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Plants overcome the changing environmental conditions through diverse strategies and
complex regulations. In addition to direct regulation of gene transcription, alternative
splicing (AS) also acts as a crucial regulatory mechanism to cope with various
stresses. Generating from the same pre-mRNA, AS events allow rapid adjustment of
the abundance and function of key stress-response components. Mounting evidence
has indicated the close link between AS and plant stress response. However, the
mechanisms on how environmental stresses trigger AS are far from understood.
The advancing high-throughput sequencing technologies have been providing useful
information, whereas genetic approaches have also yielded remarkable phenotypic
evidence for AS control of stress responses. It is important to study how stresses
trigger AS events for both fundamental science and applications. We review current
understanding of stress-responsive AS in plants and discuss research challenges for the
near future, including regulation of splicing factors, epigenetic modifications, the shared
targets of splice isoforms, and the stress-adjusting ratios between splicing variants.

Keywords: alternative splicing, environmental stress, post-transcriptional regulation, splicing factor, epigenetic
control

INTRODUCTION

Since RNA splicing was initially discovered in 1977, this process of removing introns from pre-
mRNA has been observed in most eukaryotic cells (Berget et al., 1977). The accuracy of RNA
splicing is crucial for the synthesis of functional proteins. Although there are multiple splicing
mechanisms, canonical splicing which is catalyzed by spliceosome accounts for the majority. The
selection of splice sites is not only determined by core spliceosomal components but also regulated
by a number of spliceosome-associated RNA binding factors, predominantly serine/arginine-rich
(SR) proteins and other splicing factors (Laloum et al., 2018).

In response to changing environmental conditions, alternative mature transcripts from the same
pre-mRNA can be generated rapidly by choosing different splicing sites (Laloum et al., 2018). AS
greatly enhances the coding capacity of a genome and expands the proteome, regulating up to 95%
of human and 70% of plant multi-exon genes (Pan et al., 2008; Zhang et al., 2010, 2017; Marquez
et al., 2012). Intron retention (IR) is predominant in plants and exon skipping (ES) is the most
frequent AS event in mammals (Gupta et al., 2004; Wang and Brendel, 2006). Notably, RNA-seq
data have been confirming previous indications that abiotic stress markedly enhances AS events in
plants (Laloum et al., 2018).
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According to a recent study, different stresses rarely induce
overlapped AS events in plants, suggesting an environmental
specificity of AS regulations (Punzo et al., 2020). The selection of
alternative splice sites was enhanced for more than 6,000 genes
in Arabidopsis under high salinity (Feng et al., 2015). A large
number of differential AS events in maize leaves were found
when exposed to heat stress, and more than half of them are ES
and IR (Li Z. et al., 2021). During the sharp cooling treatment
on tea plants, the numbers of AS events were also significantly
increased (Li et al., 2020). These observations have indicated that
pre-mRNA splicing may have a strong bearing on stress response
in plants. AS patterns can be altered directly by splicing factors
or epigenetic changes, here we will review current studies on how
stresses control AS through these mechanisms in plants. We will
also discuss the consequences of AS and its influences on plant
stress responses (Table 1).

DIRECT REGULATION BY SPLICING
FACTORS

Alternative splicing is most commonly controlled by splicing
factors, and AS regulation studies have been primarily focusing
on key RNA sequence elements and their associated regulators
(Luco et al., 2011). Plant stress-responsive genes are particularly
prone to generating multiple transcripts in response to different
environmental stresses (Ner-Gaon et al., 2004). However, the
conserved and specific stress-responsive RNA sequence elements
were not found among plant species, and AS events from different
genes revealed completely diversified splicing recognition sites
(Laloum et al., 2018). These suggest that the splicing mechanism
in response to environmental stresses is more dependent on a
variety of splicing factors in plants.

Splicing factor genes usually show a quick response to
environmental stresses at transcriptional levels (Laloum et al.,
2018). For example, the SR34b gene is upregulated by cadmium
(Cd), and controls the plant tolerance to Cd toxicity in
Arabidopsis (Zhang et al., 2014). Two plant-specific SC35-Like
(SCL) SR genes are downregulated upon exposure to exogenous
ABA treatment in Arabidopsis (Cruz et al., 2014). The U5
snRNP–associated splicing factor, STABILIZED1 (STA1) gene is
upregulated in response to cold stress, and the phenotypes of
sta1-1 plants under cold stress is severe (Lee et al., 2006). The
transcriptional and protein levels of the Ser/Arg-rich splicing
factor SR45, SR30, and SR34, and the nuclear ribonucleic protein
U1A accumulate under high temperature in Vitis vinifera (Jiang
et al., 2017). Also, the expression levels of splicing factor
PRP18 shows large increases under drought conditions in maize
(Thatcher et al., 2016). Some splicing factors themselves undergo
AS events under stress, like SR45a, in which two splice isoforms
showed strong induction by salt treatment (Li Y. et al., 2021).

