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Shoot branching is crucial for successful plant development and plant response to 
environmental factors. Extensive investigations have revealed the involvement of an 
intricate regulatory network including hormones and sugars. Recent studies have 
demonstrated that two major systemic regulators—auxin and sugar—antagonistically 
regulate plant branching. However, little is known regarding the molecular mechanisms 
involved in this crosstalk. We carried out two complementary untargeted approaches—
RNA-seq and metabolomics—on explant stem buds fed with different concentrations of 
auxin and sucrose resulting in dormant and non-dormant buds. Buds responded to the 
combined effect of auxin and sugar by massive reprogramming of the transcriptome and 
metabolome. The antagonistic effect of sucrose and auxin targeted several important 
physiological processes, including sink strength, the amino acid metabolism, the sulfate 
metabolism, ribosome biogenesis, the nucleic acid metabolism, and phytohormone 
signaling. Further experiments revealed a role of the TOR-kinase signaling pathway in bud 
outgrowth through at least downregulation of Rosa hybrida BRANCHED1 (RhBRC1). 
These new findings represent a cornerstone to further investigate the diverse molecular 
mechanisms that drive the integration of endogenous factors during shoot branching.
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INTRODUCTION

Shoot branching is a particularly significant trait of survival and reproductive success for 
crops, but also of visual quality for ornamental plants (Garbez et  al., 2015; Rameau et  al., 
2015; Barbier et  al., 2019; Kotov et  al., 2021). Lateral buds emerge at the leaf axils and remain 
dormant or become active to develop new branches. The resumption of bud growth is induced 
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by removal of the fast-growing shoot apex involved in a 
mechanism called apical dominance (Dun et  al., 2009; Müller 
and Leyser, 2011). Apical dominance currently appears as a 
network of hormone- and sugar-dependent mechanisms (Barbier 
et  al., 2019; Schneider et  al., 2019; Kotov et  al., 2021). The 
hormonal regulatory network that controls shoot branching 
has been extensively studied (Rameau et  al., 2015; Barbier 
et  al., 2019; Maurya et  al., 2020), while that of sugars is still 
nascent (Rabot et  al., 2012; Barbier et  al., 2015, 2021; Fichtner 
et  al., 2017, 2020; Wang et  al., 2019, 2021). In addition, the 
question on how hormonal and sugar pathways could interact 
to drive bud growth remains poorly investigated.

Auxin and sugars are two main systemic regulators with 
opposite roles in the control of bud outgrowth. Auxin is 
produced by young leaves at the shoot tip, transported basipetally 
via the polar auxin transport stream (PATS), and prevents 
axillary bud growth along the stem (Bennett et  al., 2016; 
Harrison, 2017; Van Rongen et  al., 2019). Auxin cannot enter 
the bud and acts through two non-mutually exclusive models 
referred to as the “second messenger” and “auxin canalization” 
models (Aguilar-Martínez et  al., 2007; Prusinkiewicz et  al., 
2009; Müller and Leyser, 2011; Dun et  al., 2012) supported 
by the two hormones cytokinins (CK) and strigolactones (SL; 
Brewer et  al., 2013; Rameau et  al., 2015; Barbier et  al., 2019). 
Auxin impedes biosynthesis of CK, an inducer of axillary bud 
outgrowth operating partly through downregulation of 
BRANCHED1 (BRC1), one of the major transcription factors 
involved in inhibition of branching (Braun et  al., 2012; Dun 
et  al., 2012). Conversely, auxin triggers synthesis of SL, a 
repressor of axillary bud outgrowth that partly acts via BRC1 
accumulation (Aguilar-Martínez et al., 2007; Braun et al., 2012; 
Dun et  al., 2012). BRC1 represses cell cycle activity and auxin 
export from bud to stem but stimulates biosynthesis of ABA, 
an inhibitor of shoot branching (González-Grandío and Cubas, 
2014; González-Grandío et  al., 2017; Shen et  al., 2019).

As sink organs, buds have to compete with other plant 
sink organs to attract the sugar required for their high metabolic 
activity (Alves et  al., 2007; Van den Ende, 2014). By diverting 
sugar routes, the fast-growing shoot apical meristem prevents 
axillary buds from importing sugar and thereby reduces their 
ability to grow out (Mason et  al., 2014). Accordingly, dormant 
buds exhibit a carbon-starvation-like transcript profile (Tarancón 
et  al., 2017). Conversely, bud outgrowth can be  stimulated by 
increasing sugar supply to buds in whole plants or stem explants 
(Rabot et  al., 2012; Barbier et  al., 2015, 2021; Fichtner et  al., 
2017; Wang et  al., 2021). A role of sugar in shoot branching 
has also been reported in other species (Liu et  al., 2020).

Besides their trophic role, sugars are a signaling entity 
that promotes bud outgrowth (Rabot et  al., 2012; Barbier 
et  al., 2015, 2021; Fichtner et  al., 2017, 2020; Wang et  al., 
2021), partially through repression of BRC1 expression (Kebrom 
et  al., 2010; Mason et  al., 2014; Barbier et  al., 2015; Kebrom 
and Mullet, 2015; Wang et al., 2019, 2021). Growing evidence 
indicates that sugar-dependent promotion of bud outgrowth 
involves several sugar-signaling-dependent pathways (Fichtner 
et  al., 2017, 2020; Barbier et  al., 2021), including glycolysis/
the tricarboxylic acid (TCA) cycle and the oxidative pentose 

phosphate pathway (OPPP; Wang et  al., 2021). Glycolysis/
the TCA cycle provides cell energy (Kruger and Von Schaewen, 
2003; Stincone et  al., 2015; Christiaens et  al., 2016; Cañas 
et  al., 2017) and acts upstream of the target of rapamycin 
(TOR) kinase, a hub of sugar, and cell energy signaling 
(Brunkard et  al., 2020; Burkart and Brandizzi, 2020). The 
contribution of TOR signaling in axillary bud outgrowth is 
still unknown, while it is required for shoot meristem activation 
(Xiong et  al., 2013; Wu et  al., 2019).

Sugar and auxin represent a highly complex and central 
signaling network that acts cooperatively in various aspects of 
plant development like cell proliferation and expansion, hypocotyl 
elongation, and root growth (Wang and Ruan, 2013; Min et al., 
2014; Li et  al., 2016; Sakr et al., 2018; Yuan et  al., 2020). 
Conversely, sugar antagonizes auxin-dependent repression of 
bud outgrowth (Mason et  al., 2014; Bertheloot et  al., 2020) 
by impairing the SL-signaling pathway (Bertheloot et  al., 2020; 
Patil et  al., 2021). Glycolysis/the TCA cycle and the OPPP 
are an integrative part of this crosstalk (Wang et  al., 2021). 
Based on these findings, we investigated whether the antagonistic 
effect of sugar and auxin on bud outgrowth could be extended 
to other components of bud metabolomics and signaling. Our 
results show that these two systemic regulators reshape bud 
metabolism and signaling, with a potential role of TOR kinase.

