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Plant tissues are distinguished by their gene expression patterns, which can help
identify tissue-specific highly expressed genes and their differential functional modules.
For this purpose, large-scale soybean transcriptome samples were collected and
processed starting from raw sequencing reads in a uniform analysis pipeline. To
address the gene expression heterogeneity in different tissues, we utilized an adversarial
deconfounding autoencoder (AD-AE) model to map gene expressions into a latent
space and adapted a standard unsupervised autoencoder (AE) model to help effectively
extract meaningful biological signals from the noisy data. As a result, four groups
of 1,743, 914, 2,107, and 1,451 genes were found highly expressed specifically in
leaf, root, seed and nodule tissues, respectively. To obtain key transcription factors
(TFs), hub genes and their functional modules in each tissue, we constructed tissue-
specific gene regulatory networks (GRNs), and differential correlation networks by
using corrected and compressed gene expression data. We validated our results from
the literature and gene enrichment analysis, which confirmed many identified tissue-
specific genes. Our study represents the largest gene expression analysis in soybean
tissues to date. It provides valuable targets for tissue-specific research and helps
uncover broader biological patterns. Code is publicly available with open source at
https://github.com/LingtaoSu/SoyMeta.

Keywords: soybean, transcriptome analysis, deep learning, autoencoder, tissue-specific gene, gene regulatory
network, functional module

INTRODUCTION

The soybean is a valuable source of oil and protein for humans and livestock; it is also very
important for soil fertility, given the symbiotic interaction with nitrogen-fixing rhizobia. The
development of high-throughput gene expression quantification technologies, initially dominated
by microarray platforms and later by RNA-Seq technologies, has contributed to the substantial
rise in soybean transcriptome studies. The related data are well presented in several public data
repositories, such as the SoyKB (Joshi et al., 2012, 2014, 2017), SoyBase (Grant et al., 2010;
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Brown et al., 2021) and the most recently published Soybean
Expression Atlas (Machado et al., 2020), covering thousands of
gene expression data sets from various tissues, developmental
stages and conditions. Typically, several related experiments
studying the same tissue are available, providing a rich set of
materials for integrative analysis via data pooling and mining.
The increasing sample size also enhances the statistical power to
obtain a more precise and robust estimate of molecular markers
and reduces the noise effects and individual study biases.

Researchers have become increasingly interested in
integrating their own data with publicly available data
sets to achieve more accurate results and deeper biological
understanding. For example, through a large-scale transcriptome
meta-analysis, several hub genes involved in soybean oil
accumulation processes were revealed in Qi et al. (2018), and a
large number of differentially expressed genes (DEGs) related to
soybean symbiotic nitrogen fixation were also identified (Yuan
et al., 2017). In addition, some similar studies are available (Liu
et al., 2015; Huang et al., 2018; Wang J. et al., 2019; Yi et al.,
2019). However, most of these investigations explored only a few
conditions or developmental stages. Such ad hoc approaches can
overlook a myriad of interesting transcriptional patterns, which
could otherwise be unraveled by integrative methods using a
more comprehensive set of samples. Inspired by this, a global
co-expression network analysis of 1,072 soybean microarray
samples was conducted (Wu et al., 2019), which revealed a gene
module that is likely involved in the evolution of nodulation
in plants. Kim et al. (2017) constructed the SoyNet database
using 734 microarrays and 290 RNA-seq samples. Moreover, by
systematically analyzing 1,270 microarray samples generated
with Affymetrix gene chips, a nodulation-related co-expression
module was uncovered (Wu et al., 2019). More recently,
researchers (Sun et al., 2020) identified key regulators and hub
genes in each tissue by analyzing a genome-wide transcriptome
dataset from eight tissues at three different seed development
stages. To elucidate the dynamics of transcriptional regulation
across the broad range of samples, tissues, and cultivars, 1,298
publicly available soybean transcriptome samples were collected
and analyzed by Machado et al. (2020).

Properly integrating large-scale data sets can help increase
statistical power, but expression profiles inherently contain
variations introduced by noise, batch effects and conditions
unrelated to the biological hypotheses. Although many batch
effect adjustment methods have been proposed (Benito et al.,
2004; Johnson et al., 2007; Sims et al., 2008; Luo et al.,
2010; Xia et al., 2013), they typically cannot handle large-
scale data integration (Haibe-Kains et al., 2013). Therefore, the
integration of microarray and RNA-seq data sets continues to be a
challenging problem (Lazar et al., 2013). However, the emergence
of deep learning techniques provides a new perspective and
opportunity to solve this problem. The unsupervised learning
model can extract patterns from diverse and noisy data without
assuming any statistical properties of the data, which makes
it well suited for gene expression analysis (Du et al., 2019;
Dincer et al., 2020; Li et al., 2020). For example, the adversarial
deconfounding autoencoder (AD-AE) model (Dincer et al., 2020)
can generate biologically informative expression embeddings that

are both robust to confounders and generalizable. The AD-
AE model uses an autoencoder network to capture the true
signal and a complete adversary network to remove confounder
variables for a noise-free and confounder-free representation.
Considering the widespread noise in soybean gene expression
datasets (Araujo et al., 2017; Cortijo et al., 2019), in this study, we
adapted the AD-AE model to analyze collected soybean datasets,
considering not only different data sources but also different
sequencing platforms.

