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Microbial necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) act
as cytolytic toxins and immunogenic patterns in plants. Our previous work shows
that cytolytic NLPs (i.e., PyolNLP5 and PyolNLP7) from the biocontrol agent Pythium
oligandrum enhance plant resistance against Phytophthora pathogens by inducing
the expression of plant defensins. However, the relevance between PyolNLP-induced
necrosis and plant resistance activation is still unclear. Here, we find that the necrosis-
inducing activity of PyolNLP5 requires amino acid residues D127 and E129 within the
conserved “GHRHDLE” motif. However, PyolNLP5-mediated plant disease resistance
is irrelevant to its necrosis-inducing activity and the accumulation of reactive oxygen
species (ROS). Furthermore, we reveal the positive role of non-cytotoxic PyolNLPs in
enhancing plant resistance against Phytophthora pathogens and the fugal pathogen
Sclerotinia sclerotiorum. Similarly, non-cytotoxic PyolNLPs also activate plant defense
in a cell death-independent manner and induce defensin expression. The functions
of non-cytotoxic PyolNLP13/14 rely on their conserved nlp24-like peptide pattern.
Synthetic Pyolnlp24s derived from both cytotoxic and non-cytotoxic PyolNLPs can
induce plant defensin expression. Unlike classic nlp24, Pyolnlp24s lack the ability of
inducing ROS burst in plants with the presence of Arabidopsis nlp24 receptor RLP23.
Taken together, our work demonstrates that PyolNLPs enhance plant resistance in an
RLP23-independent manner, which requires the conserved nlp24-like peptide pattern
but is uncoupled with ROS burst and cell death.
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INTRODUCTION

Millions of years of coevolution of plants and microbial
pathogens have shaped the antagonistic ability of both parties.
Their interactions upgrade both pathogen invasion approaches
and plant defense mechanisms (Jones and Dangl, 2006; Ottmann
et al., 2009). Early-stage plant-pathogen interactions take place
in the apoplast (Lo Presti et al., 2015; Ma et al., 2017), where
microbe- or pathogen-associated molecular patterns (MAMPs or
PAMPs) released from bacteria, fungi, oomycetes, or nematodes
are recognized by pattern recognition receptors (PRRs) at the
plasma membrane (Yu et al., 2021).

Hitherto, only a limited number of MAMP/PAMP-
recognizing PRRs have been documented (Tang et al., 2017;
Wang et al., 2018). PRRs are often leucine-rich repeat receptor-
like kinases (LRR-RLKs). The well-known Arabidopsis thaliana
LRR-RLK FLAGELLIN-SENSITIVE 2 (FLS2) binds flg22, an
22-amino-acid epitope at the N-terminal of bacterial flagellin
(Chinchilla et al., 2006). The bacterial PAMP elongation factor
thermo unstable (EF-Tu) is recognized by Arabidopsis LRR-RLK
EFR via its conserved N-terminal N-acetylated epitope elf18
(Zipfel et al., 2006). The tomato (Solanum lycopersicum) LRR-
RLK CORE is a high-affinity receptor for the bacterial cold shock
protein (CSP) epitope csp22 (Wang et al., 2016). PRRs may
also be LRR receptor-like proteins (RLPs) which lack the kinase
domain. For example, ReMAX, RLP30, RLP42/RBPG1, ELR,
RXEG1 and NbEIX2 are PRRs recognizing Xanthomonas eMAX,
Sclerotinia sclerotiorum SCFE1, fungal endopolygalacturonases
(endoPG), Phytophthora elicitin INF1, Phytophthora sojae
XEG1 and Verticillium dahlia VdEIX3, respectively (Jehle
et al., 2013; Zhang et al., 2013, 2014; Du et al., 2015; Tang
et al., 2017; Wang et al., 2018; Wan et al., 2019; Yin et al.,
2021; Yu et al., 2021). The subsequent immune activation
after PRR-RLK/RLP recognition is referred to as MAMP- or
PAMP-triggered immunity (MTI or PTI), which leads to the
rise of cytosolic Ca2+ level, production of extracellular reactive
oxygen species (ROS) and activation of mitogen-activated
protein kinase (MAPK) cascades (Couto and Zipfel, 2016). As
a major early signaling product, ROS has been proposed to act
as defense molecules that kill pathogens as well as signaling
molecules that activate additional immune responses (Qi et al.,
2017; Yuan et al., 2021). MTI/PTI, ROS accumulation and
the downstream signaling cascades trigger various defense
mechanisms to defend pathogen invasion (Poland et al., 2009;
Yang and Fernando, 2021).