MATERIALS AND METHODS

Plant Culture and in vitro Cultivation of 
Axillary Buds
Rosa hybrida L. cuttings were taken from cloned mother 
plants grown in the greenhouse as described by Barbier et  al. 
(2015). At the visible floral bud (VFB) stage, axes plants 
were used to harvest stem node explants (single-node cuttings) 
from the median part of the stem and served for metabolomics 
and molecular analyses. Stem node segments (contain one 
bud) 1.5 cm in length were grown in vitro for 24 h on classical 
solid MS medium (Duchefa; 1% gelose, aubygel) supplemented 
with different concentrations of sucrose and 1-naphthaleneacetic 
acid (NAA; a synthetic auxin), resulting in three different 
states of dormancy (Bertheloot et  al., 2020): dormant buds 
(Suc10 + NAA; 10 mM sucrose +1 μM NAA), partially dormant 
buds (Suc10; 10 mM sucrose and Suc100 + NAA; 100 mM 
sucrose  +1 μM NAA), and non-dormant buds (Suc100; 
100 mM sucrose).

Single-node cuttings incubated on sugar-containing medium 
(S10 or S100) were also fed with different concentrations of 
AZD8055 (1 and 10 μM), a main potent effector of TOR-kinase 
activity (Montané and Menand, 2013; Inaba and Nagy, 2018). 
These buds were used to investigate the involvement of TOR 
kinase in bud outgrowth by analyzing their ability to grow 
out and characterizing the expression level of BRC1.

RNA Extraction and RT–qPCR
Total RNA was extracted from stem node segments (0.5 cm) 
or stably transformed Rosa calluses (40 mg) using an RNA 
NucleoSpin kit (Macherey-Nagel) according to the 
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manufacturer’s recommendations, with slight modifications 
(Barbier et al., 2015). The absence of contamination by genomic 
DNA was monitored by PCR using a specific primer designed 
against an intron region of the RhGAPDH gene (Girault 
et  al., 2010; Henry et  al., 2011). cDNAs were obtained by 
reverse transcription performed on 1 μg of RNA using 
SuperScript III Reverse Transcriptase (Invitrogen, Inc.). 
Quantitative real-time RT-PCR (RT-qPCR) was performed 
with SYBR Green Supermix (Bio-Rad, Inc.) using cDNA as 
a template, following the protocol from Barbier et  al. (2015). 
Relative expression of different genes (Supplementary Table S1) 
was quantified using RhUBC and RhSAND as internal 
controls (Jain et  al., 2006; Chua et  al., 2011). Specific sets 
of primers were selected according to their melting curves 
(Supplementary Table S2).

RNA-seq Library Construction and 
Sequencing
Three independent biological replicates were produced for 
each treatment (Suc10, Suc10 + NAA, Suc100, and 
Suc100 + NAA). RNA samples were obtained from 50 stem 
node explant buds incubated for 24 h. RNA-seq libraries 
were built following the manufacturer’s recommendations 
(TruSeq-Stranded-mRNA-SamplePrep-Guide-15031047D-
protocol, Illumina®). The RNA-seq samples were sequenced 
in paired-end (PE) with a read length of 75 bases. The raw 
data (fastq) were trimmed with the Trimmomatic tool (Bolger 
and Giorgi, 2014), and ribosome sequences were removed 
with the sortMeRNA tool (Kopylova et  al., 2012). The STAR 
genomic mapper (Dobin et  al., 2013) was used to align 
reads against the Rosa chinensis genome (Saint-Oyant et  al., 
2018). Dispersion was estimated using edgeR (Robinson 
et  al., 2010). Expression differences were compared using 
the likelihood ratio test, and p-values were adjusted using 
the Benjamini-Hochberg procedure to control the false 
discovery rate (FDR). Fragments per kilobase of transcripts 
per million fragments mapped (FPKMs) were calculated for 
visual analysis only and were obtained by dividing normalized 
counts by gene length.

Metabolomics Analysis
Three independent biological replicates were produced for each 
treatment (Suc10, Suc10 + NAA, Suc100, and Suc100 + NAA). 
For each treatment, 50 buds from stem node segments were 
collected at 48 h incubation. The frozen buds taken from 
one-node cuttings were re-suspended in 1 ml of frozen (−20°C) 
water:acetonitrile:isopropanol (v/v/v, 2:3:3) containing Ribitol 
at 4 μg·ml−1 and extracted for 10 min at 4°C with shaking at 
1,400 rpm in an Eppendorf Thermomixer. Insoluble material 
was removed by centrifugation at 20,000 g for 5 min. Fifty 
microliters were collected and dried overnight at 35°C in a 
speed-vac and stored at −80°C. The same steps were followed 
for three blank tubes as a negative control. Metabolomics 
experiments were performed as in Clément et  al. (2017), in 
which all steps were performed according to Fiehn (2006) and 
Fiehn et  al. (2008).

Promoter Cloning, Stable Rose Callus 
Transformation, and GFP Fluorescence 
Analysis
The RhBRC1 promoter (1,973 bp upstream of the start codon) 
was cloned, and rose calluses were stably transformed as 
described by Wang et  al. (2021). Three different assays of 
stably transformed calluses were incubated on a range of 
AZD8055 concentrations (0.5, 1, 5, and 10 μM) for 8 h. The 
transcription levels of GFP in the calluses treated or not with 
different concentrations of AZD8055 have been monitored as 
described by Wang et  al. (2021).

Measurements of Vacuolar Invertase 
Activity
Enzyme activity was evaluated as described by Girault et  al. 
(2010) and Rabot et  al. (2012). For each sample, an extract 
was obtained by grinding frozen tissues (100 mg of bud) in 
the extraction buffer [50 mM HEPES-NaOH (pH 7.0), 10 mM 
MgCl2, 1 mM Na2EDTA, 2.6 mM DTT, 10% ethylene glycol 
(v/v), and 0.02% Triton X-100 (v/v)], giving a final volume 
of 2 ml. The extract was centrifuged for 3 min in a microcentrifuge 
(12,000 g, 4°C) and the supernatant was desalted on a G25 
Sephadex column (GE Healthcare). Enzyme activity was assayed 
on 25 μl of desalted extract supplemented with 2 μl of 0.2 M 
sodium acetate (pH 4.8). Ten microliter of 0.6 M sucrose were 
added, and the reaction was allowed to proceed at 30°C for 
20 min. Then, the reaction was stopped by adding 50 μl of 
0.5 M NaH2PO4 (pH 7.0). The samples were incubated for 3 min 
at 100°C and placed on ice. Then, they were mixed with 750 μl 
of a reaction buffer composed of 50 mM HEPES-NaOH (pH 
7.0), 2 mM MgCl2, 1 mM EDTA, 100 mM sucrose, 1 mM 
ATP, 0.4 mM NAD, 4.2 U of hexokinase, 3.5 U of 
phosphoglucoisomerase, and 2 U of glucose-6-P-dehydrogenase, 
and were incubated at 30°C for 20 min. NADH formation was 
monitored spectrophotometrically at 340 nm. The amount of 
proteins in each extract was measured by the Bradford method 
(1976) with bovine serum albumin as a standard (Bradford, 1976).