As more and more tissue-specific gene expression data
become available for soybeans (Libault et al., 2010), another
important aspect in the large-scale integrative analysis is
detecting tissue-specific genes and constructing tissue-specific
gene regulatory networks (GRNs). Several computational
methods were developed to measure the tissue specificity
of gene expression, such as the EE (Yu et al., 2006) in the
database TiGER (Liu et al., 2008), the SPM used in the database
TiSGeD (Xiao et al., 2010), and the Gini coefficient (Ceriani
and Verme, 2012). However, all these methods need to calculate
the mean expression value and the expression maximum
value for each gene in each tissue as a global measure of the
gene’s specificity. One disadvantage of such methods, especially
when there are a large number of samples for each tissue, is
that confounding variation and noise may hinder learning
biologically meaningful representations. Autoencoder-based
data compression is preferred in this case to efficiently extract
the true signal from high dimensional data and to learn latent
representations corresponding to biological information of
interest (Gupta et al., 2015; Lin et al., 2017; Xie et al., 2017; Ding
et al., 2018). Therefore, we propose the use of an autoencoder
model for detecting tissue-specific highly expressed genes. As
for GRN construction, GENIE3 is a widely used tool (Marbach
et al., 2012) and has been successfully applied in constructing the
Arabidopsis (Ezer et al., 2017) and maize (Walley et al., 2016)
GRNs. However, GENIE3 is very time consuming especially
when the gene expression vector is in high dimension.

Furthermore, in GRN construction, without dimension
reduction, confounder-based variations often mask true signals
of biologically meaningful regulations (Yi et al., 2018; Kinalis
et al., 2019). To address these issues, we applied an autoencoder
to compress our sample representations in each tissue into a
much lower dimension, i.e., to learn a latent space that maps M
samples to D dimension (M�D) such that the biological signals
presented in the original expression space can be preserved in
the D-dimensional space. Then, we constructed and compared
the differential regulatory network for each tissue using the
embedded expression matrix produced by the autoencoder
model. Moreover, key transaction factors (TFs) were identified
for each tissue. We also predicted the functional modules in each
differential network by performing clustering analyses.

In this study, after processing, 5,422 high-quality samples
were left for analysis (either RNA-seq or microarray data) and
were manually separated into case and control (“baseline”)
groups. Each group contains gene expression profiles of many
different tissues and development stages from a wide range of
studies. The control expression was obtained under normal,
untreated conditions. Each sample was manually curated, and
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both microarray and RNA expression levels were mapped and
normalized based on original raw sequencing reads. With the
data sets and the autoencoder model, we identified highly
expressed genes in the soybean leaf, root, seed, and nodule.
In combination with GENIE3 and the autoencoder model,
tissue-specific GRNs were constructed, and hub TFs were

identified. After comparing our newly constructed GRNs with the
corresponding control network, a differential correlation network
was constructed. This network provided us the opportunity to
identify new genes and interactions with significant changes. We
also clustered the network modules and provided their functional
annotations. Figure 1 shows the overall framework and our

FIGURE 1 | The overall framework and workflow.

Frontiers in Plant Science | www.frontiersin.org 3 March 2022 | Volume 13 | Article 831204

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-831204 February 25, 2022 Time: 16:14 # 4

Su et al. Integrative Analysis of Soybean Transcriptome

workflow, which includes five parts: (A) the data source, (B) the
data process, (C) tissue-specific expression analysis, (D) tissue-
specific GRN construction and analysis, and (E) tissue-specific
differential network construction and analysis. To the best of
our knowledge, this is the largest analysis of gene expressions in
soybean tissues to date. Our results can provide more accurate
targets for future tissue-specific studies and help uncover broader
biological patterns.

MATERIALS AND METHODS

Data Collection, Processing, and
Normalization
Selecting and pre-processing suitable microarray and RNA-seq
datasets, are key issues and steps in conducting large-scale
integrating analysis. After a systematic review of soybean-related
microarray studies in the literature, we found a large number
of samples sequenced by the Affymetrix GPL4592 (Affymetrix
Glycine max Genome Array) platform. For easy data integration
and normalization, only data generated from the GPL4592
platform were used for microarray datasets in this study. The
RNA-Seq samples were mainly downloaded from the NCBI SRA
(Leinonen et al., 2011) and the ArrayExpress database (Athar
et al., 2019) together with some in-house data. Each dataset was
manually checked using the following three criteria: (i) methods
for the sequencing experiments, (ii) available raw data (FASTQ or
SRA formats), and (iii) detailed sample information to determine
whether it was included in the analysis or not. Reads obtained
from the same biological sample were combined in a single
FASTQ file (or in two files, for paired-end data).