Microbial necrosis and ethylene-inducing peptide 1 (Nep1)-
like proteins (NLPs) act as both MAMPs and toxin-like
virulence factors in plant-microbe interactions (Qutob et al.,
2006). NLPs are produced by bacteria, fungi or oomycetes
to induce necrosis and ethylene production in eudicot plants
(Gijzen and Nurnberger, 2006; Oome and Van den Ackerveken,
2014; Azmi et al., 2018). Phylogenetic analysis of their
amino acid sequences distinguishes Type I, Type II, and
Type III NLPs which have one, two and three pairs of
conserved cysteines, respectively. All three types of NLPs
can be found in bacteria and fungi whereas oomycetes only
produce Type I or Type II NLPs (Gijzen and Nurnberger,

2006; Oome and Van den Ackerveken, 2014; Seidl and Van den
Ackerveken, 2019). Most plant pathogenic oomycetes, including
P. sojae, Pythium ultinum and Pythium aphanidermatum, encode
only type I NLPs. Both cytolytic and non-cytolytic Type II
NLPs are found in non-pathogenic oomycetes such as Pythium
oligandrum and Pythium periplocum (PyolNLPs/PypeNLPs).
Oomycete NLPs carry a pattern of 20 or 24 amino acid residues
(nlp20 or nlp24), which are precepted by Arabidopsis PRR
RLP23 to trigger plant immune responses such as MAPK cascade
activation and ROS burst (Bohm et al., 2014; Oome et al., 2014;
Albert et al., 2015).

Necrosis and ethylene-inducing peptide 1-like proteins
of pathogenic oomycetes Pythium aphanidermatum and
Phytophthora parasitica are structurally conserved with cytolytic
and pore-forming actinoporins of marine organisms (Ottmann
et al., 2009; Azmi et al., 2018). The bindings of cytotoxic
oomycete NLPs to glycosylinositol phosphorylceramide (GIPC)
sphingolipids induce necrosis in eudicots but not in monocots
(Lenarcic et al., 2017; Seidl and Van den Ackerveken, 2019).
NLPs of the oomycete pathogen Hyaloperonospora arabidopsidis
(HaNLPs) lack the ability to cause necrosis in dicot plants
(Cabral et al., 2012), but can induce defense responses such
as PATHOGENESIS-RELATED GENE 1 (PR1) expression in
Arabidopsis (Oome et al., 2014). Recent study discloses that
the functional difference between cytolytic PyaNLP and non-
cytolytic HaNLP3 protein is in GIPC headgroup recognition. In
contrast to PyaNLP, the HaNLP3 protein does not bind to GIPCs
alone, consistent with its inability to cause necrosis of tobacco
leaves (Lenarcic et al., 2019).

Cytotoxic NLPs in certain hemibiotrophic plant pathogens
such as Phytophthora capsici and Verticillium dahliae are essential
for their full virulence and the transition to necrotrophic
stages during infection (Dong et al., 2012; Zhou et al., 2012).
Hemibiotrophic fungus Colletotrichum orbiculare expressing a
mutated NLP1 lacking cytotoxic activity loses its ability to infect
cucumber (Azmi et al., 2018). Conlp24, a synthetic peptide
derived from C. orbiculare NLP1, elicits ROS generation in
Arabidopsis. This ability can be abolished by mutating its first four
amino acids (AIMY) to alanine (Conlp24Mut) (Azmi et al., 2018).
Furthermore, NLPs typically share a conserved NPP1 domain
that contains a heptapeptide “GHRHDWE” motif (Fellbrich et al.,
2002; Santhanam et al., 2013; Seidl and Van den Ackerveken,
2019). Mutation of D104 or E106 residue in the motif abolishes
the cytolytic activity of NLPPcc from the pathogenic bacterium
Pectobacterium carotovorum (Ottmann et al., 2009). The results
above suggest that both “AIMY” and “GHRHDWE” motifs may
be important for NLP function.

We previously reported that PyolNLPs/PypeNLPs from non-
pathogenic P. oligandrum and P. periplocum contain a unique
“G/AHxF” motif found in the N-terminal of the nlp24 pattern. In
contrast, the “AIMY” motif is typically found in Type I and Type
II pathogenic NLPs (Yang et al., 2021). Mutation of the “G/AHxF”
or “GHRHDLE” motif impairs PyolNLP5/7-mediated resistance
against P. capsici in solanaceous plants, suggesting the crucial
role of nlp24 in the function of PyolNLPs. In addition, cytotoxic
PyolNLP5 enhances resistance by inducing plant defensin in
a non-ROS-injury manner (Yang et al., 2021). However, the
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possible linkage between PyolNLP-induced necrosis and defense
remains enigmatic.

Here, we use mutation analysis to determine Asparticacid
(D) and Glutamicacid (E) in the “GHRHDLE” motif of
Group 1 PyolNLPs as the two key residues for their necrosis-
inducing activity. Using PyolNLP5 as an example, we showed
that its resistance enhancing function is independent of
necrosis induction and ROS burst. Furthermore, we explore
the positive role of non-cytotoxic PyolNLPs in enhancing
plant resistance against Phytophthora pathogens and the
fugal pathogen S. sclerotiorum. Non-cytotoxic PyolNLPs also
activate plant defense in a cell death-independent manner and
induce defensin expression. The functions of non-cytotoxic
PyolNLP13/14 rely on their conserved nlp24-like peptide pattern.
Synthetic Pyolnlp24s derived from both cytotoxic and non-
cytotoxic PyolNLPs can induce plant defensin expression.
Unlike classic nlp24, Pyolnlp24s lack the ability of inducing
ROS burst in plants with the presence of Arabidopsis nlp24
receptor RLP23. Taken together, our work demonstrates that
both cytotoxic and non-cytotoxic PyolNLPs enhance plant
resistance in an RLP23-independent manner, which requires the
conserved nlp24-like peptide pattern but is uncoupled with ROS
burst and cell death.