The change of splicing factor transcriptional expressions
usually leads to the altered AS patterns of downstream stress-
responsive genes (Figure 1A). Ski-interacting protein (SKIP)
is a salt-responsive splicing factor, which mediates the AS of
many genes in the recognition and cleavage of 5′ donor and
3′ acceptor sites (Feng et al., 2015). Salt stress changes SKIP

expression levels and decreases the ability of the spliceosome
to accurately recognize splice sites (Feng et al., 2015). Splicing
factor Sm protein E1 (SME1) ensures the appropriate splicing
of a high number of pre-mRNAs in maintaining the levels of
selected cold-responsive functional transcripts (Huertas et al.,
2019). SME1 shows a cold response expression pattern, and the
mutant phenotype displays that SME1 functions as a negative
regulator of the cold acclimation process by regulating splicing
events (Huertas et al., 2019). RNA-directed DNA methylation
16 (RDM16) encodes an ABA responsive pre-mRNA-splicing
factor 3(PRP3), which is involved in pre-mRNA splicing. And
RNA-seq data identified 308 IR events changed in rdm16 mutant
(Huang et al., 2013).

In addition to the transcriptional regulations, splicing factors
are also modified at post-translational levels. Most of the nuclear
SR proteins are phosphorylated on their RS domain, and the
phosphorylation status of SR proteins is highly related to their
functions in spliceosome assembly and subcellular localization
(Jeong, 2017). The phosphorylation of glycine-rich RNA binding
protein7 (GRP7) enhances its mRNA binding ability and its
association with spliceosome component U1-70K to change
dynamic AS (Wang et al., 2020). The alkalinization of FACTOR
1 (RALF1) and FERONIA (FER) triggers rapid and massive
AS events by interacting with and phosphorylating GRP7 in
Arabidopsis (Wang et al., 2020).

EPIGENETIC CONTROL

Epigenetic markers, like chromatin modification and DNA
methylation have also been found to be associated with AS
regulations. Dramatic epigenetic changes play key roles in cell-
and condition-dependent AS regulation in animals (Ibtissam
et al., 2019). In plants, the role of epigenetic control in regulating
AS under stress is emerging (Hu J. et al., 2019). Recent
data have identified a strong relationship between chromatin
changes and AS control. A potential epigenetic control of
AS is through pol II (Figure 1B). The pol II initiation and
elongation speed mediate the splicing processing of pre-mRNAs
to generate AS transcripts in plants (Ibtissam et al., 2019).
Greater pol II processivity is associated with a more open
chromatin structure, which favors pol II elongation (Petrillo
et al., 2014; Godoy Herz et al., 2019). In Arabidopsis and
rice, the chromatin structure was more open in retained
introns (Fahad et al., 2018). The open chromatin architecture
enhanced pol II elongation rate, which led to skipping of
splice sites (Fahad et al., 2018). In addition, pol II elongation
speed was also found to be slower in exons than introns
in Arabidopsis (Ibtissam et al., 2019). Interestingly, pol II
elongation speed is faster under light conditions than in
darkness, leading to an ES (Godoy Herz et al., 2019). DNA
methylation is also associated with chromatin remodeling to
regulate plant AS patterns. In rice, the widespread differences
of splicing variants were found in CG methyltransferase mutant
OsMet1-2 lines (Wang et al., 2016). Also, CG methylation
was higher in AS-related introns than constitutive introns
(Wang et al., 2018).
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TABLE 1 | A summary of stress-responsive AS genes.