The analysis pipeline is shown in Figure 1B, where the
microarray and RNA-seq data are processed separately with
different tools for quality check, raw data processing and
normalization. In detail, for RNA-seq data, we used TrimGalore-
0.6.51 to trim sequence adapters from the raw reads FASTQ
files. The trimmed FASTQ files were then prepared for quality
control with FastQC-0.11.8 (Wingett and Andrews, 2018), which
provides a quick view on the quality of the raw sequence reads
from multiple analyses, ranging from the sequence quality and
GC content to library complexity. FastQC-0.11.8 also produces a
report in HTML format. Then high-quality reads were aligned
to the soybean genome (Glycine max Wm82.a4.v1) by STAR
(Dobin et al., 2013). As transcripts per million (TPM) (Wagner
et al., 2012) normalization is more consistent across technical
replicates than other normalization methods. We normalized
data using TPM for most of the downstream analysis (Li and
Li, 2018), and log2 transformed raw read counts are used for
quality control steps and AD-AE based confounders removal.
Datasets with known batch effect information are corrected with
the ComBat-Seq (Zhang et al., 2020). For the microarray data
type, raw datasets are retrieved with GEOquey (Sean and Meltzer,
2007). After outliers were filtered out, we processed the CEL-type
raw data with affy, an R package used to analyze oligonucleotide
arrays and manufactured by Affymetrix (Gautier et al., 2004) and

1https://github.com/FelixKrueger/TrimGalore

the oligo package developed by Carvalho and Irizarry (2010),
which serves as a Bioconductor tool that supports R packages.
Final data were normalized with GCRMA (Gharaibeh et al.,
2008), which converts background-adjusted probe intensities
to expression measures using the same normalization and
summarization methods as the robust multiarray average (RMA)
(Irizarry et al., 2003).

As shown in Supplementary Figure 1, 5,422 high-quality
samples remained for further analysis, including 3,819
microarray samples and 1,603 RNA-seq samples. For each
sample, we manually labeled its cultivar, tissue, development
stage, and case-control information. All RNA-seq and
microarray data analyzed in this work can be obtained from the
European Nucleotide Archive2 and Gene Expression Omnibus
(GEO), respectively.3 Accession numbers are summarized in
Supplementary File 1.

Removal of Confounders
As in Dincer et al. (2020), the AD-AE model consists of one
standard autoencoder and an adversary network model that takes
the embedded layer as input and predicts the confounders. Here,
we used the data sources as confounder variates. The autoencoder
network consists of an encoder network and a decoder network.
The encoder network is defined as f∅ : X → Z, which maps each
sample X ∈ RM in the input layer to the embedding layer Z ∈
RD, where M is the gene number of each sample. The decoder
network tries to reconstruct X with the embedded layer Z. The
optimize function is defined in Eqn. (1):

min8,ψE||x− gψ
(
f8 (x)

)
||

2
2, (1)

where 8 and ψ are the parameters for the encoder and
decoder networks, respectively. In this study, after parameters
optimization, for all tissue-specific expression data, the
embedded layer size is set to 100, and the input layer sizes
are the same as the gene number. We used one hidden layer for
all the AE models, with the size of the half gene number, resulting
in a 50%-dimension reduction. The minibatch size was set to
128, and we trained the model with the Adam optimizer using
a learning rate of 0.0001. We applied the ReLU activation to all
layers except the last layer, where we applied linear activation.
The adversary model maps the embedding Æ to confounders. To
reduce the confounding effects, after training, the autoencoder
needed to converge to generate an embedding that contains less
information about the confounder, and the adversary model
needed to converge to reach a random prediction performance.

The adversary model hv is optimized with the following
objective:

minvE[L(hv (x) , c)] (2)

where c is the confounder, and L is the loss function with
categorical cross entropy loss. For the adversarial model, as
in Dincer et al. (2020), a fully connected neural network has
two hidden layers with 100 hidden nodes in each layer, and
this network uses the ReLU activation function. The last layer’s

2https://www.ebi.ac.uk
3https://www.ncbi.nlm.nih.gov/geo/
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number of nodes corresponds to the number of data sources, and
this layer has softmax activation. First, we trained each model
separately. We then used the following objective function for the
alternative joint training.

min8,ψ,νE[||x− gψ(f8(x))||22 − λL(hv(x), c)] (3)

We first froze the weights of the adversary model and trained
the autoencoder model for one epoch on a randomly selected
minibatch of the data using stochastic gradient descent. We then
froze the autoencoder model and trained the adversary model
for an entire epoch to minimize Eqn. (2). For each dataset, we
applied a fivefold cross validation to select the hyperparameters
of autoencoder models, which is suitable considering the data
set size. When training the model, we used 80% of the data
for training with the rest left for validation, and we determined
the optimal epochs based on the validation loss. We used the
reconstructed data from the autoencoder model as input for our
next step analysis. After removing confounders, for each tissue,
data sets from different sources were more consistent and datasets
from different tissues became more separate.

Tissue-Specific Gene Identification,
Gene Regulatory Networks, and
Differential Network Construction
Instead of using the mean value across all samples as the gene
expression value, we proposed using an autoencoder model to
compress the gene expression vector to a lower dimension. The
encoder network is defined as f∅ : Y→ Z, which maps each
gene Y ∈ RN in the input layer to the embedded layer Z ∈ RD,
where N is the sample number of each gene. Here the input to
the autoencoder model is the gene expression values across all
samples. To get genes highly expressed in each tissue for each
tissue-specific gene expression matrix, the embedding layer size
was set to 1-dimension, the input layer size was set with the same
sample number of each tissue. We used one hidden layer for all
the AE models, with the size set as half the sample number, which
resulted in a 50%-dimension reduction. The minibatch size was
set to 12, and we trained the model with the Adam optimizer
using a learning rate of 0.0001. We used the ReLU activation
for all layers except the last layer, where we applied softplus
activation. With the compressed gene expression matrix, we used
τ as defined in Eqn. (4) to measure the tissue specificity of each
gene.