MATERIALS AND METHODS

Microbial Strains, Plants, and Culture
Conditions
Phytophthora nicotianae isolate 025 and Phytophthora capsica
isolate LT263 used in this study were routinely cultured at 25◦C
in the dark on 10% (v/v) V8 juice medium (Zhou et al., 2021).
S. sclerotiorum strain WMA1 used in this study was routinely
cultured at 25◦C in the dark on PDA medium (Wei et al., 2020).
Nicotiana benthamiana plants was grown at 25◦C with a 16-h
light and 8-h dark photoperiod in an environmentally controlled
growth room. Arabidopsis plants were grown at 23◦C with a
10-h light/14-h dark photoperiod. N. benthamiana seedling of 4–
8 weeks old and Arabidopsis seedling aged at 4–6 weeks were used
for experiments (Li et al., 2019).

DNA Cloning, Plasmid Construction and
Peptide Synthesis
Full-length cDNAs of all PyolNLPs were amplified from
P. oligandrum strain CBS 530.74 by polymerase chain reaction
(PCR). Fragments used to generate PyolNLP-M24 mutants
were synthesized by Sangon Biotech (Shanghai, China). Gene
mutated at key locus was cloned using the overlap method.
Amplified fragments were cloned into pBINHA, a plasmid vector
containing a C-terminal Hybrid Access (HA) tag under the
control of the CaMV 35S promoter, using In-Fusion R© HD
Cloning Kit (Clontech, Mountain View, CA, United States)
(Yang et al., 2019). Peptides were ordered from Sangon
Biotech and prepared as 2 mM stock solutions in Ultra-pure
water before use. Primers used in this work were listed in
Supplementary Table 1.

Agrobacterium-Mediated Transient Gene
Expression in Nicotiana benthamiana
Constructs were transformed into Agrobacterium tumefaciens
strain GV3101 by electroporation. Successful transformants
were confirmed by PCR amplification using indicated primers
(Supplementary Table 1). Transformed Agrobacterium strains
were cultured, washed, and re-suspended in infiltration buffer
(10 mM MgCl2, 500 mM MES, 100 mM acetosyringone) to make
an appropriate optical density (OD) of 0.3 at 600 nm. Four-week-
old N. benthamiana leaves were infiltrated with a 1:1 mixture of
resuspended Agrobacterium containing the respective constructs
and RNA silencing suppressor P19 (Circelli et al., 2010; Green
et al., 2012; Lu et al., 2017). Agro-infiltrated leaf samples were
collected at given time intervals and immediately frozen with
liquid nitrogen before being stored for gene expression analysis.

Western Blot
Proteins from the sample lysate were fractionated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS–PAGE)
and then electrotransferred to an Immobilon-PSQ polyvinylidene
difluoride membrane using transfer buffer (20 mM Tris, 150 mM
glycine). The membrane was blocked for 30 min at room
temperature by shaking at 50 rpm (Revolutions Per Minute) with
phosphate-buffered saline (PBS; pH 7.4) containing 3% non-fat
dry milk. After washed with PBST (PBS with 0.1% Tween 20),
the membrane was incubated for 90 min with PBSTM (PBS
with 0.1% Tween 20 and 3% non-fat dry milk) containing anti-
HA (1:2000, Abmart) antibody. After three rounds of washes
(5 min each) with PBST, the membrane was then incubated with
goat anti-mouse IRDye 800CW antibody (Odyssey) at a ratio of
1:10,000 in PBSTM for 30 min. The membrane was finally washed
with PBST and visualized with excitations at 700 and 800 nm
(Ai et al., 2021).

Pathogenicity Assay
Detached leaves from 6-week-old N. benthamiana plants were
inoculated with mycelia plugs of P. capsici isolate LT263 or
P. nicotianae isolate 025, and then incubated at 25◦C in the
dark. Inoculated leaves were photographed under bright or
UV light at 36 and 48 hpi (hours post inoculation). Lesion
diameters were measured with the ImageJ software (Ai et al.,
2020). S. sclerotiorum infection was examined at 24 and 36 hpi
under white light. Three biological replicates were performed for
each assay with at least 12 leaves per replicate.

Diaminobenzidine Staining and Reactive
Oxygen Species Burst Measurement
For 3,3′-Diaminobenzidine (DAB) staining, N. benthamiana
leaves were stained with 1 mg/mL DAB solution for 8 h
in the dark at 12 hpi and then decolored with ethanol for
light microscopy examination. DAB staining was quantified as
intensity per unit area using the ImageJ software (Song et al.,
2015). For ROS burst, 0.125 cm2 leaf disks were collected using
a cork-borer set (Sigma) and floated in a 96-well plate (1 disk
per well) containing 200 µL double distilled water (ddH2O)
overnight. Just before measurement with a luminometer (Tecan
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F200), ddH2O was replaced with a substrate solution containing
20 µM L-012 (Waco), 20 µg/ml horseradish peroxidase (Sigma)
and 1 µM purified protein. Light emission was measured at 1 min
intervals (Yin et al., 2021).