Gene Specie Stress responses Function Regulation types of AS* References

SR34b Arabidopsis Cadmium Splicing factors A Zhang et al., 2014

SR45 Vitis vinifera Heat Splicing factors A Jiang et al., 2017

SR30 Vitis vinifera Heat Splicing factors A Jiang et al., 2017

SR34 Vitis vinifera Heat Splicing factors A Jiang et al., 2017

SCL Arabidopsis ABA Splicing factors A Cruz et al., 2014

SR45a maize Heat Splicing factors A Li Z. et al., 2021

STA1 Arabidopsis Cold Splicing factor A Lee et al., 2006

SKIP Arabidopsis Salt Splicing factor A Feng et al., 2015

SME1 Arabidopsis Cold Splicing factor Sm protein A Huertas et al., 2019

RDM16 Arabidopsis ABA ABA responsive splicing factor A Huang et al., 2013

PRP18 maize Drought Splicing factor A Thatcher et al., 2016

GRP7 Arabidopsis Salt Glycine-rich RNA binding protein A Wang et al., 2020

SKB1 Arabidopsis Salt, ABA Shk1 kinase binding protein B Zhang et al., 2011

MET1-2 Rice Cadmium CG methyltransferase B Wang et al., 2015

FLC Arabidopsis Salt Transcription factor B Zhang et al., 2011

HAB1 Arabidopsis ABA Type 2C protein phosphatase C D Wang et al., 2015

CIPK3 Arabidopsis ABA, Drought Serine-threonine protein kinase C Sanyal et al., 2017

HsfA2 Arabidopsis Heat Transcription factor C Liu et al., 2013

HSFA Tomato, Lily Heat Transcription factor C Hu Y. et al., 2019; Wu et al., 2019

IDD14 Arabidopsis Cold Inderminate domain C Seo et al., 2011

SR45a Arabidopsis Salt SR like protein C D Li Y. et al., 2021

SRAS1 Arabidopsis Salt Salt-responsive AS gene C D Zhou et al., 2021

CBP20 Arabidopsis Salt Cap-binding protein C Li Y. et al., 2021

CSN5A Arabidopsis ABA, Salt COP9 signalosome C Zhou et al., 2021

ABI3 Arabidopsis ABA Transcription factor D Sugliani et al., 2010

RBM25 Arabidopsis ABA RNA-binding protein D Cheng et al., 2017

VvPMA1 Vitis vinifera Salt PM H+-ATPase genes D Han et al., 2017

LUC7 Arabidopsis Cold Lethal unless CBC7 D Marcella et al., 2018

FLM Arabidopsis Heat MADS domain protein D Chang et al., 2021

CML21 Vitis vinifera Cold Calmodulin-Like Gene D Aleynova et al., 2020

*Different types of AS are illustrated in the Figure 1.

A close relationship between abundant epigenetic
modifications and splicing variation has been revealed
under different growth and stress conditions. Under salt
stress, PRMT5 (protein arginine methyltransferase 5)
methyltransferase (also known as SKB1) increases H4R3sme2
(histone 4 arginine 3 symmetric demethylation) levels
in Arabidopsis, suggesting SKB1 disassociation from
chromatin results in a reduction in the cellular levels of
H4R3sme2, resulting in the induction of FLOWERING
LOCUS C (FLC) and salt stress-responsive genes (Zhang
et al., 2011). PRMT5 also alters AS in the core clock
gene PSEUDO RESPONSE REGULATOR 9 (PRR9) and
influences clock functioning in Arabidopsis (Sanchez
et al., 2010). Evidence in rice indicates that histone
H3K36-specific methyltransferase (SDG725) regulates IR
events in many genes (Wei et al., 2018). In Arabidopsis,
temperature-induced differentially spliced genes are enriched
in H3K36me3 marks, while depletion of H3k36me3
marks has the opposite effect to temperature-induced AS
(Pajoro et al., 2017).

SHARED TARGET BINDING AND
REGULATING

In consequence of AS, novel protein products may be generated
and involved in the plant stress responses. AS events often
introduce premature stop codons, generating truncated isoforms.
Interestingly, these truncated isoforms often keep the ability of
interacting with the same target with full-length protein, while
some ability is lost because of missing key domain (Figure 1C).
In the ABA signaling pathway, the Group A protein type 2C
phosphatases (PP2C) HAB1 undergoes ABA-controlled AS to
produce two splice variants, which encode HAB1.1 and HAB1.2.
Both of them interact with subclass III SNF1-related protein
kinases SnRK2.6 (OST1) in both cytoplasm and nucleus (Wang
et al., 2015). Another example is the CIPK3 splice variants
induced by ABA and drought treatment. Five CIPK3 protein
variants (CIPK3.1, CIPK3.2, CIPK3.3, CIPK3.4, and CIPK3.5)
have been generated. Although having different preferences on
their upstream CBL interactors, these proteins do not lose the
binding ability to their target (Sanyal et al., 2017).
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FIGURE 1 | Regulation types of AS in response to environmental stresses. Alternative splicing under environmental stresses. (A) Stresses can induce alternative
splicing through splicing factors (SF). SFs are regulated at multiple levels: (1) environmental stress promotes or inhibits transcription of splicing factors; (2) many
splicing factors themselves generate alternative splicing events which further regulate splicing of downstream genes; (3) SR proteins can be phosphorylated (labeled
“P”) under stress. (B) Environmental stresses change epigenetic marks which alter the pol II elongation rate, leading to either Intron retention (IR) or Exon skipping
(ES). (C) Environmental stress induces different splicing isoform (isoform 2), which tends to bind the same target (protein or DNA) that full-length isoform (isoform 1)
binds. One example is the splice isoforms involved in the regulation of protein degradation. (D) Alternative splicing generates transcript isoforms with variable
abundance. Environmental stresses lead to the altered ratios of splice variants. Exons are displayed as boxes and introns as lines in gene diagrams.