τ =

∑n
i = 1 (1− ŷi)
n− 1

; ŷi =
yi

max1 ≤ i ≤ n(yi)
(4)

where n is the tissue number including the control condition. yi is
the expression of the gene in tissue i. We used the 3rd quantile of
all τ values as the threshold value to filter highly expressed genes
in each tissue and in the control condition.

For constructing tissue-specific GRNs, we used the same
autoencoder model as that used to identify tissue-specific genes
except that we set the embedding layer size to 64-dimension.
However, the embedding layer size for the nodule tissue was
set to size 32 (because only 47 samples exist for nodules).

A total of 3,747 Glycine max known TFs were obtained and in
combination with tissue-specific genes identified above, 662, 736,
781, and 617 TFs were highly expressed in leaf, root, seed, and
nodule, respectively. Among these TFs, 110, 93, 155, and 110
are uniquely highly expressed in leaf, root, seed, and nodule,
respectively. Some genes or TFs are not expressed in some
tissues; therefore, they will not have predicted targets. Hence,
the compressed expression matrix for each tissue is filtered to
remove low variance genes by using the filterGenes function in
the DGCA R package (Mckenzie et al., 2016; Zhou et al., 2020).
GENIE3 ran under the default parameters setting and restricted
the candidate regulators to the filtered tissue-specific TFs. By
utilizing the embedded data sets, the filtered tissue-specific TFs
and the GENIE3 (Huynh-Thu et al., 2010) algorithm, four tissue-
specific (leaf, root, seed, and nodule) GRNs were constructed. To
find TFs that play important roles in each GRN, we ranked all TFs
based on their degree.

Understanding interactions that specifically exist in one tissue
in comparison with those in the control conditions is important
to the understanding of tissue-specific gene regulation. Therefore,
we constructed the differential co-expression network of each
tissue based on paired tissues and control expression data
produced by the autoencoder model. Different from differential
expression, differential co-expression operates on the level of
gene pairs rather than individual genes. To deal with this, the
Fisher z-transformation is employed as in Eqns. (5 and 6).

z =
1
2
loge

(
1 + ρ

1− ρ

)
(5)

dz =
(z1 − z2)√∣∣s2z1
− s2z2

∣∣ (6)

where ρ is the Pearson correlation coefficients, z1 and z2
corresponding to tissue-specific and control values, respectively,
and s2z refers to the variances of the z-score. Using the difference
in z-scores, dz, a two-sided p-value can be calculated using
the standard normal distribution and by adjusting the p-values
for multiple hypotheses tests with the conservative Benjamini-
Hochberg p-value adjustment method. Gene pairs can then
be ranked based on the relative strengths of their differential
correlation. To determine the top-ranked significantly changed
hub genes, we sought to compare the differential correlation from
paired tissues and the control genes co-expression network. To
get hub genes, we calculated the average change in correlation
for each gene with all others and set top-ranked genes as hub
genes. This paper also presents a series of detailed tests to
determine the difference in mean z-scores and adjust the p-value
by random permutation samples 100 times. We used the DGCA
(Mckenzie et al., 2016) R package to conduct the corresponding
analyses in this study. DGCA offers a convenience function for
extracting gene lists corresponding to the differential correlation,
converting the resulting gene symbols to inputs for gene ontology
enrichment testing and detecting functional modules. The whole
pipeline is shown in Supplementary Figure 2.
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RESULTS

Tissue-Specific Gene Expression
By utilizing the autoencoder model, the collected soybean
expression data were processed and their PCA plots were
shown in Supplementary Figure 3. As shown in Supplementary
Figure 3, after data reconstruction, tissue-specific expression
signatures of data can still be maintained. By utilizing the
autoencoder model and the τ index (between 0 and 1), genes with
a τ index close to 1 were more specifically expressed in one tissue,
while genes with a τ index closer to 0 are equally expressed across
all tissues studied (Yanai et al., 2005).

We identified highly expressed genes in the leaf, root, seed,
nodule and genes under the baseline condition, using both
microarray and RNA-seq data sets. We combined the compressed
1-dimension expression value of each tissue and its control
together and compared the global expression patterns among
tissues to identify highly expressed tissue-specific genes. A gene
is filtered as a tissue-specific gene only if it is highly expressed
in that tissue compared to values of other tissues and the
control mixture, which includes samples that do not involve
exposure to the treatment or intervention from any studies
(Supplementary Figures 4, 5). The Venn plot of combined
tissue-specific genes in both microarray and RNA-seq data sets is
shown in Figure 2C. In summary, we detected 1,743, 914, 2,107,
and 1,451 genes highly expressed in leaf, root, seed, and nodule,
respectively. The detailed gene list is shown in Supplementary
File 2. Our method outperforms traditional methods in two ways:
(1) with the autoencoder model, we can more accurately detect
tissue-specific genes in each tissue, as shown in Figures 2A–
G; (2) more common tissue-specific genes can be detected
between the microarray and RNA-seq data types relative to
traditional methods. The Venn plot of common tissue-specific
genes between the microarray and RNA-seq identified using the
traditional method is shown in Figure 3, which shows much
fewer common tissue-specific genes between the microarray and
RNA-seq data types.