Statistical Analyses
R software was used for statistical treatment. One-way ANOVA 
(α = 0.05) was run to test for the effects of the different conditions 
on bud outgrowth, gene transcription, and fluorescence. The 
samples followed a normal distribution. Significant differences 
were indicated by different letters or asterisks directly on 
the figures.

RESULTS

Transcriptomic Profiling of Axillary Buds 
Exposed to the Combined Effect of Auxin 
and Sugar
Previous experiments showed that sucrose can relieve the 
inhibiting effect of synthetic auxin (NAA, 1-naphthaleneacetic 
acid) during bud outgrowth of Rosa hybrida (Bertheloot et  al., 
2020; Wang et  al., 2021). To get a comprehensive insight into 
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the early mechanisms driving this antagonistic crosstalk, RNA-seq 
and metabolomics experiments were conducted on axillary 
buds from one-node stem explants treated with four conditions 
of sucrose and auxin (Suc10, Suc10 + NAA, Suc100, and 
Suc100 + NAA) and harvested before the onset of outgrowth 
(Wang et  al., 2021). Based on RNA-seq data from 24 h-treated 
buds, differentially expressed genes (DEGs) ranged from 2,430 
to 5,568  in pairwise comparisons of the different conditions 
(Supplementary Figure S1). The relationships between the 
different DEG groups were displayed as Venn diagrams, and 
the transcription of 1,418 genes (654 downregulated by auxin 
and upregulated by sucrose, 764 upregulated by auxin and 
downregulated by sucrose) were under the antagonistic control 
of sucrose and auxin (Supplementary Figure S2). In addition, 
a metabolomics analysis conducted on 48 h-treated buds (no 
change was found earlier at t = 24 h) produced 106 known 
metabolites in axillary buds, including amino acids, intermediates 
of the sugar metabolism, organic acids, and secondary metabolites 
(Supplementary Figure S3). Only 46 metabolites were under 
the antagonistic effect of auxin and sucrose; among them, 40 
were stimulated by sucrose, while six were stimulated by auxin. 
KEGG analysis was performed using the ClusterProfiler package 
in R software and the MetaboAnalyst database (Yu et al., 2012; 
Chong and Xia, 2018) to determine the function of these 
DEGs. We  found 25 and 22 genes involved in plant hormone 
signal transduction and ribosome biogenesis, respectively. 
Nineteen genes were involved in DNA replication, and 22 and 
17 participated in the purine and pyrimidine metabolisms, 
respectively (Figure  1A). Besides the starch and sugar 
metabolisms (Figures  1A,B; Wang et  al., 2021), the amino 
acid (alanine, aspartate and glutamate, cysteine and methionine, 
lysine biosynthesis, glycine, serine, and threonine) metabolism 
was also under the antagonistic effect of sucrose and auxin 
(Figure  1B). Interestingly, the sulfur metabolism was also 
affected, supporting a tight link between the sugar, amino acid, 
and sulfur metabolisms (Schmidt and Jäger, 1992). As for 
secondary metabolism, only the metabolism of glucosinolates 
and flavonoids responded to the combined effect of auxin and 
sugar. These findings indicate that the combined effect of auxin 
and sugar results in a significant reprograming of the 
transcriptome and metabolome of axillary buds in Rosa.

Response of Bud Sink Strength Markers to 
the Combined Effect of Auxin and Sugar 
Availability
Vacuolar invertase (VI) is an important enzyme of the sucrose 
metabolism and in the establishment of the strength of diverse 
sink organs (Nägele et al., 2010; Morey et al., 2018). It catalyzes 
sucrose cleavage to produce glucose (Glc) and fructose (Fru) 
in the vacuole (Figure  2A). Rosa hybrida vacuolar invertase 
1 (RhVI1) plays a pivotal role in bud outgrowth promotion 
because it is tightly correlated with bud ability to grow out 
(Girault et  al., 2010; Rabot et  al., 2012). Our RNA-seq and 
RT-qPCR results showed that its expression level and activity 
were oppositely regulated by auxin (NAA) and sucrose 
(Figure 2B). RhVI1 expression was greatly stimulated by rising 

sucrose concentrations (1.7-fold higher in 100 mM than in 
10 mM sucrose-fed buds) but highly repressed by NAA 
(Figure 2B). Auxin-dependent RhVI1 repression was 4.7 times 
stronger than in dormant (Suc10) and partially dormant 
(Suc100 + NAA) buds and was correlated with its enzymatic 
activity (Figure  2C). Therefore, RhVI1 could be  a key player 
of bud sink strength targeted by the combined effect of auxin 
and sucrose. In addition, two markers of the depletion of 
cellular carbon and energy pools in plants—the transcription 
level of ATAF1 and trehalase—emerged from RNA-seq to 
be  responsive to the combined effect of auxin and sugar 
availability. ATAF1 is an Arabidopsis thaliana No APICAL 
MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATOR 
FACTOR/CUP-SHAPED COTYLEDON (NAC) transcription 
factor that directly and transcriptionally upregulates the 
expression of trehalase, which breaks trehalose down into two 
molecules of glucose (Garapati et  al., 2015). The expression 
of these two genes was correlated with the dormancy status 
of the buds; their highest level was exhibited by dormant 
buds (Suc10 + NAA) while their lowest level was found in 
non-dormant ones (Suc100; Figure  3). Partially dormant buds 
(Suc10 and Suc100 + NAA) exhibited an intermediary level. 
Taken together, these data indicate that auxin and sugar act 
antagonistically on the sink strength of buds to drive their 
ability to grow out.

Response of the Amino Acid Metabolism 
to the Combined Effect of Auxin and Sugar
Our previous results demonstrated that glycolysis/the TCA 
cycle—the main carbon supplier of the amino acid metabolism—
was regulated by the antagonistic effect of sucrose and auxin 
(Wang et al., 2021). To determine whether amino acid synthesis 
was also impaired, RNA sequencing data and amino acids 
from the metabolomics analysis were selected and analyzed 
(Figure  4). RNA-seq results indicated that auxin tended to 
promote the expression of 17 genes coding for amino-acid-
degrading enzymes, while sucrose positively affected the 
expression of eight genes encoding amino-acid-metabolism-
related enzymes (Supplementary Figure S4). In addition, the 
content in nine amino acids (alanine, histidine, aspartate, 
methionine, proline, glutamate, glutamine, cysteine, and glycine) 
was significantly reduced by auxin (Suc10 + NAA) and partially 
alleviated by high sucrose availability (Suc100 + NAA). The 
reverse action (upregulated by auxin and downregulated by 
sucrose) was only limited to two amino acids—lysine and 
isoleucine (Figure  4). The lysine content in arabidopsis seeds 
was found inversely correlated with TCA-cycle activity, and 
an enhanced lysine content caused delayed germination 
(Angelovici et al., 2011). Proline was the sole amino acid whose 
content was both greatly responsive to sugar availability (4.1 
times higher in buds fed with 100 mM sucrose than in those 
fed with 10 mM sucrose) and to the combined effect of auxin 
and sucrose (Figure 4). Proline is biosynthetically derived from 
the amino acid L-glutamate and is dependent on cellular 
reducing power (NADH and NADPH) generated by the OPPP 
(Kruger and von Schaewen, 2003), which is under the control 
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of the combined effect of auxin and sugar in buds (Wang 
et  al., 2021).