Electrolyte Leakage Assay
Cell death was determined by measuring ion leakage from leaf
disks. For each measurement, five leaf disks (9-mm diameter)
were floated with abaxial side up on 5 ml of distilled water for
3 h at room temperature (RT). After incubation, conductivity
of the bathing solution, referred to as value A, was measured
with a Consort conductivity meter (Con 700; Consort, Turnhout,
Belgium). The leaf disks were then incubated with the original
bathing solution in sealed tubes at 95◦C for 25 min. After
being cooled down to room temperature, bathing solution was
measured for conductivity again and the result was referred to
as value B. For each measurement, ion leakage was expressed as
percentage of (value A / value B) × 100. All assays were repeated
three times (Yu et al., 2012; Nie et al., 2019).

Defensins Gene Expression and
qRT-PCR Analysis
For defense gene expression, leaf samples infiltrated with 1 µM
nlp24-like synthetic peptides were collected at 12 hpi. Total
RNA samples were extracted from N. benthamiana leaves by
using the RNA-simple Total RNA Kit (Tiangen) according to
manufacturer’s instructions. cDNA was synthesized using the
HiScript 1st Strand cDNA Synthesis Kit (Vazyme). Real-Time
PCR was performed by using the ChamQ SYBR qPCR Master
Mix Kit (Vazyme) and the ABI Prism 7500 Fast Real-Time PCR
system following manufacturer’s instructions (Dong et al., 2020).
Gene-specific primers used for qRT-PCR and their purposes are
listed in Supplementary Table 1.

Statistical Analysis
The SPSS 22 software was used for statistical analysis of all
data. After using a median-edition Levene’s test to determine the
homogeneity of variances across groups, the results were then
analyzed by one-way ANOVA with a post hoc Tukey’s range
test for groups with equal variances, or Kruskal—Wallis test for
groups with unequal variance (∗p < 0.05; ∗∗p < 0.01; ns, no
significant differences). Results are expressed as means ± SD of
replicates (Yang et al., 2021).

RESULTS

Conserved D and E in the “GHRHDLE”
Motif Are Essential for the
Necrosis-Inducing Activity of Group 1
PyolNLPs
We previously identified and cloned 25 Type II NLP genes in
P. oligandrum and P. periplocum (Yang et al., 2021). However,
the key residues that determine the necrosis-inducing activity of
PyolNLPs remain unknown. Asparticacid (D) and Glutamicacid
(E) in the central heptapeptide motif “GHRHDWE” are two key

amino acid residues required for necrosis induction (Ottmann
et al., 2009). Our previous study found that five PyolNLPs
can induce strong necrosis. Multiple sequence alignment
analysis found that these five PyolNLPs were very conserved
(Supplementary Figure 1), and evolutionary analysis found that
they were all located in Group 1 (Supplementary Figure 2).
Meanwhile, we also found two key amino acid residues (Aspartic
acid and Glutamic acid) are also conserved among PyolNLP3∼7
(Figure 1A and Supplementary Figure 1). With the mutation
of their D or E residue in the conserved “GHRHDLE”
motif to alanine (A), Group 1e (PyolNLP3/5/6) and Group
1a (PyolNLP4/7) showed abolished and significantly reduced
necrosis-inducing activity in agroinfiltrated N. benthamiana
leaves, respectively (Figure 1A and Supplementary Figure 2).
In this assay, GFP was expressed as a negative control. Wild-
type (WT) PyolNLPs without mutation were used as positive
controls, which all induced necrosis in the assay (Figure 1B and
Supplementary Figure 2).

Quantitative measurements showed that all five WT PyolNLPs
caused necrosis on more than 90% of the leaf areas (Figure 1C).
In contrast, no necrosis was induced by either GFP or
mutated PyolNLP3/5/6 of Group 1e (Figure 1C). Mutations
on PyolNLP4/7 of Group 1a significantly reduced necrotic
leaf areas to 40–60% (Figure 1C). Since ion leakage is
positively correlated with cell death (Yu et al., 2012; Nie et al.,
2019), this parameter was also measured for infiltrated leaves.
Consistent with the necrotic area measurement results, leaves
transiently expressing the five WT PyolNLPs exhibited the
highest electrolyte leakages of around 80% (Figure 1D). The
lowest ion leakages of about 20% were observed in leaves
expressing GFP or mutated PyolNLP3/5/6 (Figure 1D). Mutated
PyolNLP4/7 led to moderate ion leakages of around 40% in
leaves (Figure 1D). Taken together, our results demonstrate
that the central heptapeptide motif “GHRHDLE” is required for
PyolNLP-triggered necrosis with D and E being two key residues.