To verify the accuracy of all the tissue-specific genes, we
conducted a comprehensive literature search and finally collected
2,108, 1,908, 1,516, and 2,122 tissue-specific genes in total for
leaf, root, seed, and nodule, respectively (Supplementary File 2),
which are used as the benchmark datasets (Libault et al., 2009,
2010; Severin et al., 2010; Asakura et al., 2012; Jones and Vodkin,
2013; Brown and Hudson, 2015; Machado et al., 2020; Moisseyev
et al., 2020). Supplementary Figure 6 shows the common genes
between our results (denoted as O) and genes found in the eight
benchmark studies (from A to H, with some detailed information
from each study shown in Supplementary File 2). Many of
these tissue-specific genes from the eight studies can always be
detected by our method in contrast with other methods which
usually have no gene in common, even with similar tissue-specific
gene numbers for comparison. Different from other methods,
we considered not only gene expression in specific tissues but
also their expression under the control condition; hence, the
genes detected by our methods are more likely highly expressed
tissue-specific genes. To further verify the accuracy of our results,

the top-10 ranked genes (genes with highest expression values
in a tissue in comparison with other tissues and the baseline
condition) of each tissue were searched in PubMed, as shown
in Supplementary Table 1. Most of these top-ranked genes have
direct PubMed publications that support their high expression
in the corresponding tissue. A detailed tissue-specific expression
of each gene can also be viewed through the link4 from the
Soybean Expression Atlas. Considering the top-10 ranked nodule
genes in Supplementary Table 1, we independently searched
their average expression in various soybean tissues using the
locus name (genome version: Gmax_275_Wm82.a2.v1), which
confirmed their nodule-specific expression.

Functional Annotation of the Top-Ranked
Tissue-Specific Genes
To further validate the accuracy of the tissue-specific genes, we
performed a GO functional enrichment analysis of the top 20
ranked tissue-specific genes using the TopGO package (Alexa
et al., 2006). Only the top 20 significant GO terms of the unique
genes are reported, except for nodules where 23 GO terms
are reported. As shown in Supplementary File 2, many of the
leaf-specific genes are those responding to red/blue light, such
as Glyma.08G173700, Glyma.11G221000, Glyma.13G046200,
Glyma.18G036400, Glyma.19G046600, and Glyma.19G046800.
Among these genes, Glyma.11G221000 and Glyma.18G036400
also function in responding to cold and in the defense
response to bacterial pathogens. Genes Glyma.13G046200,
Glyma.19G046600, and Glyma.19G046800 also take part in
the carbon fixation process. In a leaf, Glyma.14G061500 has
a function in water transport and also in response to water
deprivation. Another top-ranked gene is Glyma.13G347700,
which is enriched in the processes of lateral root formation,
responding to the abscisic acid, and it has a defense response to
a bacterial pathogen. The Glyma.09G044200 gene takes part in
processes of positive regulation of microtubule depolymerization,
and it responds to cadmium ion and the regulation of
multicellular organism growth (Berkowitz et al., 2008).

Many genes in seed are significantly enriched in lipid storage,
embryo development, and seed germination processes (such
as Glyma.10G246300 and Glyma.09G044200). Genes highly
expressed in nodules are enriched in processes of nodulation and
nitrogen fixation, which is consistent with previous knowledge
(Elhady et al., 2020). Among the nodule-specific genes,
Glyma.04G079200 responds to hypoxia and oxygen transport.
Glyma.11G238800 participates in the pathogen defense response,
and it is also highly expressed in the nodule tissue of Lotus
japonicus (Guenther and Roberts, 2000). Glyma.10G199000 is
highly expressed during nodule development (Marcker et al.,
1984). Therefore, many of these tissue-specific genes have been
experimentally verified, and others are good candidates for
further exploration.

Differential Network and Hub Genes
An early study (Sonawane et al., 2017) shows that network edges
have higher tissue specificity than network nodes. Therefore,

4http://venanciogroup.uenf.br/cgi-bin/gmax_atlas/index.cgi
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FIGURE 2 | Venn plots of tissue-specific genes. (A) Number of tissue-specific genes in each tissue and control condition detected in the microarray data sets, (B)
numbers of issue-specific genes in each tissue and control condition in the RNA-seq data sets, and (C) number of issue-specific genes in each tissue and control
condition in combination with (A,B). (D–G) Show common and tissue-specific genes detected in both microarray and RNA-seq data sets in control, leaf, root, and
seed tissues, respectively.

comparing interaction changes between genes in a tissue and
genes in the control group is important for understanding tissue-
specific gene expression. We used the autoencoder compressed
gene expression matrixes and the paired control gene expression
matrix for tissue-specific differential network construction. Since
genes with low average expression levels or low variance in
expression levels are less likely to have biologically relevant
differences between conditions, they were filtered out before
further analysis as per previous protocol in studies (Mckenzie
et al., 2016). We calculated the Pearson correlation value between
any pair of genes in each tissue and also the corresponding value
in the control condition; then, the significance of the difference
between the two values was tested and the p-values were adjusted
by the Benjamini-Hochberg method (Benjamini and Hochberg,
1995). We ranked the differential edges based on the adjusted
p-values, and the top 1,000 ranked edges were selected for each
tissue for the network construction. Results of each network
after fast greedy clustering (Clauset et al., 2004) are shown in
Figure 4, where there are 7, 4, and 10 modules in leaf, root, and
seed differential networks, respectively. The nodule results are
independently shown in the nodule section. We performed the
biological process enrichment analysis for the modules in these
tissues using the TopGO package (Alexa et al., 2006). Detailed
gene module information and the GO annotation bubble plot are
shown in Supplementary File 3.