Response of the Sulfate Metabolism to the 
Combined Effect of Auxin and Sugar
Sulfur (S) is an essential macronutrient for plant growth, 
development, and response to environmental changes. As the 
first committed step of sulfate assimilation, ATP-sulfurylase 
(ATP-S or APS) catalyzes sulfate activation and yields activated 
high-energy adenosine-5′-phosphosulfate that is reduced to 
sulfide by APS reductase (5′-Adenylylsulfate (APS) reductase; 
APR), before being incorporated into cysteine (Anjum et  al., 
2015; Figure  5). Cysteine is the precursor of a huge number 
of sulfur-containing metabolites essential for the metabolism 
and the antioxidant function of plants (Takahashi et  al., 2011). 

The sulfur metabolism was significantly impaired by auxin, 
and this effect was partially alleviated by sucrose (Figure  5). 
Dormant buds (Suc10 + NAA) exhibited downregulated transcript 
levels of APS and APR, along with a low content of several 
sulfur-containing compounds (cysteine, homoserine, methionine, 
and O-acetylserine (OAS)) compared with partially (Suc10; 
Suc100 + NAA) and non-dormant buds (Suc100; Figure  5). In 
addition, only the expression level of APS and APR was 
positively associated with sugar availability. This was in line 
with earlier feeding experiments showing that sugar stimulates 
the transcript level, protein level, and activity of APR in 
arabidopsis roots (Hesse et al., 2003). On the contrary, partially 
and completely dormant buds displayed downregulated expression 
of serine acetyltransferase and cysteine synthase (O-acetylserine 
(thiol) lyase), which are involved in the final step of cysteine 
biosynthesis (Noji and Saito, 2002). These two enzymes do 

A

B

FIGURE 1 | KEGG analysis of the genes and compounds involved in the antagonistic effect of sucrose and auxin in buds treated for 24 h. (A) KEGG pathway 
analysis of the antagonistic-related genes (p < 0.05) based on ClusterProfiler analysis (Yu et al., 2012); (B) KEGG pathway analysis of the compounds (p < 0.05) 
influenced by the antagonistic effect of sucrose and auxin based on MetaboAnalyst database analysis (Chong and Xia, 2018).
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not appear to catalyze the rate-limiting steps of sulfate assimilation 
during bud outgrowth because their repression does not impede 
the ability of buds to grow out. In sum, the cellular metabolism 
of buds, including the sugar, amino acid, and sulfur metabolisms, 
is impaired by the inhibitory effect of auxin, and this effect 
is mitigated by sucrose availability.

Response of Ribosome Biogenesis to the 
Combined Effect of Auxin and Sugar
Ribosome biogenesis, an energy-consuming process, is a key 
process of protein synthesis and is closely linked to the main 

cellular activities including cell proliferation, differentiation, and 
growth (Kressler et  al., 2010; Weis et  al., 2015; Denise et  al., 
2019). Being a high-energy-consuming process (Warner, 1999; 
Du and Stillman, 2002), ribosome biogenesis might 
be  downregulated in dormant buds. In line with this, the 
abundance of genes related to RNA biogenesis was repressed 
by auxin in dormant buds, and this effect was alleviated by 
sugar availability (Figure  6). Several genes including 90S 
pre-ribosome components—such as the t-UTP complex subunit, 
the UTP-B complex subunit, and the MPP10 complex subunit 
(Kornprobst et  al., 2016)—and those involved in ribosomal 
RNA (rRNA) modification—NOP56 and DKC1 (Tran et  al., 

A

B C

FIGURE 2 | Vacuolar invertase (RhVI1) is regulated by auxin (NAA) and sucrose (Suc) in stem explant buds. (A) Catalysis pathway mediated by RhVI1; 
(B) Expression level of RhVI1 (dark and light green columns correspond to RNA-seq and RT-qPCR results respectively) , RNA-seq, and RT-qPCR results with 
sucrose alone (Suc10, Suc 100) and with auxin and sucrose (Suc10 + NAA and Suc100 + NAA); and (C) total activity of RhVI1 in buds supplied with sucrose only 
(Suc10 and Suc100) or NAA combined with sucrose (Suc10 + NAA and Suc100 + NAA). Data are the means ± SEs of three biological replicates. Suc10, 10 mM 
sucrose; S10N, 10 mM sucrose + 1 μM NAA; S100, 100 mM sucrose; and S100N, 100 mM sucrose + 1 μM NAA. Letters, significant differences between the different 
treatments with p < 0.05.

FIGURE 3 | Expression level of No APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATOR FACTOR/CUP-SHAPED COTYLEDON (ATAF1) and 
Trehalase in in vitro-cultured buds supplied with different treatments. Suc10, 10 mM sucrose; Suc10 + NAA, 10 mM sucrose + 1 μM NAA; Suc100, 100 mM sucrose; 
and Suc100 + NAA, 100 mM sucrose + 1 μM NAA. Data are the means ± SEs of three biological replicates. Letters, significant differences between the different 
treatments with p < 0.05.
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2003; Mochizuki and Gorovsky, 2004)—and cleavage—UTP14 
and KRE33 (Dragon et al., 2002)—were downregulated by auxin 
in dormant buds, and this effect was partially attenuated by 
high sugar availability (Figure 6). These findings are in agreement 
with the low energy status of dormant buds compared to active 
ones (Wang et al., 2021). In addition, other key genes of ribosome 
biogenesis including ribonuclease P/MRP protein subunit (Mrp), 
nuclear GTP-binding protein (Nug1/2), ribosome biogenesis ATPase 
(Rix7), and midasin-like protein (Real) were antagonistically 
regulated by auxin and sucrose, and downregulated by auxin 
(Figure  6).