PyolNLP5-Mediated Plant Disease
Resistance Is Independent of Its
Necrosis-Inducing Activity
We previously found that the full-function nlp24-like region is
essential for PyolNLP5 to suppress Phytophthora nicotianae and
P. capsici infection in N. benthamiana (Yang et al., 2021). To
test whether mutations in “GHRHDLE” also impair PyolNLP5-
mediated plant disease resistance, PyolNLP5 D127A and E129A
mutants, in pair with GFP controls, were transiently expressed
in the same N. benthamiana leaves. PyolNLP5-M24, we mutated
the conserved sites (the first four amino acids AIMY and
the GHRHDWE motif) of the nlp24-like peptide pattern in
PyolNLP5 (Yang et al., 2021). Western blots confirmed that all
recombinant proteins were properly expressed at the expected
sizes in planta (Supplementary Figure 3A). The infiltrated
regions were then equally inoculated with fresh mycelia of
P. nicotianae isolate 025 or P. capsici isolate LT263. Evaluation
of disease development following inoculation clearly showed
that both PyolNLP5-D127A and PyolNLP5-E129A retained their
suppression capacity toward P. nicotianae or P. capsici infection
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FIGURE 1 | Conserved D and E in the “GHRHDLE” motif are essential for the necrosis-inducing activity of Group 1 PyolNLPs. (A) Schematic representation of
nlp24-like regions from PyolNLP3-7. Aspartic acid (D) or glutamic acid (E) residues marked by the red triangle is replaced by alanine (A). (B) The necrosis-inducing
activity of wild-type and mutated Group 1 PyolNLPs in agroinfiltrated Nicotiana benthamiana leaves. Necrosis grades are marked (–: no necrosis; + weak
necrosis; + + : strong necrosis). The phylogenetic tree of selected Group 1 PyolNLPs are shown on the left. Amino acid mutations, necrosis grades and experiment
replicate numbers (necrotic sites versus total infiltration sites) are labeled. The gray dotted rectangle green fluorescent protein (GFP) is shown as a negative control.
Photos were taken at 5 days post infiltration (dpi). Quantification of necrosis by measurements of relative (C) necrotic area and (D) electrolyte leakage. Error bar
represents mean ± SD (n = 3). Data were analyzed by Median-edition Levene’s test to determine the homogeneity of variance across groups, and then analyzed by
one-way ANOVA with post-hoc Tukey’s range test for groups with equal variance (ns, no significant difference; **P < 0.01). All experiments were repeated three
times with similar results obtained.

(Figures 2A,B). In contrast, neither GFP nor the nlp24-loss-of-
function mutant PyolNLP5-M24 exhibited disease suppression
activity (Figures 2A,B). To evaluate infection precisely, relative
Phytophthora biomass in infected N. benthamiana tissues
was determined by using qPCR to measure pathogen/plant
DNA ratios. Consistent with lesion measurement results, both
PyolNLP5-D127A and PyolNLP5-E129A significantly reduced
Phytophthora biomass accumulation as compared to GFP
and PyolNLP5-M24 (Figure 2C). These results suggest that
PyolNLP5-mediated plant resistance against Phytophthora relies
on the nlp24-like region, but independent of its necrosis-
inducing activity.

PyolNLP5-Mediated Plant Disease
Resistance Is Irrelevant to Reactive
Oxygen Species Accumulation
Reactive oxygen species accumulation is an important signal
of early plant immune response as well as regulator of
plant defense-related gene expression (Li et al., 2019; Wen
et al., 2021). Here, the relationship between PyolNLP5-
mediated plant resistance and ROS accumulation was

explored by DAB staining. Since P. oligandrum oligandrins
(Oli-D1 and Oli-D2) are ROS-inducting PAMPs (Ouyang
et al., 2015), Oli-D2 was used as a positive control.
As shown in Figure 3B, all three PyolNLP5 mutants
(PyolNLP5-D127A, PyolNLP5- E129A, and PyolNLP5-
M24) lost the ability of stimulating H2O2 accumulation in
N. benthamiana with or without the inoculation of P. capsici
(Figures 3A,B). Consistent results were obtained from the
measurements of relative ROS intensities in the presence of
P. capsici (Figure 3C). Taken together, these results show
that PyolNLP5-mediated plant resistance is irrelevant to
ROS accumulation.

Non-cytotoxic PyolNLP-Mediated
Suppression of Phytophthora Infection Is
Irrelevant to Necrosis Induction or
Reactive Oxygen Species Accumulation
Cytotoxic PyolNLPs were previously shown to enhance plant
resistance independent of their necrosis-inducing activity.
However, the roles of non-cytotoxic PyolNLPs in modulating
plant resistance are still elusive. We found that non-cytotoxic
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FIGURE 2 | PyolNLP5-mediated plant disease resistance is independent of its necrosis-inducing activity. (A) Infection phenotypes of agroinfiltrated N. benthamiana
leaves expressing GFP, PyolNLP5-D127A, PyolNLP5-E129A or PyolNLP5-M24, and followed by the inoculation of P. nicotianae isolate 025 or P. capsici isolate
LT263. Photos were taken at 36 hpi (Scale bar, 1 cm). GFP was used as a negative control. (B) Lesion diameters were measured using ImageJ. Data were analyzed
from 40 biological replicates. Error bar represents mean ± SD. (C) Relative biomass was determined by quantitative polymerase chain reaction (qPCR). Expression
levels of P. capsici and P. nicotianae Actin were determined by qPCR using N. benthamiana EF1α as reference. Error bar represents mean ± SD (n = 3). Data were
analyzed by Median-edition Levene’s test to determine the homogeneity of variance across groups, and then analyzed by one-way ANOVA with post-hoc Tukey’s
range test for groups with equal variance, or Kruskal-Wallis test analysis for groups with unequal variance (ns, no significant difference; *P < 0.05; **P < 0.01). All
experiments were repeated at least three times.