A key transcription factor Heat shock transcription factorA2
(HsfA2) generate a new intron-retained splice variant (designated
HsfA2-III) in Arabidopsis seedlings (Liu et al., 2013). This
truncated isoform still has DNA-binding ability, but the loss of
C-terminal activation domain (CTAD) of HsfA2 might lead to
the defect of transactivation activity and failure in functioning
as a transcription factor (Liu et al., 2013). Similar AS events
of HSFA also occur in Tomato and Lily (Hu Y. et al., 2019;
Wu et al., 2019). The generation of HSFA splice variants might
result in a genetic buffering to tolerate the negative effects of
long-term Heat stress on plants (Hu J. et al., 2019). Another
temperature-dependent case is the INDERMINATE DOMAIN
14 (IDD14). An alternatively spliced IDD14 form (IDD14β),
which is generated under cold conditions, lacks functional DNA
binding domain but is able to form heterodimers with the
functional IDD14 form (IDD14α) (Seo et al., 2011).

Two splicing variants of serine/arginine-rich (SR)-like protein
(SR45a) were also identified under salt stress, full-length SR45a-
1a and the truncated isoform SR45a-1b. The full-length SR45a-
1a works as a splicing factor while the truncated isoform
SR45a-1b does not (Li Y. et al., 2021). However, the cap-
binding complex subunit cap-binding protein 20 (CBP20)
indeed physically interacts with both SR45a-1a and SR45a-
1b. SR45a-1b mediates salt-stress signal transduction pathways
through promoting the association of SR45a-1a with CBP20

(Li Y. et al., 2021). Another example is the Salt-Responsive
Alternatively Spliced gene 1 (SRAS1), encoding a RING-Type
E3 ligase. It can generate two splicing variants: SRAS1.1
and SRAS1.2, which exhibit opposing responses to salt stress
(Zhou et al., 2021). The full-length SRAS1.1 targets and
promotes the degradation of CSN5A, while SRAS1.2 protects
CSN5A by competing with SRAS1.1 on the same binding site
(Zhou et al., 2021).

ADJUSTMENT OF SPLICING VARIANT
RATIOS

In response to environmental changes, new splicing variants
might emerge from stress-responsive genes (Laloum et al.,
2018). Simultaneously, the expression levels of original splicing
variants might also alter, resulting in an adjustment of
splicing variant ratios (Figure 1D). These changes may be
essential for plants to adapt to environmental challenges.
Following up the above discussion on HAB1, expression
analysis showed that the HAB1.2/HAB1.1 ratio greatly differed
at the germination stage with or without ABA treatment
(Wang et al., 2015). Under drought treatment, the ratios of
HAB1.2/HAB1.1 increased at 0.5 h and then decreased as
time went on in the WT (Cheng et al., 2017). RNA-binding
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protein 25 (RBM25) acts upstream of HAB1, a conserved ABA-
induced splicing factor, affecting the ratio of HAB1.2/HAB1.1
to modulate plant response to drought stress (Cheng et al.,
2017). There are also some other ratio shifts of splicing
variants responding to ABA. Splicing factors suppressor of
ABI3 (SUA) suppresses splicing of the cryptic ABSCISIC
ACID INSENSITIVE3 (ABI3) intron and thereby influences
the ratio between ABI3-α and ABI3-β transcripts, which
then could represent a system to finetune seed maturation
(Sugliani et al., 2010).

Similar phenomena were also observed under salt stress.
Salt stress triggered the ratio changing of SR45a (SR45a-1a and
SR45a-1b) and SRAS1 (SRAS1.1 and SRAS1.2) (Li Y. et al.,
2021; Zhou et al., 2021). Another interesting example is the AS
events of Vitis vinifera PM H+-ATPase genes 1 (VvPMA1). The
ratio changing of VvPMA1 was discovered under salt conditions
(Han et al., 2017). Subtle changes in the ratio of VvPMA1α

and VvPMA1β likely have profound effects on PM H+-ATPase
activity in grape root under salinity (Han et al., 2017).