To get hub genes in each network, we calculated each gene’s
average gain or loss of correlation in the data set with all others
(see details in “Materials and Methods” section). The top-ranked

hub genes (genes with biggest gain or loss of correlation)
of each network in Figure 4 are shown in Supplementary
Table 2. Many of these genes in Supplementary Table 2 are
known for their expression in the corresponding tissues. For
example, Glyma.11G111400 is a fructose-bisphosphate aldolase
protein, which is a key plant enzyme involved in glycolysis
and the Calvin cycle in wheat and corn leaves (Lv et al.,
2017). The root hub gene Glyma.07G248600 is a C2 domain-
containing protein. Many C2 domain-containing proteins, such
as CaSRC2-1, are known to be highly expressed in roots
(Kim et al., 2008). The seed hub gene Glyma.13G295200
is a zinc finger CCCH domain-containing protein, which
is known for its association with seed oil accumulation
(Li et al., 2017).

Tissue-Specific Gene Regulatory
Networks and Transaction Factors
GENIE3 (Huynh-Thu et al., 2010) was used for tissue-specific
GRN construction (see the “Materials and Methods” section for
details) after we compressed each tissue’s expression matrix to
a low dimension. To find the optimal dimension size, we tuned
our model using the DREAM 5 challenge E. coli expression
data and the corresponding benchmark network with varying
dimension sizes from 12 to 24, 32, 64, and 96, as well as using
the original sample size. According to the area under the receiver
operator characteristic (ROC) curves, the optimal dimension size
was 64. For an expression matrix with more than 64 samples
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FIGURE 3 | Venn plots of common genes detected in both microarray and RNA-seq data sets without the autoencoder model. These genes were detected directly
with the τ index. (A–D) Correspond to numbers of common genes in the control, leaf, root, and seed, respectively.

(leaf, root, seed, and control) we compressed them to the 64-
dimension size. Other sample data (nodule) were compressed to
the 32-dimension size due to having fewer samples than 64. For
candidate regulators, we downloaded 3,747 soybean TFs from the
PlantTFDB database (Jin et al., 2017). We combined the detected
tissue-specific genes, 110, 93, 155, and 110, and from them, we
found uniquely highly expressed TFs in leaf, root, seed, and
nodule, respectively. Other parameters of GENIE3 were set as the
default values. Prior to the analysis, we filtered out all the genes
with low variance across samples as in Sun et al. (2020) by using
the filterGenes function in the DGCA R package (Mckenzie et al.,
2016). Because we only constructed tissue-specific GRNs, for each
tissue only tissue-specific genes were considered, resulting in 660,
632, 737, and 582 genes left for leaf, root, seed, and nodule,
respectively. For better visualization and comparison, each GRN
was constrained to include only the top 1,000 high-weight edges
calculated by GENIE3 (Walley et al., 2016; Huang et al., 2018). As
shown in Figure 5, the top 5 central nodes in each network are all
classified as biologically essential for the corresponding tissue.

The TF with the highest degree (number of connecting edges)
in each GRN means it likely regulates many other genes or TFs,
and such TFs are important in tissue-specific gene expression. We
ranked all network nodes based on their degree. Supplementary
Table 3 shows detailed information on the top-ranked TFs in

the four tissues. Two root TFs are from the WRKY transcription
factor family. Genes in the WRKY family play important roles in
plants responding to microbial pathogens (Yang et al., 2017). The
WRKY transcription factor genes are highly expressed in hairy
roots and can enhance the resistance of soybean to the oomycete
pathogen Phytophthora sojae (Cui et al., 2019). Another two
root TFs are from the GRAS family, which broadly participates
in many critical processes such as signal transductions, root
radial elongations, axillary shoot meristem formations, and
stress responses in plants (Bolle et al., 2000; Li et al., 2018).
Overexpressing the GRAS family gene in hairy roots can improve
the resistance of soybeans to drought and salt stresses (Wang
et al., 2020). Three BZIP family TFs are top-ranked in seed.
The BZIP genes play important roles in seed maturation and
storage protein gene regulation (Lara et al., 2003; Wang Z. H.
et al., 2019). The other two seed TFs are from the MIKC and
MADS family, which often play potentially essential roles in seed
development (Fan et al., 2013). Three nodule-specific TFs are
from the C3H transcription factor family, one from NAC and
one from the ERF family. The NAC family proteins are highly
expressed during early symbiotic events in Medicago truncatula
and Sinorhizobiummeliloti (Lohar et al., 2007). The C3H and ERF
family TFs are also important in the symbiosis process of Lotus
japonicus (Asamizu et al., 2008).
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FIGURE 4 | Tissue-specific differential networks and their functional modules. Each node represents a gene, and each edge represents a differential edge. Modules
are marked by nodes in different colors.

Nodule-Specific Genes and Gene
Regulatory Network
The symbiosis between the rhizobium and soybean is a much
cheaper and more effective agronomic practice for ensuring an
adequate supply of nitrogen. Due to its agricultural importance,
many efforts are underway to identify the underlying molecular
mechanisms of the symbiosis process. As a result, many genes
have been identified, such as the LysM receptor-like kinases, NFP
and LYK3 (Radutoiu et al., 2003), which mediate the perception
of Nod factors. SymRK is required for root nodule development
(Chen et al., 2012) and miR393j-3p limits nodule development
through repression of the nodulin gene ENOD93 (Yan et al.,
2015). A higher percentage of NIN-like and C2H2 nodule-
specific TFs has been reported (Libault et al., 2010; Severin et al.,
2010). Furthermore, over 200 nodulins (organ-specific plant
proteins induced during symbiotic nitrogen fixation) have been
experimentally validated (Roy et al., 2020). However, considering
the complexity of the symbiosis process, more genes are likely
involved and need to be discovered. Figure 6 shows many

nodule-specific highly expressed genes and their corresponding
GRNs based on our method.