FIGURE 3 | PyolNLP5-mediated plant disease resistance is irrelevant to ROS accumulation. (A) Schematic representation of nlp24-like regions in PyolNLP5,
PyolNLP5-D127A, PyolNLP5-E129A and PyolNLP5-M24 with introduced alanine substitutions. (B) H2O2 accumulation on agroinfiltrated N. benthamiana leaves
expressing GFP, Oli-D2, PyolNLP5, PyolNLP5-D127A, PyolNLP5-E129A or PyolNLP5-M24. Oli-D2 was used as a positive control. DAB staining was performed at
12 hpi after P. capsici inoculation. (C) Relative ROS intensities in infiltrated N. benthamiana leaves expressing wild-type or mutated PyolNLP5 were measured at
12 hpi using ImageJ. Error bar represents mean ± SD (n = 3). Data were analyzed by Median-edition Levene’s test to determine the homogeneity of variance across
groups, and then analyzed by one-way ANOVA with post-hoc Tukey’s range test for groups with equal variance (ns, no significant difference; **P < 0.01).
Experiments were repeated three times with similar results obtained.
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PyolNLPs are distributed across Groups 1b, 1d, 3a, 3b, 4a,
and 4b. One PyolNLP was selected from each of these six
subgroups (PyolNLP8/10/11/12/13/14) for pathogenicity assays.
Their GFP-fusion constructs and the GFP-only control were
carried by Agrobacterium for infiltrations of N. benthamiana
leaves, followed by the inoculation of P. nicotianae or P. capsici.
Western blots confirmed the proper in planta expression of all
recombinant proteins (Supplementary Figure 3B). Lesion and
biomass quantification results showed that ectopic expression
of PyolNLP8/10/11/13/14 significantly reduced P. nicotianae
colonization, with PyolNLP13/14 also delivering resistance to
P. capsici (Figures 4A–C). The observation that non-cytotoxic
PyolNLPs may enhance plant resistance to certain pathogens

further demonstrates the irrelevance between PyolNLP-mediated
plant defense and necrosis induction. Furthermore, DAB staining
and relative ROS intensity measurement results demonstrated
that none of the six non-cytotoxic PyolNLPs are involved in
ROS accumulation, which is not affected by P. capsici inoculation
(Figures 5A,B).

Non-cytotoxic PyolNLP13/14 Induce
PDF1.2 and EIN3 Expression in Nicotiana
benthamiana
We further examined whether the non-cytotoxic PyolNLP13/14
could activate plant immunity responses by testing their effect

FIGURE 4 | Non-cytotoxic PyolNLPs are able to suppress Phytophthora infection in N. benthamiana. (A) Infection phenotypes of agroinfiltrated N. benthamiana
leaves expressing GFP, PyolNLP8, PyolNLP10, PyolNLP11, PyolNLP12, PyolNLP13 or PyolNLP14, and followed by the inoculation of P. nicotianae or P. capsici.
Photos were taken at 36 hpi (Scale bar, 1 cm). GFP was used as a negative control. (B) Lesion diameters were measured using ImageJ. Data were analyzed from at
least 40 biological replicates. Error bar represents mean ± SD. (C) Relative biomass was determined by qPCR. Expression levels of P. nicotianae and P. capsici Actin
were determined by qPCR using N. benthamiana EF1α as reference. Error bar represents mean ± SD (n = 3). Data were analyzed by Median-edition Levene’s test to
determine the homogeneity of variance across groups, and then analyzed by one-way ANOVA with post-hoc Tukey’s range test for groups with equal variance, or
Kruskal-Wallis test analysis for groups with unequal variance (ns, no significant difference; **P < 0.01). All experiments were repeated at least three times.
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FIGURE 5 | Non-cytotoxic PyolNLPs cannot trigger ROS accumulation and instead induce PDF1.2 expression in N. benthamiana. (A) H2O2 accumulation on
infiltrated N. benthamiana leaves expressing GFP, Oli-D2, PyolNLP8, PyolNLP10, PyolNLP11, PyolNLP12, PyolNLP13 or PyolNLP14. was at 0 or 12 hpi. Oli-D2 acts
as a positive control. DAB staining was performed at 12 hpi after P. capsici inoculation. (B) Relative ROS intensities in N. benthamiana leaves infiltrated with
non-cytotoxic PyolNLPs were measured at 12 hpi using ImageJ. Error bar represents mean ± SD. (n = 3). (C) Relative expression levels of PTI5, Cyp71D20, PR1,
EDS1, EIN3 and PDF1.2 in agroinfiltrated N. benthamiana leaves expressing GFP, Oli-D2, PyolNLP13 or PyolNLP14. GFP and Oli-D2 were used as negative and
positive controls, respectively. Error bar represents mean ± SD (n = 3). Data were analyzed by Median-edition Levene’s test to determine the homogeneity of
variance across groups, and then analyzed by one-way ANOVA with post-hoc Tukey’s range test for groups with equal variance (*P < 0.05;**P < 0.01). All
experiments were repeated at least three times.

on the expression of six defense-related N. benthamiana
genes, including NbPTI5 and NbCyp71D20 involved in
PTI, salicylic acid (SA)-dependent ENHANCED DISEASE
SUSCEPTIBILITY 1 (NbEDS1) and NbPR1, and ETHYLENE
INSENSITIVE 3 (NbEIN3) and PLANT DEFENSIN 1.2

(NbPDF1.2) involved in jasmonic acid and ethylene signaling
pathways. Unlike Oli-D2 which induced the expression
of all six genes, PyolNLP13/14 could only activate the
expression of PDF1.2 and EIN3 (Figure 5C), which is
consistent with previous reports that NLPs induce the
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upregulation of EIN3 and PDF1.2 (Zhou et al., 2012;
Yang et al., 2021).

