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Natural rubber is an essential raw material for industrial products and plays an important
role in social development. A variety of diseases can affect the growth of rubber trees,
reducing the production and quality of natural rubber. Therefore, it is of great significance
to automatically identify rubber leaf disease. However, in practice, different diseases
have complex morphological characteristics of spots and symptoms at different stages
and scales, and there are subtle interclass differences and large intraclass variation
between the symptoms of diseases. To tackle these challenges, a group multi-scale
attention network (GMA-Net) was proposed for rubber leaf disease image recognition.
The key idea of our method is to develop a group multi-scale dilated convolution
(GMDC) module for multi-scale feature extraction as well as a cross-scale attention
feature fusion (CAFF) module for multi-scale attention feature fusion. Specifically, the
model uses a group convolution structure to reduce model parameters and provide
multiple branches and then embeds multiple dilated convolutions to improve the model’s
adaptability to the scale variability of disease spots. Furthermore, the CAFF module is
further designed to drive the network to learn the attentional features of multi-scale
diseases and strengthen the disease features fusion at different scales. In this article, a
dataset of rubber leaf diseases was constructed, including 2,788 images of four rubber
leaf diseases and healthy leaves. Experimental results show that the accuracy of the
model is 98.06%, which was better than other state-of-the-art approaches. Moreover,
the model parameters of GMA-Net are only 0.65 M, and the model size is only 5.62 MB.
Compared with MobileNetV1, V2, and ShuffleNetV1, V2 lightweight models, the model
parameters and size are reduced by more than half, but the recognition accuracy is also
improved by 3.86–6.1%. In addition, to verify the robustness of this model, we have
also verified it on the PlantVillage public dataset. The experimental results show that
the recognition accuracy of our proposed model is 99.43% on the PlantVillage dataset,
which is also better than other state-of-the-art approaches. The effectiveness of the
proposed method is verified, and it can be used for plant disease recognition.

Keywords: rubber leaf disease recognition, lightweight neural network, attention mechanisms, GMA block, GMA-
Net
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INTRODUCTION

The rubber tree is one of the most important economic crops
in the tropics, and the planting area of rubber trees in China
is more than 1.16 million hectares, more than half of which
are planted in Hainan Province (Ali et al., 2020; Li and Zhang,
2020). The milky latex extracted from the tree is the primary
source of natural rubber, which is an essential raw material for
industrial products. However, rubber leaf diseases cause annual
losses of approximately 25% of the total yield of natural rubber
and cause significant economic losses. A variety of diseases can
affect the growth of rubber trees, reducing the production of
natural rubber and seriously hindering the development of the
natural rubber industry. Hence, the identification and diagnosis
of rubber leaf diseases (e.g., powdery mildew disease, rubber
tree anthracnose, periconla leaf spot disease, and Abnormal
Leaf Fall Disease) are of great significance for increasing the
yield of natural rubber and have received extensive attention
from rubber planting workers and experts on disease and pest
control. Unfortunately, manual identification and diagnosis are
time-consuming and laborious in practice, and the recognition
accuracy does not satisfy the requirement.

To solve the problems caused by the manual diagnosis,
researchers have proposed some machine learning-based
methods for plant disease recognition (Sladojevic et al., 2016;
Hu et al., 2018). The plant disease recognition method based
on traditional machine learning is mainly through the manual
design of classification features, such as color features (Semary
et al., 2015), shape features (Parikh et al., 2016), texture features
(Mokhtar et al., 2016), or the fusion of two or more manual
features (Shin et al., 2020). However, the manual features in
these approaches are selected based on human experience, which
limits the generalizability of the models.

Recently, deep convolutional neural networks (DCNNs)
have been widely applied in image and video classification
tasks (Ren et al., 2020). Compared with traditional machine
vision algorithms, DCNN can complete feature extraction and
classification tasks through the self-learning ability of the network
without manual design features (Liu et al., 2017). Anagnostis et al.
(2020) offered a Walnut disease classification system using CNN
with an accuracy range from 92.4 to 98.7%. Zhu et al. (2019)
investigated a two-way attention model for plant recognition
and validated the method in four challenging datasets, and
the recognition accuracy reaches 99.8, 99.9, 97.2, and 79.5%,
respectively. Anwar and Anwar (2020) used DenseNet networks
without transfer learning methods to identify four different
citrus diseases, and experimental results show that the model
can accurately treat citrus diseases, with an accuracy of 92%
on the given test dataset. Suh et al. (2018) proposed a transfer
learning classifier based on the VGG-19 CNN architecture
for the classification of sugar beet and volunteer potato and
reported a maximum of 98.7% accuracy for the classification.
Maeda-Gutiérrez et al. (2020) classified nine different types of
tomato diseases and a healthy class using AlexNet, GoogleNet,
InceptionV3, and ResNet18, and the highest recognition rate
reached 99.12%. According to these studies, DCNN has higher
predictive value and reliability than well-trained humans.