Besides ABA and salt, extreme temperature also has a
dramatic effect on the splice patterns of many genes. Heat
and cold stress alter the ratios of splice isoforms for many
SR family members, such as SR34b, RS41, and SR30 (Palusa
et al., 2007). One additional splice form (isoform 9) of SR34b
appeared in heat-treated seedlings, whereas some isoforms (3,
6, 7, and 8) were transcriptionally reduced. The ratios of SR34b
transcripts altered in seedlings with heat or cold treatment
(Palusa et al., 2007). The levels of all four splice variants of
the Grapevine Calmodulin-Like Gene (VaCML21) were highly
induced in response to cold stress (Aleynova et al., 2020).
The ratios between transcript variants are changing with or
without cold stress (Aleynova et al., 2020). LETHAL UNLESS
CBC7 (LUC7) proteins specifically promote a subset of terminal
introns splicing in response to cold stress, leading to the
ratio changing of splicing variants of cold responsive gene
(Marcella et al., 2018).

In Arabidopsis, FLOWERING LOCUS M (FLM) undergoes
AS and this temperature-dependent AS leads to a differential
accumulation of the FLM-β and FLM-δ transcripts (Lee et al.,
2013). Two main splicing variants compete for interaction
with the floral repressor SVP to control temperature-dependent
flowering (Posé et al., 2013). FLM-β was the prevalent splice
variant at 16 ◦C, whereas FLM-δ dominated at 27 ◦C. The
splice variant ratios of FLM are regulated in response to low
and high temperature coupled with nonsense-mediated mRNA
decay pathway (Sureshkumar et al., 2016). Also, the splicing
events of FLM are mediated by another splicing factor 1
(AtSF1) during its signaling pathway (Kim et al., 2020). AtSF1
acting in 3′ splice-site recognition is responsible for ambient
temperature-dependent AS of FLM pre-mRNA, resulting in
the temperature-dependent production of functional FLM-β
transcripts (Kim et al., 2020). The cyclin-dependent kinase
G2 (CDKG2), together with its cognate cyclin, CYCLYN L1
(CYCL1) affects the AS of FLM, balancing the levels of FLM-
β and FLM-δ across the ambient temperature range (Nibau
et al., 2020). Both the level and splicing pattern of FLM
transcripts are affected by RBP45d and PRP39a, which facilitate

temperature-induced AS of FLM to induce flowering at higher
temperature (Chang et al., 2021).

CONCLUSION AND FUTURE
PROSPECTS

Evidence has indicated that AS, acting as a crucial regulatory
mechanism in response to various stresses, is fast and efficient,
and this may have an evolutionary advantage for plants to survive
under rapidly changing environments. Although splice variants
participate in different pathways, they do have something in
common: (1) alternatively spliced transcripts tend to encode
truncated proteins that interact with the same targets; and
(2) the ratios of splice variants are critical in the regulation
of stress response pathways. A key question is how stress
signals control splicing factors and lead to AS? Previous studies
have shed some light. The reversible phosphorylation might be
crucial in the regulation of splicing factor activity. Epigenetics
is also associated with AS, and histone markers can alter the
pol II elongation speed leading to either ES or IR. More
in-depth studies will be necessary to address the upstream
regulatory pathways of AS. Another question is how stress-
induced AS helps plants to adapt to environmental challenges.
More case-by-case studies will be needed to better understand
the whole picture.

In addition, CRISPR/Cas9 technology has given us power
to engineer the splicing patterns of trait genes for improving
crops. The identification of splice variants and function
characterization are very helpful for developing new gene
editing approaches. Take the FLM variants for example,
native FLM genomic locus can be directly edited by deleting
exon 2 or 3 to generate splice variants, and the generated
germlines display different flowering phenotypes (Capovilla
et al., 2017). Instead of deleting entire exons, we could
directly modify splice sites in crop genomes to generate
desired transcript variants using CRISPR/Cas9 based base
editor. The CRISPR/dCas9 could also be coupled with
methylation/demethylation enzymes to modulate splicing
outcomes through mediating pol II speed. Future studies
on stress triggered AS will be of great value in understating
the mechanisms of regulation of AS, and in improving crop
adaptations to extreme environmental conditions.
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