Response of the Nucleic Acid Metabolism 
to the Combined Effect of Auxin and Sugar
DNA replication is highly energy-consuming and strongly 
responsive to the plant nutrient status (Shultz et  al., 2007; 
Polyn et al., 2015). The transcription level of the components 

of the DNA polymerase complex (Pols) and of the maintenance 
of mini chromosomes (MCM) complex was under the 
regulation of the antagonistic effect of auxin and sugar 
availability (Figures  7A,B). Pols are divided into at least 
six different complexes named alpha, beta, gamma, delta, 
epsilon, and zeta that are central players in DNA replication, 
DNA damage repair, control of cell cycle progression, 
chromatin remodeling, and epigenetic regulation (Franklin 
et  al., 2001; Pedroza-García et  al., 2017). The antagonistic 
effect of auxin and sucrose significantly concerned most of 
the components of the DNA polymerase α-primase complex, 
the DNA polymerase δ complex, and the DNA polymerase 
ε complex (Figures 7A,B). MCM proteins serve as a licensing 
factor for DNA replication during phase S of the cell mitotic 
cycle (Tuteja et  al., 2011). They form heterohexameric 
complexes (MCM2-7) that are all downregulated in dormant 
buds (Figures  7A,B). Similarly, dormant buds exhibit 
downregulated replication of the protein A (RPA) complex, 

FIGURE 4 | Amino acid levels in axillary buds following different treatments. Suc10, 10 mM sucrose; Suc10 + NAA, 10 mM sucrose +1 μM NAA; Suc100, 100 mM 
sucrose; and Suc100 + NAA, 100 mM sucrose +1 μM NAA. Dark green label, amino acid inhibited by auxin but stimulated by sucrose [nine amino acids: Ala (alanine), 
Asp (aspartate), Met (methionine), Glu (glutamate), Gln (glutamine), Pro (proline), His (histidine), Gly (glycine), and Cys (cysteine)]. Gray label, amino acid inhibited by 
sucrose, but stimulated by auxin [Ile (isoleucine) and Lys (lysine)]. Green and dark columns, sucrose- and sucrose+auxin-treated buds, respectively. Data are 
means ± standard errors (SEs). Letters, significant differences between the different treatments with p < 0.05.
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and of an AAA+ ATPases required for DNA replication, 
repair, and recombination (Aklilu and Culligan, 2016; 
Figures  7A,B). Nucleotide biosynthesis is deeply reliant on 
ribose 5-phosphate, an important precursor of pyrimidine 
ribonucleotide synthesis (Zrenner et  al., 2006). The ribose 
5-phosphate content was lower in dormant buds than in 
active ones (Supplementary Figure S5; Wang et  al., 2021).

The transcription of eight genes encoding cyclins (mainly 
cyclins A2, A3, and D1, 2, 3, and 4) was also controlled by 
the antagonistic effect of sucrose and auxin (Figure 7C). These 

genes are an integrative part of the cell cycle machinery. They 
are repressed by auxin in dormant buds, while their transcript 
level is recovered in response to high sucrose availability. In 
arabidopsis, sugar deprivation of meristem-induced cell cycle 
arrest (Francis and Halford, 2006) and two cyclins D (CycD2 
and CycD3) acts as direct mediators of the presence of sugar 
in cell cycle commitment (Riou-Khamlichi et  al., 2000). These 
findings indicate that the antagonistic effect of auxin and sugar 
is complex and takes place at different stages of the cell 
proliferation process.

FIGURE 5 | The sulfur metabolism is antagonistically regulated by auxin and sugar in axillary buds. Suc10, 10 mM sucrose; Suc10 + NAA, 10 mM 
sucrose + 1 μM NAA; Suc100, 100 mM sucrose; and Suc100 + NAA, 100 mM sucrose + 1 μM NAA. Dark green labels, enzymes-encoding genes (APS (ATP-
sulfurylase) and APR [5′-adenylylsulfate (APS) reductase)] or metabolites (O-acetylserine, cysteine, and homocysteine) repressed by auxin but stimulated by 
sucrose. Gray labels, enzymes-encoding genes (serine acetyltransferase; cysteine synthase; and selenium-binding protein, SBP) repressed by sucrose but 
stimulated by auxin. Data are the means ± standard errors (SEs). Letters, significant differences between the different treatments with p < 0.05. Green bars, 
effect of sucrose alone; gray bars, combined effect of auxin and sucrose. Heatmap color (from blue to yellow), gene transcription level from low to high, 
respectively.
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Response of Hormone Synthesis and 
Signaling to the Combined Effect of Auxin 
and Sugar
We identified three main plant hormones related to the regulatory 
network of bud outgrowth: the auxin biosynthesis and signaling 
pathway, and the abscisic acid (ABA) and cytokinin signaling  
pathways.

Auxin (IAA) is the major negative systemic regulator of 
bud outgrowth (Barbier et  al., 2019). Its level is lower in 
dormant buds than in non-dormant buds of Rosa sp. (Barbier 
et  al., 2015). In plants, IAA is mainly synthesized by two-step 
pathway. TRYPTOPHAN AMINOTRANSFERASE OF 
ARABIDOPSIS (TAA) family enzymes convert tryptophan (Trp) 

into indole-3-pyruvic acid (IPA), and flavin monooxygenase 
(YUCCA) family enzymes catalyze the subsequent transformation 
of IPA into IAA (Aoi et  al., 2020). The transcription level of 
four genes encoding YUCCA was stimulated by auxin but 
inhibited by sucrose (Figure  8A). IAA is metabolized into 
corresponding amino acid conjugates by auxin-amido synthetases 
(auxin-conjugating enzymes) encoded by the GRETCHEN 
HAGEN 3 (GH3) genes (Park et al., 2007). Two genes encoding 
GH3 were upregulated in dormant buds (Figure  8A). The 
metabolomics analysis showed that the tryptophan content was 
lower in buds fed with sucrose but remained uninfluenced by 
auxin supply (Supplementary Figure S3). Dormant buds 
exhibited upregulated auxin transport and signaling, in line 

FIGURE 6 | The ribosome biosynthesis machinery is affected by the antagonistic effect of sucrose and auxin. Suc10, 10 mM sucrose; Suc10 + NAA, 10 mM 
sucrose + 1 μM NAA; Suc100, 100 mM sucrose; and Suc100 + NAA, 100 mM sucrose + 1 μM NAA. Dark green labels, enzymes-encoding genes repressed by auxin 
but stimulated by sucrose. Gray labels, enzymes-encoding genes repressed by sucrose but stimulated by auxin. Heatmap color (from blue to yellow), gene 
transcription level from low to high, respectively.
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with the observed lower auxin content. The transcription level 
of AUX1, encoding a carrier protein involved in proton-driven 
auxin influx (Swarup and Bhosale, 2019), and of three main 
components of the auxin signaling pathway—TRANSPORT 
INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1) 
and two AUXIN/IAA (auxin/indole-3-acetic acid) proteins—was 
higher in dormant buds (Figure  8A). Three genes encoding 
the small auxin up RNA (SAUR; Figure  8A), corresponding 
to the largest family of early auxin-responsive genes in higher 
plants, are also upregulated in dormant buds (Zhang et  al., 
2021). These findings indicate that auxin homeostasis and 
signaling within buds are under the combined effect of auxin 
and sugar availability.