To run the DCNN model on mobile and embedded devices,
some scholars have also proposed lightweight networks, which
have the advantages of fewer parameters and smaller model
size, such as MobileNetV1 (Howard et al., 2017), MobileNetV2
(Sandler et al., 2018), ShuffleNetV1 (Zhang et al., 2018), and
ShuffleNetV2 (Ma et al., 2018). Liu et al. (2020) proposed a
robust CNN architecture for the classification of six different
types of grape leaf disease. This method uses depth-separable
convolution instead of standard convolutional layers to reduce
model parameters, and the recognition accuracy reached
97.22%. Rahman et al. (2020) proposed a two-stage small
CNN architecture named SimpleNet for rice diseases and pest
identification with an accuracy of 93.3%. This method is fine-
tuned based on VGG16 and InceptionV3 structure to reduce
model parameters. The parameters of this network model are
less than those of classical CNN models. Tang et al. (2020)
identified grape disease image based on improving the ShuffleNet
architecture, with an accuracy of 99.14%, similar to the existing
CNN models, but the computational complexity is slightly lower.
These studies have shown good results, but different diseases
have complex morphological characteristics of disease spots at
different stages and scales, and the same scale often has similar
characteristics, which makes image disease recognition difficult.
Therefore, how to fully extract the key information of the local
area is the key to improve the performance of disease image
recognition. To address these issues, many researchers have
focused on attentional features of mechanism-based methods.
Li et al. (2020) used the GoogleNet model and embedded
SENet attention mechanism to enhance information expression
of Solanaceae diseases, with an accuracy rate of 95.09%, and the
model size is 14.68 MB, which can be applied to the mobile
terminal to identify Solanaceae disease. Mi et al. (2020) proposed
a novel deep learning network, namely, C-DenseNet, which
embeds convolutional block attention module (CBAM) in the
densely connected convolutional network with an accuracy rate
of 97.99%. Wang et al. (2021) proposed a novel lightweight
model (ECA-SNet) based on Shufflenet-V2 as the backbone
network and introduced an effective channel attention strategy
to enhance the model’s ability to extract fine-grained lesion
features with an accuracy rate of 98.86%. Chen et al. (2021)
chose the MobileNet-V2 as the backbone network and added
the attention mechanism to learn the importance of interchannel
relationships and spatial points for input features, and the
average accuracy reaches 98.48% for identifying rice plant
diseases. In addition, to further improve the performance of
feature extraction, some work improves the representation
of feature information by integrating multiple-scale features
(Liu et al., 2018; Zhang et al., 2020; Pan et al., 2021).
Shen et al. (2021) proposed a feature fusion module named
adaptive pyramid convolution, which aggregates the features of
different depths and scales to suppress the messy information
in the background and enhance the feature representation
capability of local regions. Sagar (2021) proposed to enhance
the dependence between local features and global features by
extracting spatial and channel attention features in parallel.
Although these methods achieve good results, they can easily
increase computational complexity.
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Inspired by the above research, we proposed a deep neural
network model, namely, group multi-scale attention network
(GMA-Net). The main innovations and contributions are
summarized as follows:

(1) A rubber leaf disease dataset is established, and the image
data augmentation scheme is used to synthesize new
images to diversify the image dataset and enhance the
anti-interference ability under complex conditions.

(2) The model uses group convolution structure to reduce
model parameters and provide multiple branches for
multi-scale feature extraction, then embeds dilated
convolution to improve the model’s adaptability to the
scale variability of disease spots, and adds a cross-scale
attention feature fusion (CAFF) module to suppress
complex background information to strengthen the
disease features fusion at different scales.

The rest of this article is organized as follows. The “Materials
and methods” section presents the dataset and methods adopted
in this study. The “Experimental results and analysis” section
presents the experiments for evaluating the performance of the
model and analyzes the results of the experiments. Finally, the
“Conclusion and future work” section summarizes the main
conclusions and future avenues.