Figure 6A shows that all the detected nodule-specific genes
are highly expressed only in nodules that compare with this type
of gene in other tissues. Of the top 10 ranked nodule specific
genes, eight also exist in the Soybean Expression Atlas database,
except for the Glyma.10G198800 and Glyma.10G199100 genes.
All eight nodule-specific genes are exclusively highly expressed
in nodules and have no expression value in any other tissues, as
shown in Figure 6B. Most of the top-ranked genes identified by
our method match PubMed publications that support their high
expression in the corresponding tissue as shown in Figure 6C.
The bubble plot of the enriched biological processes of these
genes is shown in Figure 6D.

According to the GO enrichment analysis results, many
biological processes are related to the symbiosis process. For
instance, copper is an essential nutrient for symbiotic nitrogen
fixation, and cellular copper ion homeostasis is an important
process in rhizobia-infected nodule cells (Senovilla et al., 2018).
In Lotus japonicus, the expression of two thiamine biosynthesis
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FIGURE 5 | Tissue-specific GRNs of leaf, root, seed, and nodule. Red nodes represent genes, blue lines represent regulatory edges. Key regulatory genes are
marked by the corresponding gene names. The node size is proportional to the node degree; thus, the bigger the node, the higher the node degree is.

genes, THI1 and THIC, is enhanced by inoculation with rhizobia
but not by inoculation with arbuscular mycorrhizal fungi, and
thiamine biosynthesis genes can promote nodule growth (Nagae
et al., 2016). The ratios of sucrose/fructose in nodules can be
changed in response to nitrate, indicating that nitrate affects
sugar concentration in nodules (Streeter, 1981). Some genes are
enriched in the process of responding to fructose, sucrose, etc.
Other biological processes like the response to oxidative stress
and response to hypoxia have all been shown to be involved in the
soybean symbiosis process (Van Heerden et al., 2008; Zilli et al.,
2011; Pucciariello et al., 2019).

As noted in the previous section, we constructed the nodule-
specific differential regulatory network and found its functional
modules. As shown in Figure 6E, four modules were detected,
which are related to (1) nodulation, (2) nitrate assimilation as part
of the glutamine biosynthetic process, (3) response to stimulus
in a defense mode, and (4) nitrogen fixation, and all of them
are well known for their relationship to the symbiosis process.
Furthermore, except for the hub genes as in Figure 6F, many
other genes are also related to the nodule function.

Of the top 100 ranked nodule-specific highly expressed genes,
many symbiosis-related genes are identified, including four
leghemoglobin gene Glyma.10G198800, Glyma.10G199100,
Glyma.10G199000, and Glyma.20G191200, as well as nine
nodulin genes (Glyma.13G364400, Glyma.15G045000,
Glyma.20G024200, Glyma.13G328800, Glyma.19G074000,
Glyma.06G216500, Glyma.02G204500, Glyma.17G073400,
and Glyma.08G076800). Furthermore, some top-ranked
TFs are also identified as symbiosis related. These include
Glyma.01G159200 from the NIN-like family, Glyma.15G173300,
Glyma.17G051400, and Glyma.09G014100 from the NF-YA/NF-
YB family, seven genes (Glyma.13G094400, Glyma.05G106000,
Glyma.06G303100, Glyma.12G100600, Glyma.15G069300,
Glyma.17G065800, and Glyma.17G160500) from the
MYB family and Glyma.01G101800, Glyma.02G144400,
Glyma.14G110900, and Glyma.18G042300 from the C2H2
family (Supplementary File 2).

Many genes from these gene families are known to function
in the symbiosis process. For example, a higher percentage of
NIN-like and C2H2 nodule-specific TFs have been reported
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FIGURE 6 | Results of nodule-specific gene analysis. (A) Expression values of 1,451 nodule-specific genes compared with those in other tissues, (B) validation of
the expression patterns of top-ranked nodule-specific genes from the Soybean Expression Atlas database, (C) detailed gene family and PubMed support for the
top-20 ranked nodule genes. Genes with the same color are in the same gene family. (D) GO biological process annotation of the top 20 nodule-specific genes, (E)
differential correlation network of the nodule-specific genes and key function of each module, and (F) hub genes of each module.

