACO3-2 regulate the biosynthesis pathway of flavonoids. The solid line represents the interactions have been proved in the
study, the dotted line represents the interactions have not been proved. Arrowheads indicate activations and “//” on arrow indicate inhibitions. The left of figure is two
transcripts of CtACO3, and CtACO3-2 inhibits the transcription of CtACO3-1; the right of figure is the network that CtACO3-2 influence the accumulation of
flavonoids through CtCSN5-CtCOI1-CtJAZ1-CtbHLH3.
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FIGURE 7 | The proposed pathway underlying ethylene and jasmonate (JA) pathway induced flavonoid biosynthesis in safflower.

preliminary model is novel and large (Figures 6F,G). The present
study may provide novel ideas for flavonoids regulatory network
in safflower, but further research is still required.

DISCUSSION

As a representative bulk Chinese medicine product, a growing
number of research about safflower have been demonstrated
from a molecular point of view. Results presented in this study
revealed the diverse molecular characteristics of CtACO3-2,
which influenced the flavonoid accumulation in safflower.

In safflower, the transcript levels of CtACOs in flower were all
increased continuously with the floret flowering. However, the
expression of different CtACOs showed tissue specificity; CtACO1
had the highest expression in leaf (Tu et al., 2019), whereas
both CtACO3-1 and CtACO3-2 expression peaked in flower.
These results were in line with the previous research, that ACO
had multiple expression characteristics temporally and spatially
(Barry et al., 1996; Nakatsuka et al., 1998; Brady et al., 2007; Park
et al., 2018). CtACO3-1 is localized in cytosol, whereas CtACO3-
2 is localized not only in cytosol but also in the nucleus. The
different residues of CtACOs may be the reason for their different
characteristics.

Only a few transcriptional factors have been identified for
regulating ACO expression (Houben and Van de Poel, 2019),
such as SlHB-1 in tomato (Lin et al., 2008), MaERF11 in
banana (Han et al., 2016), CmEIN3-like in melon fruit (Huang
et al., 2010), and CsWIP1in cucumber (Chen et al., 2016).
In the present study, CtACO3-2 banded to the promoter
of CtACO3 and repressed the transcription of CtACO3-1.
CtACO3-2 is a splice variant of CtACO3 and lacked 5′ coding
sequences, which might be the similar manner of TOC1, an
autoregulatory response regulator, in Arabidopsis (Strayer et al.,
2000). TOC1 encodes a nuclear protein and participates in a

feedback loop to control its own expression, and CtACO3-2
encodes a nuclear protein to control CtACO3-1, the full-length
transcript expression (Figure 6G). In present study, CtACO3-
1-overexpression safflowers had a higher transcript level of
CtACO3-2, whereas the level of CtACO3-1 was lower in CtACO3-
2-overexpression safflowers. The above phenomenon may be
because of the transcriptional regulation of CtACO3-2, while
there is not sufficient evidence regarding the transcriptional
factor function of CtACO3-2, but this finding deserves further
exploration. In parallel, we do not discount the possibility of
that the transcription level of CtACO3-1 and CtACO3-2 were
coordinated by a transcriptional network as ACOs.

The overexpression of CtACO3-1 and CtACO3-2 promote
the accumulation of quinochalcone and flavonol glycosylated
derivatives, such as HSYA, carthamin, quercetin glycosylated
derivatives, and kaempferol glycosylated derivatives in the
present study, whereas CtACO1 suppressed the flavonoid
accumulation (Tu et al., 2019). There have been numerous
reports on the synthesis of flavonoids regulated by ethylene,
CtACO as the key enzyme genes required for ethylene signaling
pathway, which may further affect the flavonoid biosynthesis
by regulating ethylene synthesis. Meanwhile, we preliminarily
constructed a novel pathway, that CtACO3-2 regulated the
biosynthesis of flavonoids by CtCSN5a. That may be the reason
why CtACOs play various roles in flavonoid accumulation
particularly in HSYA biosynthesis, which may be helpful in
further work on studying the functions of ACOs, as well as
regulating the metabolic flux of active compounds in safflower
by appropriate genetic engineering strategies.

At the last step of the ethylene biosynthesis, ACO interacted
with biomolecules mostly about that. For example, the flower
senescence was affected by the interaction between ACO1 and
GRL2 in petunia (Tan et al., 2014). In this study, we identified
that CtEXLB (expansion-like) interacted with CtACO3-2
(Supplementary Table 2 and Supplementary Figure 7),
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as an effective factor of cell division participating in plant
development and senescence. At the same time, CSN subunit
5 was found to interact with CtACO3-2 affecting flavonoid
accumulation in safflower. Dohmann et al. (2005) reported that
the CSN subunit 5 could enhance anthocyanin production in
the loss-function Arabidopsis mutants (Dohmann et al., 2005),
and CSN subunit 5 could also enhance MYB75 and suppress
GL2 expressions associated with the MBW complexes through
anthocyanin accumulation regulation (Wei et al., 2018). From the
Y2H and GST pull-down results, it is indicated that CtCSN5a
interacted with CtCOI1 protein, mediated the interaction
between JAZ1 and bHLH3, directly bound to the promoter
of flavonoid biosynthesis structural genes, and regulated their
transcription. The protein interaction data in the current study
provideCtCSN5a protein as the bridge ofCtACO3-2 andCtCOI1
protein, whereas CtACO3-2 belongs to the ethylene biosynthesis
pathway, and CtCOI1 belongs to the JA signaling pathway.

Flavonoid biosynthesis is regulated by diverse plant hormones,
such as ethylene and JA (Flores and Ruiz del Castillo, 2014;
An et al., 2018). Rudell and Mattheis reported that JA and
ethylene could induce anthocyanin accumulation in apple fruits,
synergistically (Rudell and Mattheis, 2008). Ni et al. (2020)
found that ethylene could mediate the branching of the JA-
induced flavonoid biosynthesis pathway in the red Chinese pear
fruit. In safflower, exogenous application of methyl JA increases
the accumulation of mostly flavonoids in safflower shown in
our previous study (He et al., 2018). This study offers new
insight for the common effects of ethylene and JA on flavonoid
accumulation in safflower (Figure 7). The accumulation of active
ingredients in botanicals is regulated by extensive networks,
such as salvianolic acid in Salvia miltiorrhiza, Artemisinin in
Artemisia annua (Lv et al., 2017; Deng et al., 2020a,b; Fu et al.,
2020; Hao et al., 2020). Therefore, there is a long way to
study the acting factors and regulatory networks of flavonoids
biosynthesis in safflower.

This study is limited by that the genetic background remains
unclear, the medicinal ingredients accumulate in flower and the
tissue culture system still difficult. So, in the present study, we
were unable to achieve the knockout or knockdown to further
verify the function of gene from the opposite side. Besides, the
principal limitations of the present study were that the validation
of the regulatory network that CtACO3-2 regulates flavonoid
synthesis via CtCSN5a was performed only in vitro experiments,
further research in vivo is required.
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