MATERIALS AND METHODS

Dataset Preparation
Data Acquisition
The spread of rubber leaf disease is closely related to season,
temperature, light, and other factors. For example, powdery
mildew disease mainly occurs in spring, and it is more likely to
breed disease after rainy days. The rubber leaf disease dataset is
created, which included 2,788 rubber leaf samples collected from
the rubber tree cultivation farm of Rubber Research Institute,
Chinese Academy of Tropical Agricultural Sciences in Danzhou
City, Hainan Province, in April 15–20, 2021, and May 13–16,
2021. The types of rubber leaf diseases of these samples were
known in advance and labeled according to the domain experts’
knowledge. The classification and labeling of different rubber
leaf diseases only consider different external visual symptoms,
and then image data were captured in the laboratory. Red,
green, and blue (RGB) leaf images were taken with the default
parameters of the NIKON D90 camera (with a lens Tamron AF
18–200 mm f/3.5–6.3) and iPhone 11 mobile phone. A total of 5
types of image samples of rubber leaves were collected, including
four kinds of diseases (i.e., powdery mildew disease, rubber tree
anthracnose, periconla leaf spot disease, and abnormal leaf fall
disease) and healthy leaves.

Examples of typical symptoms of these rubber leaf diseases
are given in Figure 1. Healthy rubber leaves appear green, the
surface is smooth without disease spots, and the veins are visible.
Powdery mildew disease is considered one of the major diseases
that threaten the stability of natural rubber production. It spreads
rapidly because the pustules can be dispersed for miles on air

FIGURE 1 | Sample images of our constructed rubber dataset, from top to
bottom, are healthy leaves, powdery mildew disease, rubber tree
anthracnose, periconla leaf spot disease, and abnormal leaf fall disease.

currents. The lesions initially appear as small, radiating silver-
white spots of cobweb-like hyphae scattered on the surface or
back of the leaf and then develop to the entire leaf. As the lesion
matures, the powdery mildew spots turn into white ringworm-
like spots, the surface of the leaves becomes dried and yellow, and
finally falls off. The powdery mildew disease can cause high yield
losses when severe epidemics occur. Rubber tree anthracnose
can appear on stalks, leaves, petioles, tender shoots, or fruits of
the rubber tree. The symptoms of this disease begin at the tip
and edge of the leaf and can be observed on the leaf as yellow
or brown water-stained spots, while as the lesion matures, it
becomes irregular, narrow, and gray-white. Periconla leaf spot
disease appears as small, dark brown spots scattered on the leaf
surface, the tissues at the center of the lesions later decay and
become gray to white with black rings at the margin, and the
lesions are oval to circular spots, with 0.2–4 cm in diameter. For
abnormal leaf fall disease, the small dark brown water-stained
spots on the leaf blade may have light brown halos; as the lesions
mature, they expand to circular or nearly circular lesions with a
diameter of 1–3 mm and turn dark brown near the stalk of the
leaf when some of the lesions appeared perforated.

Data Augmentation
Image preprocessing was carried out on the RGB raw images
before image data augmentation, including image scaling, image
clipping, and image background removal. Then, the dimensions
of the sample images were uniformly resized to 224 × 224 pixels
as input to image analysis to reduce the computational cost
and improve the image processing efficiency. Our constructed
dataset contains 885 images of powdery mildew disease, 829
images of rubber tree anthracnose, 335 images of periconla leaf
spot disease, 521 images of abnormal leaf fall disease, and 218
images of healthy leaves. By analyzing the distribution of the
number of samples in each category, the dataset we construct
is unbalanced. Therefore, the image data enhancement scheme
is used to synthesize new images to diversify the image dataset,
suppress the impact of unbalanced data, and enhance the anti-
interference ability under complex conditions. In this article,
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based on the Keras’ framework, the batch size is set to 32, and
brightness adjustment, rotation, scaling, horizontal flip, vertical
flip, and other methods are selected to synthesize new images
to diversify the image dataset. The specific image augmentation
operation is shown in Table 1. It should be noted that the data
enhancement method adopted in this article will not reduce
the size of the image, nor will it change the image’s overall
color. Finally, the enhanced dataset distribution contains 1,982
images of powdery mildew disease, 2,516 images of rubber tree
anthracnose, 2,350 images of periconla leaf spot disease, 2,406
images of abnormal leaf fall disease, and 2,396 images of healthy
leaves, and the detailed report of the dataset before and after
applying the augmentation process is shown in Table 2.

Architectures of Group Multi-Scale
Attention Network Model
Network Architecture
In this article, a GMA-NET model was proposed for rubber
leaf disease image recognition. The architecture of the GMA-
Net is illustrated in Figure 2. The GMA-Net model includes
three parts. The first part is the “pre-network Module” which
consists of 3 × 3 convolution layers and max-pooling layers to
extract the features of the input image. The second part consists
of five cascaded GMA blocks. The GMA block consists of a group
multi-scale dilated convolution (GMDC) module and a CAFF
module. By utilizing the GMDC module, the network can extract
lesion characteristics at different scales and enhance the network’s
representation ability. After that, the CAFF module is used to
fuse the multi-scale attention feature maps from the output of
the GMDC module. The last part is composed of a convolution
layer, an average pooling layer, a fully connected layer, and a
5-way Softmax layer. Moreover, the batch normalization layer

TABLE 1 | Parameter set for data augmentation.