(Libault et al., 2010; Severin et al., 2010). Furthermore, NIN-
like and C2H2 TFs are important in nitrate signaling (Konishi
and Yanagisawa, 2013) and symbiosome differentiation during
nodule development (Sinharoy et al., 2013). Therefore, our newly
identified TFs are more likely to play important roles in the

symbiosis process. We also found four nodule-specific ERF TFs
(Glyma.03G112000, Glyma.07G114000, Glyma.09G072000, and
Glyma.09G233800) that are essential for nodule differentiation
and development (Vernie et al., 2008). Next, in the top 100
ranked nodule-specific highly expressed genes, we analyzed the
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12 nodule-related module hub genes (Supplementary File 2) in
the nodule-specific differential network. Notably, two of these
genes (Glyma.18G041100 and Glyma.11G215500) are glutamine
synthetase genes, which are tightly controlled enzymes located at
the core of nitrogen metabolism. Glutamine synthetase catalyzes
the first step in nitrogen assimilation, which is the ATP-
dependent condensation of ammonium with glutamate (Seabra
and Carvalho, 2015). The hub gene Glyma.17G045800 is a
sucrose synthase gene, which has an essential function in the
nitrogen fixation process (Gordon et al., 1999). Another hub
gene, Glyma.08G181000, has been verified to function in the
isoflavone biosynthetic pathway (Gupta et al., 2017). Due to the
significant expression changes of these genes in the nodule tissue,
they are likely to play important roles in the symbiosis process.

DISCUSSION AND CONCLUSION

Transcriptome data is still the main data source for researchers
to obtain useful information about plant biological processes and
to identify key biomarker genes related to specific phenotypes.
Each experimental study investigates gene expression in a range
from a few samples to hundreds of samples. Due to the sample
condition or method difference, even for the same plant tissue,
different labs can obtain quite different results. Therefore, large-
scale integration analysis of all the available datasets is needed to
help us better understand gene expression from the systematic
view. However, several factors make such analysis difficult;
for instance, different studies utilize different platforms. The
microarray platform is the most popular at first, but is dominated
by the RNA-seq later. Besides, different studies use different
kinds of plant samples under different treatments—or samples
are collected at different development stages and time points.
Over the years, several meta-studies have been conducted, but the
scale and depth have been limited.

In this study, we systematically collected more than 7,000 raw
sequencing data sets, which were mapped and processed in a
uniform way. To our knowledge, this is the largest transcriptome
analysis of soybeans until now. In the data normalization and
processing, we proposed utilizing the unsupervised autoencoder
model. Two features of unsupervised learning make it well suited
to gene expression analysis. The first feature is the ability to train
informative models without supervision, as it is challenging to
obtain a high number of expression samples with coherent labels.
Although many new expression profiles are released daily, the
portion of the datasets with labels of interest is often too small.
A second feature of unsupervised learning is: models are trained
to extract patterns from the data without imposed hypotheses
or restrictions. This aspect can be key to unlocking biological
mechanisms unknown to the scientific community. To minimize
the difference between data from different sources, we proposed
using the unsupervised AD-AE machine learning model, which
can efficiently remove confounders with the collected data sets.
Because each tissue has many samples, to extract important
signals from noises, the autoencoder model can efficiently
compress expression values to a lower dimension. With the
normalized and processed data sets, we analyzed highly expressed

tissue-specific genes in leaf, root, seed and nodule. Besides, we
constructed the tissue-specific GRNs and differential correlation
networks based on these networks, and we identified key TFs,
functional modules, and hub genes. According to our analysis,
many identified genes have had the tissue-specific expression. The
results were integrated into SoyKB. These tissue-specific genes
may help researchers test hypotheses in downstream experiments
and functional genomics studies. However, several limitations
exist in this study. Although many tissues and development stages
were involved in the collected datasets, here we only showed
results for seed, root, leaf, and, nodules as these four tissues
occupied the most samples. More attention will be paid to other
tissue analysis in the future.
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Supplementary Figure 1 | Sample number distribution. (A) Sample number
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Supplementary Figure 2 | Detailed pipeline of tissue-specific gene identification,
GRNs, and differential network construction.
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Supplementary Figure 3 | PCA plots of the AD-AE reconstructed datasets. (A)
The PCA plot of the reconstructed microarray control dataset, (B) the PCA plot of
the reconstructed RNA-seq control dataset, (C) the PCA plot of the reconstructed
microarray case dataset, with samples from leaf, root, and seed, and (D) the PCA
plot of the RNA-seq case dataset, with samples from leaf, root, seed, and nodule.
Each color represents a different tissue, and the same shape represents samples
from the same tissue.

Supplementary Figure 4 | Expression heatmap of highly expressed
tissue-specific genes detected in the microarray data sets. (A–D) Correspond to
tissue-specific genes in control, leaf, root, and seed, respectively.

Supplementary Figure 5 | Expression heatmap of highly expressed
tissue-specific genes detected in the RNA-seq data sets. (A–E) Correspond to
tissue-specific genes in control, leaf, root, seed, and nodule, respectively.

Supplementary Figure 6 | (1) Tissue-specific genes collected from eight
benchmark studies (A–H) and results from our method and (2) heatmap of
common gene numbers between results from different studies. O represents our

own results. Leaf_O represents leaf genes detected by our method and leaf_A
represents leaf genes detected in study (A). Others are correspondingly
defined in the figure.

Supplementary File 1 | Detailed information of all samples used in this study.
Microarray_Control shows all microarray samples in control condition.
Microarray_Case shows all microarray samples with various treatments.
RNA-seq_Control shows all RNA-seq samples in the control condition.
RNA-seq_Case shows all RNA-seq samples with various treatments. RNA-seq
SRAruninfo shows all the SRA IDs in the RNA-seq raw sequencing data that we
used. Microarray GEOid shows all the GEO IDs in the microarray raw sequencing
data that we used. In-house sample data show all the sample information
provided by our collaborators.

Supplementary File 2 | Detailed results of all tissue-specific genes.

Supplementary File 3 | Gene and GO annotation information of all the functional
modules in Figure 5.
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