Abscisic acid (ABA) is involved in many plant developmental 
processes, including as a repressor of bud outgrowth (Barbier 
et al., 2019). The ABA signaling network is likely more sensitive 
than the ABA biosynthesis network to the antagonistic effect 
of auxin and sucrose availability. Only β-carotene hydroxylase, 
an enzyme of the zeaxanthin biosynthesis pathway required 
for ABA biosynthesis (Hao et  al., 2010), was consistently 
stimulated in dormant buds (Figure  8B). By contrast, all the 
constituents of the ABA signaling network were upregulated 
in dormant buds and downregulated in partially active and 
fully active buds, including ABA receptors [PYR(pyrabactin 
resistance)/PYL(PYR1-like)], type-2C protein phosphatases 
(PP2Cs), SNF1-related protein kinase 2 (SnRK2), and 

A
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FIGURE 7 | DNA replication and cell division are antagonistically regulated by auxin and sugar in axillary buds. Suc10, 10 mM sucrose; Suc10 + NAA, 10 mM 
sucrose +1 μM NAA; Suc100, 100 mM sucrose; and Suc100 + NAA, 100 mM sucrose +1 μM NAA. (A) Sucrose and auxin antagonistically regulate the transcription 
level of many key factors of DNA replication; (B) several genes that encode the key factors of DNA replication are regulated by the antagonistic effect of sucrose and 
auxin; and (C) several genes related to the cell cycle are regulated by the antagonistic effect of sucrose and auxin. Dark green labels, enzymes-encoding genes 
repressed by auxin but stimulated by sucrose. Gray labels, enzymes-encoding genes repressed by sucrose but stimulated by auxin. Heatmap color (blue to yellow), 
gene transcription level (low to high, respectively).
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ABA-responsive elements binding factor (ABF; Figure  8B). 
Upon ABA perception, pyrabactin resistance (PYR)/PYR1-like 
(PYL) inhibits the activity of PP2Cs (Santiago et  al., 2012), 
resulting in the auto-phosphorylation of SnRK2 required for 
ABF activation (Fujita et  al., 2013). This regulation involves 
four genes encoding PYR/PYL, four genes encoding the PP2C 
protein family, two genes encoding the SnRK2 family, and 
two genes encoding ABF2 and ABF4, two key components of 
ABA signaling (Rushton et  al., 2012). These findings indicate 
that the ABA signaling network could be  at the core of the 
antagonistic effect of auxin and sugar on bud outgrowth.

Cytokinins (CK) are promoters of bud outgrowth (Rameau 
et  al., 2015; Barbier et  al., 2019; Wang et  al., 2021) and act 
as repressors of BRC1 expression (Dun et  al., 2012). The 
transcription level of many key factors of the CK signaling 
pathway, such as cytokinin receptor 1 (CRE1), histidine 
phosphotransfer proteins (AHP), 3 type-A response regulators 
(A-RR3, 5 and 9), and one type-B response regulator (B-RR1), 
were antagonistically regulated by auxin and sucrose (Figure 8C). 
More interestingly, type-B RR1, whose ortholog in arabidopsis 
is linked to bud outgrowth repression (Waldie and Leyser, 
2018), was upregulated by auxin but repressed by sucrose 
availability. By contrast to auxin, sucrose promoted the 

accumulation of three type-A-RRs (RR3, 5 and 9; Figure  8C), 
in accordance with the reduced branching phenotype of the 
sextuple mutant lacking the clade of type-A RRs in arabidopsis 
(arr3,4,5,6,7,15; Müller et  al., 2015). These results support that 
hormone signaling may be  more sensitive to the antagonistic 
effect of auxin and sugar, in agreement with our previous data 
on the SL pathway (Bertheloot et  al., 2020).

Response of Bud Outgrowth and BRC1 
Expression to TOR-Kinase Inhibitors
TARGET OF RAPAMYCIN (TOR) kinase signaling is at the 
core of the crosstalk between nutrient availability/the energy 
status and plant growth/development (Brunkard et  al., 2020; 
McCready et al., 2020). Our previous data clearly demonstrated 
that auxin and sugar availability regulated bud outgrowth by 
acting antagonistically on glycolysis/the TCA cycle—the main 
energy provider for buds—while dormant buds exhibited sugar 
starvation (Wang et  al., 2021). These findings and the fact 
that several TOR-kinase-inducible processes (the nucleic acid 
metabolism, protein translation, and ribosome biogenesis) are 
all downregulated in dormant buds prompted us to investigate 
whether TOR signaling could be  required for bud outgrowth. 

A
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FIGURE 8 | Expression patterns of (A) the genes related to auxin biosynthesis (TAA and YUCCA), conjugation to amino acid (GH3), transport (AUX1), and signaling 
(TIR1, AUX/IAA, ARF, and SAUR); (B) the genes related to abscisic acid signaling (PYR/PYL, PP2C, SnRK2, and ABF), and (C) the genes related to cytokinin 
signaling (CRE1, AHP, A-RR, and B-RR) in response the combined effect of auxin and sucrose in buds. S10, 10 mM sucrose; S10N, 10 mM sucrose + 1 μM NAA; 
S100, 100 mM sucrose; and S100N, 100 mM sucrose + 1 μM NAA. Dark green labels, enzymes-encoding genes repressed by auxin but stimulated by sucrose. Gray 
labels, enzymes-encoding genes repressed by sucrose but stimulated by auxin. Heatmap color (blue to yellow), gene transcription level (low to high, respectively).
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First, the ability of buds to grow out was monitored by using 
stem node segments grown in vitro on classical solid medium 
(Rabot et  al., 2012; Barbier et  al., 2015; Wang et  al., 2021) 
supplemented or not (control) with a concentration range of 
TOR-kinase inhibitor (AZD8055). AZD8055 feeding of the 
buds reduced their ability to grow out in a concentration-
dependent manner (Figure  9A): bud length decreased as the 
AZD8055 concentration increased. High sucrose availability 
(100 mM) partially relieved this effect (Figure  9A); therefore, 
the effect depended on sugar availability. Elongation was 

completely inhibited when the buds were fed with 10 μM 
AZD8055 and 10 mM sucrose.

We also tested the transcription level of RhBRC1 (a master 
repressor of bud outgrowth) and RhHB40 (an HD-Zip 
transcription factor transcriptionally and directly controlled by 
AtBRC1, Whipple et  al., 2011; González-Grandío et  al., 2017; 
Dong et  al., 2019), used as a marker of the transcriptional 
activity of RhBRC1. In accordance with our previous data 
(Wang et al., 2021), the transcript levels of RhBRC1 and RhHB40 
were both reduced in response to sugar availability 

A
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FIGURE 9 | TOR kinase regulates bud outgrowth and RhBRC1 expression through its promoter region. (A) Lengths of buds treated with different sucrose 
concentrations and AZD8055 (50 buds per treatment); (B,C) transcription levels of RhBRC1 and RhHB40, respectively; (D) fluorescence levels of the 1973 bp-
RhBRC1 promoter in stably transformed calluses placed on different concentrations of AZD8055; and (E) transcription levels of GFP in the calluses treated with 
different concentrations of AZD8055. Green bars, sucrose treatment alone; blue bars, combined supplementation of sucrose and AZD8055. Data are the means of 
three biological replicates ± standard error (SE). Letters, significant differences between the different treatments with p < 0.05.
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(Figures  9B,C). The addition of AZD8055 increased the 
transcription level of RhBRC1 and RhBH40, much more so 
when the buds were incubated on a low sucrose concentration 
(10 mM; Figures 9B,C). Taken together, these findings support 
that RhBRC1 accumulation in buds is regulated by AZD8055, 
and this regulation is negatively associated with 
TOR-kinase activity.