Non-cytotoxic PyolNLPs Also Suppress
Pathogen Infection in a nlp24-Dependent
Manner
We previously reported that cytotoxic PyolNLP5-mediated
suppression of Phytophthora infection requires full function
of its nlp24-like region (Yang et al., 2021). To test whether
this is also the case for non-cytotoxic PyolNLPs, we mutated
conserved sites in the nlp24-like peptide pattern of PyolNLP13/14
to create PyolNLP13/14-M24 (Figure 6A).N. benthamiana leaves
were infiltrated with GFP fusion construct of PyolNLP13/14 or
PyolNLP13/14-M24 as well as the GFP-only control, followed
by the inoculation of P. nicotianae, P. capsici or S. sclerotiorum.
Western blot analysis indicated that all recombinant proteins
were properly expressed in planta at the expected sizes
(Supplementary Figures 3B,C). Lesion and relative pathogen
biomass quantification results consistently showed that both
PyolNLP13-M24 and PyolNLP14-M24 mutants lost suppression
ability on all three oomycete and fungal pathogens as compared

to their wild-type counterparts (Figures 6B–D), which suggests
the requirement of full-function nlp24-like region for disease
resistance mediated by non-cytotoxic PyolNLPs.

Plant Defensin Expression Induced by
Pyolnlp24-Like Pattern Is Irrelevant to
the Classic nlp24 Receptor RLP23
We previously found that the nlp24-like pattern is required
for PyolNLP5/7-induced expression of plant defensin genes
(Yang et al., 2021). Here, we further showed that synthetic
peptides of Pyolnlp24-like patterns of PyolNLP5/13/14, flg22
and nlp24 of HaNLP3 are all sufficient to induce the
expression of four N. benthamiana defensin genes, including
NbPDF1.2, NbDef1.5, NbDef2.1 and NbDef2.2 (Figures 7A,B).
However, unlike flg22, none of the nlp24 peptides tested
can trigger ROS production in N. benthamiana (Figure 7C).
With heterologous expression of Arabidopsis RLP23 (AtRLP23)
in N. benthamiana, nlp24 (HaNLP3) but not Pyolnlp24
(PyolNLP5/13/14) can trigger ROS production (Figures 7C,D).
Consistently, Pyolnlp24 (PyolNLP5) failed to trigger ROS
production in Arabidopsis as compared to flg22 or nlp24

FIGURE 6 | Non-cytotoxic PyolNLPs suppress pathogens infection in N. benthamiana in a nlp24-dependent manner. (A) Schematic representation of nlp24-like
regions in PyolNLP13, PyolNLP13-M24, PyolNLP14 and PyolNLP14-M24 with introduced alanine substitutions. (B) Infection phenotypes of infiltrated
N. benthamiana leaves expressing GFP, PyolNLP13, PyolNLP13-M24, PyolNLP14 or PyolNLP14-M24, and followed by the inoculation of P. capsici, P. nicotianae or
S. sclerotiorum. Photos were taken at 24 and 36 hpi (Scale bar, 1 cm). GFP was used as a negative control. (C) Lesion diameters were measured using ImageJ.
Data were analyzed from at least 40 biological replicates. Error bar represents mean ± SD. (D) Relative biomass was determined by qPCR. Expression levels of
P. nicotianae, P. capsici and S. sclerotiorum Actin were determined by qPCR using N. benthamiana EF1α as reference. Error bar represents mean ± SD (n = 3). Data
were analyzed by Median-edition Levene’s test to determine the homogeneity of variance across groups, and then analyzed by one-way ANOVA with post-hoc
Tukey’s range test for groups with equal variance, or Kruskal-Wallis test analysis for groups with unequal variance (ns, no significant difference; **P < 0.01). All
experiments were repeated at least three times.
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FIGURE 7 | Plant defensin expression induced by Pyolnlp24-Like Pattern is irrelevant to the classic nlp24 receptor RLP23. (A) Schematic representation of nlp24 in
HapNLP3 and nlp24-like regions in PyolNLP5, PyolNLP13 and PyolNLP14. (B) Relative expression levels of plant defensin genes in N. benthamiana leaves infiltrated
with classic nlp24 (HaNLP3 from Hyaloperonospora parasitica) or Pyolnlp24-like pattern from PyolNLP5, PyolNLP13 or PyolNLP14. ddH2O and flg22 were used as
negative and positive controls, respectively. Transcription levels of plant defensin genes NbPDF1.2, NbDef1.5, NbDef2.1 and NbDef2.2 were determined by
qRT-PCR using EF1α as reference. Error bar represents mean ± SD (n = 3). Data were analyzed by Median-edition Levene’s test to determine the homogeneity of
variance across groups, and then analyzed by one-way ANOVA with post-hoc Tukey’s range test for groups with equal variance (**P < 0.01). (C,D) Dynamics of
ROS burst triggered by nlp24 of HaNLP3 in N. benthamiana expressing AtRLP23. (E) Dynamics of ROS burst triggered by nlp24 of HaNLP3 in Arabidopsis thaliana.
Leaf disks were treated with water, 500 nM flg22 or nlp24 for 30 min before the detection of relative luminescence units (RLUs) (mean ± SEM, n = 6). All experiments
were repeated at least three times.