Technology Range

Rescale the image 1./255

Rotation_range 40

Width_shift_range 0.2

Height_shift_range 0.2

Fll_mode “Nearest”

Horizontal_flip True

Vertical_flip True

Brightness_range (0.6, 0.9)

Zoom_range (0.5,0.9)

TABLE 2 | Detailed report of the constructed dataset before and after applying the
augmentation process.

Disease name Class Images (Raw) Images (Augmentation)

Healthy leaves 0 218 1982

Powdery mildew disease 1 885 2516

Rubber tree anthracnose 2 829 2350

Periconla leaf spot disease 3 335 2406

Abnormal leaf fall disease 4 521 2396

Total number 2788 11650

and ReLu activation function are added after each convolution
layer. Overall, the proposed method can effectively extract disease
feature representation at different scales and aggregate the cross-
scale attention feature, which is conducive to fine-grained disease
image classification. We detail the different modules of the
network, which are summarized in Table 3.

Group Multi-Scale Dilated Convolution Module
Different diseases have complex symptoms and morphological
characteristics at different stages and scales, and the same scale
often has similar characteristics. As shown in Figure 1, the
powdery mildew disease has various symptoms, with some
appearing scattered cobweb spots and some appearing mass
spots. Identifying this disease needs to consider large-scale
coarse-grained features (e.g., the size and texture of the lesion).
The characterization information of rubber tree anthracnose is
similar to periconla leaf spot disease, with relatively yellowish
leaves and scattered spots. Small-scale fine-grained features (e.g.,
color and texture of the lesion) are the key to recognizing
these diseases. Therefore, multi-scale information of rubber leaf
disease features in the image plays an essential role in accurately
identifying the types of rubber leaf disease.

To address these problems, we design a GMDC module,
which consists of a group convolution operation and a multi-
scale feature extraction operation. Specifically, the purpose of
group convolution operation is to reduce parameters and prevent
overfitting. The multi-scale feature extraction operation is used to
extract multi-scale disease features.

As shown in Figure 3, the group convolution structure
consists of four parallel 1 × 1 convolutional layers, followed
by batch normalization and ReLU activation functions to
accelerate network convergence. Multi-scale feature extraction
structure extracts multi-scale information through multiple
dilated convolutions with different dilation rates, and then
skip connections were used to make full use of the relevant
information in the feature map. Dilated convolution (Yu and
Koltun, 2014) is defined as follows:(

F∗lk
) (

p
)
=

∑
s+lt=p

F (s) k (t) (1)

where F is a discrete function and k is a discrete filter of
size (2r 1)2, ∗l is called a dilated convolution or a d-dilated
convolution, k is a 3 × 3 filter, and the kernel dilation rates are
1–4, respectively.

Cross-Scale Attention Feature Fusion Module
Recently, the attention mechanism has been widely used,
including image processing (Li et al., 2020; Tang et al., 2020),
speech recognition (Xingyan and Dan, 2018), and natural
language processing (Bahdanau et al., 2015). The attention
mechanism pays attention to the useful information of various
channels of the network, inhibits the useless information, which
can enhance the representation of disease features, and effectively
improves the identification performance of the model. In this
study, as shown in Figure 4, a CAFF module was designed to fuse
attentional feature maps of different scales.

Frontiers in Plant Science | www.frontiersin.org 4 February 2022 | Volume 13 | Article 829479

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-829479 February 22, 2022 Time: 14:10 # 5

Zeng et al. Diagnosis of Typical Rubber Leaf Diseases

FIGURE 2 | The architecture of the proposed group multi-scale attention network (GMA-Net).

TABLE 3 | Detailed architectures of the proposed GMA-Net model in our experiments.