We recently showed that the promoter of RhBRC1 was a 
converging site of sugar signaling that regulated BRC1 expression 
transcriptionally (Wang et  al., 2021). To check whether the 
promoter of RhBRC1 played a central role in TOR-kinase-
mediated downregulation of RhBRC1, the full-length promoter 
of RhBRC1 (1,973 bp, pRhBRC1) was isolated and fused to the 
GFP-coding sequence in expression vectors stably transformed 
into Rosa calluses (Wang et  al., 2021). After 8 h of incubation 
of AZD8055-fed medium, the GFP fluorescence and GFP transcript 
levels of the calluses stably transformed with the −1,973 bp 
promoter (pRhBRC1::GFP) increased in a concentration-
dependent manner (Figures  9D,E). The highest level of GFP 
transcript was found with 10 μM AZD8055, indicating that the 
BRC1 promoter could be part of TOR-kinase-dependent signaling.

DISCUSSION

Auxin and sugar are one of the main systemic regulators of 
shoot branching that act antagonistically to regulate bud 
outgrowth (Mason et  al., 2014; Barbier et  al., 2015; Bertheloot 
et  al., 2020; Wang et  al., 2021). However, the regulatory 
mechanism networks involved in this opposite crosstalk are 
still elusive because auxin and sucrose are generally reported 
to drive a variety of physiological plant processes cooperatively 
(Hartig and Beck, 2006; Mishra et  al., 2021). According to 
the trophic hypothesis of apical dominance, auxin leads to 
photoassimilate diversion from axillary buds to the actively 
growing tip region of plants, which display a high sugar strength 
for photoassimilates (Kebrom, 2017). In one-node stem explant, 
where the actively growing tip is removed, our results reveal 
that the role of auxin could be  extended to the regulation of 
the sink strength of axillary buds, and this effect is dependent 
on sugar availability. Vacuolar invertase (RhVI1), a marker of 
the growing capacity of buds in Rosa hybrida (Girault et  al., 
2010; Rabot et  al., 2012) and in etiolated potato stems (Salam 
et  al., 2021), is strongly repressed by auxin in dormant buds, 
and this repressive effect is partially compromised by increasing 
sugar availability from 10 to 100 mM. RhVI1 constitutes a 
critical target of the combined effect of auxin and sugar at 
the transcriptional and protein (activity) levels (Figure  2), 
coinciding with its role as a hub for exogenous (light) and 
endogenous (sugar and GA) clues in Rosa buds (Rabot et  al., 
2014). Auxin exogenously fed to buds also results in the 
repression of Rosa hybrida Sucrose transporter (RhSUC2), a 
main plasma membrane-located sugar transporter that provides 
sugar to buds in the early stages of their outgrowth (Henry 
et  al., 2011). Auxin-induced bud dormancy goes together with 
upregulated sugar limitation-related markers, including ATAF1 
and trehalase (Figure  3), Asparagine synthetase 1 (RhASN1; 

Wang et  al., 2021), and downregulation of two main primary 
pathways of the sugar metabolism (glycolysis/the TCA cycle 
and the OPPP; Wang et  al., 2021). We  might assume that 
besides its systemic role, auxin acts locally in the vicinity of 
buds in the stem by limiting their sink strength for sugar, 
leading to sugar depletion and bud dormancy whose extent 
may be  compromised by sugar availability in the plant.

Besides the sugar metabolism, nitrogen availability is required 
for bud outgrowth in many species, including Rosa sp. (Le 
Moigne et al., 2018; Luo et al., 2020). The present study shows 
that the amino acid metabolism is impaired in dormant buds, 
with an elevated level of 17 transcripts encoding amino-acid-
degrading enzymes and a low level of nine amino acids (Ala, 
Asp, Met, Glu, Gln, Pro, Lys, His, and Gly; Figure  4). Once 
again, rising sugar availability partially compromised the effect 
of auxin, indicating that the amino acid metabolism is a target 
of these two shoot branching regulators. More interestingly, 
six out of nine of these amino acids (Ala, Asp, Glu, Gln, 
Met, and His) were the same as those induced in response 
to plant decapitation in pea, reflecting the ability of buds to 
synthesize certain amino acids (Fichtner et  al., 2017). In rose, 
several amino acids including Asn, Glu, Ser, Thr, Ile, and Pro 
accumulate in the xylem sap following decapitation, and both 
Asn and sugar are required for sustained growth of secondary 
axes (Le Moigne et  al., 2018). The removal of the actively 
growing tip of a plant likely goes together with changes in 
the amino acid metabolism in buds and roots (Fichtner et  al., 
2017; Le Moigne et  al., 2018). In our conditions, proline was 
the only amino acid whose accumulation was strongly enhanced 
(4.1 times) in response to sugar availability (from 10 mM to 
100 mM sucrose) and plummeted in dormant buds (Figure 4). 
High levels of proline and alanine (Figure  4) can activate 
TOR kinase, which in turn represses proline consumption for 
cell respiration by mitochondria and stimulates its accumulation 
for protein synthesis (O’Leary et  al., 2020). The isoleucine 
(Ile) and lysine (Lys) content was stimulated in dormant buds 
and inhibited in active ones (Figure  4), in line with their 
decreasing trend in bud-decapitated pea plants (Fichtner et al., 
2017). Enhanced Lys metabolism negatively interacts with TCA 
cycle-associated metabolism during early germination 
(Angelovici et al., 2011). The carbon and nitrogen metabolisms 
are required for sulfur availability by providing OAS, the sole 
entry point of reduced sulfur in the form of sulfide into the 
plant metabolism (Hawkesford and De Kok, 2006; Jobe et  al., 
2019). Sulfur is an essential nutrient for all organisms and 
regulates plant growth via glucose-TOR signaling (Dong et al., 
2017). In addition, the sulfur metabolism leads to the formation 
of glutathione (GSH), an important player in the redox status 
of plants (Ahmad et  al., 2016; Olson, 2020). The coordination 
of the sulfur flux between GSH biosynthesis and protein 
translation determines growth via TOR regulation (Speiser 
et al., 2018). Dormant buds exhibited downregulated transcript 
levels of APS and APR, along with a low content of OAS (a 
sulfur precursor) and of the main sulfur-containing compounds 
including Cys, homoserine, and methionine, compared to active 
ones (Figure  5). Depletion of OAS inhibits TOR activity by 
downregulating the glucose metabolism, resulting in decreased 
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protein translation and meristematic activity, and elevated 
autophagy (Dong et  al., 2017). The global cell metabolism of 
buds, covering the sugar, amino acid, and sulfur metabolisms, 
is altogether more likely to be a potent target of the combined 
effect of auxin and sugar. This opens the way for future 
research aimed at identifying the network involved in 
this regulation.