(HaNLP3) (Figure 7E). These data indicate that unlike typical
nlp24 patterns such as HaNLP3, Pyolnlp24 peptides can
stimulate plant defensin expression but are irrelevant to RLP
23 and ROS burst.

DISCUSSION

Necrosis and ethylene-inducing peptide 1-like proteins have been
proposed to have dual functions in plant-pathogen interactions,
acting as both toxin-like virulence factors and triggers of immune
responses (Qutob et al., 2006). However, it is unclear whether
cytotoxic NLPs directly trigger immune responses or these
responses are indirectly induced by cell death. Constitutive
expression of a mutant NLP1 lacking cytotoxic activity in
the hemibiotrophic pathogen Colletotrichum orbiculare can still
block its infection in cucumber (Azmi et al., 2018). In our work,
PyolNLP5 mutants with completely abolished necrosis-inducing

activity (Figure 1) retain the ability of suppressing Phytophthora
infection in N. benthamiana (Figure 2). These consistent results
suggest that the cytotoxin and immunity induction activity of
NLPs are largely independent.

On the other hand, little is known about the functions of
non-cytotoxic NLPs. PiNPP1.2 and PiNPP1.3 from Phytophthora
infestans are the first reported non-cytotoxic NLPs (Kanneganti
et al., 2006). 11 out of 18 P. sojae NLPs tested cannot induce
necrosis (Dong et al., 2012). Among multiple NLPs produced
by H. arabidopsidis, none of the tested HaNLPs is cytotoxic
(Cabral et al., 2012). In addition to oomycetes, fungi also produce
non-cytotoxic NLPs. Such examples have been reported in
Colletotrichum higginsianum (Kleemann et al., 2012), V. dahliae
(Santhanam et al., 2013) and Magnaporthe oryzae (Fang et al.,
2017; Seidl and Van den Ackerveken, 2019). In this work,
we find that non-cytotoxic PyolNLP13/14 in Group 4 induce
broad resistance to oomycete (P. nicotianae and P. capsici) and
fungal (S. sclerotiorum) pathogens in plants (Figures 4, 6, and
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Supplementary Figure 1). Similar as non-cytotoxic NLP in
V. dahliae (VdNLP) (Zhou et al., 2012) and cytotoxic PyolNLP5/7
(Yang et al., 2021), PyolNLP13/14 induce the expression of
defensin-encoding gene PDF1.2 (Figure 5C). Our results uncover
that both non-cytotoxic and cytotoxic PyolNLPs may promote
plant resistance to a wide range of pathogens.

Our work also clarifies that the resistance enhancing
activity of both non-cytotoxic and cytotoxic is irrelevant
to the accumulation of ROS, which have dual functions
of causing cell injury and inducing defense responses
in plants (Mittler, 2017). To our knowledge, this is the
first report that the resistance- and necrosis-inducing
functions of cytotoxic NLPs are largely separate. Non-
cytotoxic PyolNLPs can be good genetic engineering targets
for enhancing crop disease resistance with no injuries
caused by ROS or cell death. We reveal that both non-
cytotoxic and cytotoxic PyolNLPs induce the expression
of multiple plant defensin genes, which may be the
primary downstream pathway responsible for PyolNLP-
triggered plant immunity.

The relatively conserved peptide sequence npl24 inside NLPs
is recognized as a MAMP by plants (Bohm et al., 2014;
Oome et al., 2014), with the heptapeptide “GHRHDWE” motif
being a central region (Fellbrich et al., 2002; Santhanam et al.,
2013; Seidl and Van den Ackerveken, 2019). Both “AIMY”
and “GHRHDWE” motifs are necessary for non-cytotoxic
PyolNLP13/14 to suppress pathogen infection (Figure 6).
However, how PyolNLPs are perceived by plants remain
to be determined. RLP23 is a classic NLP receptor in
Arabidopsis (Albert et al., 2015). Genetic complementation
tests in Arabidopsis and non-responsive species including
tobacco, tomato and potato confirm the requirement of
RLP23 for nlp20 pattern recognition (Seidl and Van den
Ackerveken, 2019). However, nlp20 can still trigger immunity
to the downy mildew pathogen Bremia lactucae in lettuce
(Lactuca sativa), which does not have RLP23 (Seidl and
Van den Ackerveken, 2019). The synthetic Conlp24 peptide
from C. orbiculare triggers ROS burst in Arabidopsis. Its
mutant version (Conlp24Mut) loses ROS-inducing ability
in Arabidopsis but is still functional in cucumber (Azmi
et al., 2018; Seidl and Van den Ackerveken, 2019). In this
research, we find that plant defensin expression induced
by Pyolnlp24-like pattern is irrelevant to RLP23. These
observations suggest the existence of multiple plant NLP
receptors, with PyolNLPs being perceived by receptor(s) other
than RLP23. Different plant species may harbor distinct sets
of receptors to recognize NLPs in a pathogen and NLP-type
specific manner.
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