We previously showed that the antagonistic effect of auxin 
and sugar availability mainly targeted SL signaling, and sugar 
did not antagonize auxin regarding CK synthesis in the stem 
(Bertheloot et  al., 2020). Auxin triggers SL signaling to inhibit 
bud outgrowth, while sugar counterbalances this effect. 
Interestingly, similar trends were found for the auxin, ABA, 
and CK signaling pathways in buds (Figure  8), with a marked 
tendency for the ABA and CK signaling pathways (Figure  8). 
Dormant buds exhibited positive changes in auxin (YUCCA) 
transport and signaling, leading to elevated levels of SAUR, 
representing the key early auxin response genes (Ren and Gray, 
2015; Stortenbeker and Bemer, 2019), in accordance with low 
auxin accumulation (Barbier et  al., 2015). The ABA signaling 
pathway seems to be further at the core of this crosstalk because 
it involves all the components of ABA signaling including 
ABA perception (PYR/PYL), transduction (PP2C, SnRK2), and 
the expression of two ABA-dependent transcription factors 
(ABF2 and ABF4; Figure  8B). Dormant buds maintain a high 
ABA signaling pathway. ABA is a potent growth inhibitor (Yao 
and Finlayson, 2015) that was significantly compromised by 
elevated sugar availability (Figure  8B). Upregulation of ABF2 
and ABF4 in dormant buds is in line with their role, along 
with ABF3, in the promotion of ABA-mediated chlorophyll 
degradation and leaf senescence in arabidopsis (Gao et  al., 
2016). This could prevent buds from acquiring a photosynthetic 
capacity following their outgrowth. ABA accumulation in 
dormant buds is triggered by BRC1 transcriptional activity. 
Along with three transcription factors HB21, HB40, and HB53, 
BRC1 upregulates the expression of NCED3, one of the main 
ABA biosynthesis enzymes, and thereby ABA signaling (González-
Grandío et  al., 2017). BRC1 is also under the control of sugar 
alone (Mason et  al., 2014; Barbier et  al., 2015; Wang et  al., 
2019) and of the combined effect of auxin and sugar (Wang 
et al., 2021). It would be very interesting to investigate whether 
auxin and sugar could regulate ABA signaling through BRC1-
dependent and independent mechanisms. CK signaling in buds 
is also antagonistically affected by auxin and sugar: type-B 
RR1 was upregulated by auxin and downregulated by sucrose, 
while type-A RR3, 5, and 9 were downregulated by auxin and 
upregulated by sucrose (Figure 8C). Although this effect seems 
to be at odds with the promotive role of CK in shoot branching, 
it is perfectly consistent with previous data on arabidopsis. 
Indeed, the sextuple mutant lacking the whole clade of type-A 
Arabidopsis Response Regulators (arr 3,4,5,6,7,15) showed 
reduced shoot branching, while the arr1 mutant exhibited high 
shoot branching, compared with the wild type (Müller et  al., 
2015; Waldie and Leyser, 2018). These phenotypes are correlated 
with the opposite effects of ARRs on stem auxin transport 
and the auxin export proteins PIN3, PIN4, and PIN7 (Müller 
et  al., 2015; Waldie and Leyser, 2018), contributing to the 

connective auxin transport between bud and stem (van Rongen 
et  al., 2019). All these findings pave the way for future 
investigations of the molecular mechanistic regulation of these 
hormone-signaling pathways in buds.

In plants, TOR kinase is known as the master regulator 
of growth that integrates diverse nutrient, energy, hormone, 
and stress inputs and transduces them into the regulation 
of ribosome biogenesis, cell cycle progression, leaf sink-to-
source transition, cell growth, and autophagy (Ahn et  al., 
2015; Xiong and Sheen, 2015; Brunkard et al., 2020; McCready 
et  al., 2020). TOR kinase is a player in the meristematic 
activity of roots and apical buds (Li et  al., 2017; Wu et  al., 
2019); our results reveal its role in the control of bud 
outgrowth. Axillary bud treatment with AZD8055, a potent 
inhibitor of TOR kinase (Schepetilnikov et  al., 2017; Zhuo 
et  al., 2020), resulted in a reduction of their ability to grow 
out in a concentration-dependent manner (Figure  9). 
Furthermore, two downstream TOR-kinase processes—
ribosome biosynthesis and DNA replication—were strongly 
affected by the antagonistic effect of sucrose and auxin 
(Figure 7). The overwhelming majority of the transcript levels 
of the genes related to ribosome biosynthesis (27 genes) 
and DNA replication (19 genes) was highly repressed in 
auxin-related dormant buds, and this effect was significantly 
compromised by sugar availability (Figure  7). This is further 
in accordance with the fact that these two processes are 
among the most energy-consuming ones, and dormant buds 
are highly energy-limited sink organs (Wang et  al., 2021). 
TOR-kinase-dependent regulation of ribosome biosynthesis 
and DNA replication could be triggered by the phosphorylation 
of its downstream targets S6 kinase and eIF4E binding protein 
1 (E-BP1; Sablowski and Carnier Dornelas, 2014; Xiong and 
Sheen, 2014), allowing TOR kinase to coordinate ribosome 
biogenesis with nucleotide availability to maintain metabolic 
homeostasis and support plant growth (Busche et  al., 2021). 
Recently, Scarpin et  al. (2020) showed that TOR controls 
ribosome biogenesis at several steps, including through 
phosphorylation of LARP1, which is a conserved TOR substrate. 
Much evidence indicates that auxin directly stimulates TOR 
kinase in root and shoot to promote their growth (Bögre 
et  al., 2013; Xiong et  al., 2013; Li et  al., 2017; Schepetilnikov 
and Ryabova, 2017). Our findings assume that the located-
stem auxin, that cannot enter bud to exert its inhibitory 
effect, indirectly represses TOR kinase activity via the regulation 
of branching-related hormones (CK or SL) and/or of bud 
sugar starvation. Additional studies are required to decipher 
the underlining mechanism behind this regulation.

TOR kinase is more likely to act negatively on and upstream 
of BRC1, as evidenced by the upregulation of BRC1 and 
RhHB40, a marker of its transcriptional activity (González-
Grandío et al., 2017; Wang et al., 2021), in response to AZD8055. 
This effect was negatively dependent on sugar availability 
(Figure  9) and took place at the promoter level of RhBRC1 
(Figure  9). Along with the fact that glycolysis/TCA cycle- and 
OPPP-dependent signaling pathways cooperatively regulate 
RhBRC1 expression at its promoter level (Wang et  al., 2021), 
these findings clearly indicate that the promoter region of 
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RhBRC1 is the converging site of several endogenous signals 
and could be  targeted to disentangle the molecular regulatory 
mechanisms that drive BRC1 regulation.

The antagonistic effect of two main systemic regulators of 
shoot branching—auxin and sucrose availability—operates 
through a complex network of processes based on the cell 
metabolism and signaling pathways. Part of these processes 
act upstream of TOR kinase, while others are directly related 
to its activity, consistent with the activity of TOR kinase required 
for bud outgrowth. These findings open up new avenues for 
a better understanding of the way(s); these two main endogenous 
regulators are integrated in buds and drive their ability to 
turn into a new branch, an important trait for agronomy, 
and horticulture.
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