Name Input Output Kernel size Filter number Stride

Input 224 × 224 × 3 − − − −

Conv 224 × 224 × 3 112 × 112 × 96 3 × 3 96 2

Map 112 × 112 × 96 56 × 56 × 96 3 × 3 − 2

GMAB 1 56 × 56 × 96 56 × 56 × 64 − 64 −

Map 56 × 56 × 64 28 × 28 × 64 3 × 3 − 2

GMAB 2 28 × 28 × 64 28 × 28 × 128 − 128 −

Map 28 × 28 × 128 14 × 14 × 128 3 × 3 − 2

GMAB 3 14 × 14 × 128 14 × 14 × 192 − 192 −

GMAB 4 14 × 14 × 192 14 × 14 × 208 − 208 −

GMAB 5 14 × 14 × 208 14 × 14 × 256 − 256 −

Avg 14 × 14 × 256 2 × 2 × 256 7 × 7 − 1

Linear 2 × 2 × 256 1 × 1 × 1024 − − −

Softmax 1 × 1 × 1024 5 − − −

First, local feature maps of different scales output by GMF
module are added point by point to obtain Fc, and then the
feature map Fc is compressed into vector Z of 1 × 1 × C by the
global average pool layer, which can be expressed as follows:

Fc = Add [U1 + U2 + U3 + U4] (2)

Zc =
1

W × H

W∑
i=1

H∑
j=1

Uc (i , j
)

(3)

Then, the global feature S is obtained through two
fully connected layers, one ReLU activation layer, one batch
normalization layer, and one sigmoid layer, respectively. S
represents the weight coefficient information of different channel
features. In this article, 1∗1 convolution layer is used instead
of fully connected layers to accelerate convergence. The specific
formula can be described as:

S = σ
(
g (Z, W)

)
= σ (W2∂ (W1Z)) (4)
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FIGURE 3 | The structure of the GMDC module. (A) Multi-branch group convolution. (B) Multi-branched dilated convolution with different dilation rates.

where σ and ∂ are sigmoid activation function and ReLU
activation function, respectively;W1 ∈ R

C
r × C and W2 ∈ RC × C

r

are dimension reduction and restoration parameters,
respectively. r is the reduction factor, which is set to 16
in this article.

The local feature image output by the GMF module is
multiplied point by point with vector S, which enhances
the feature representation information of diseases at different
scales in the input feature map and obtain the local attention
information T(x) representing different scales. T(x) can be
expressed as

T (Ui) = Multiply (Ui, S) (5)

Finally, the local attention information of different scales is
connected to generate an effective multi-scale feature descriptor
Y . Y can be expressed as

Y = concat [T (U1) , T (U2) , T (U3) , T (U4)] (6)

The CAFF module can fuse attentional feature maps of
different scales to enhance disease information, suppress useless
information, and improve model performance.

EXPERIMENTAL RESULTS AND
ANALYSIS

Experimental Configuration and
Hyperparameter Setting
Data augmentation and deep learning algorithms are
implemented in Keras’ deep learning framework based on
CNN using python language. The experimental hardware
configurations include an Intel i5-10400F CPU (2.90 GHz), a
memory of 16 GB, and an RTX 2060S graphics card.

The enhanced rubber disease dataset and PlantVillage
(Hughes and Salathe, 2015) public dataset are divided into
three groups, namely, the training set (60%), the validation set
(20%), and the test set (20%). Comprehensively considering
the performance of hardware devices and training effects,
the batch size and the number of iterations for all network
models are 16 and 40, respectively, and categorical cross-
entropy is used to optimize the model. Stochastic gradient
descent (SGD) was adopted for training. The initial learning
rate is set to 0.1 for the first epoch, and the learning rate is
dynamically adjusted by using the Keras’ ReduceLROnPlatea
function. If the accuracy of the validation set does not
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FIGURE 4 | The structure of the cross-scale attention feature fusion module.

improve after three iterations, the learning rate will be
reduced by half.

Evaluation Indexes
In this study, precision, recall, F1-score, accuracy, model size,
parameters, and floating-point of operations (FLOPs) are selected

as evaluation indexes to evaluate the performance of deep
learning algorithms comprehensively:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1sore =
2TP

2TP + FP + FN
(9)

Accuracy =
TP + TN

TN + TP + FP + FN
(10)

where TP, TN, FP, and FN are the number of true positive
samples, true negative samples, false-positive samples, and false-
negative samples, respectively. Precision estimates how many
of the predicted positive samples is positive. The recall is the
assessment of how many of all positive samples can be correctly
predicted as positive. F1-score is the synthesis of precision
and recall. Accuracy measures global sample prediction. Model
size, parameters, and FLOPs are commonly used to measure
model complexity.

Performance Comparison Between
Different Models
To verify the validity of the GMA-Net model, based on
our constructed disease dataset, a comparative experiment
was carried out with VGG16, ResNet50, GoogleNet,
InceptionV3, and DenseNet121 classical CNN models and
MobileNetV1, MobileNetV2, and ShuffleNetv2 lightweight
models. Moreover, we trained these models according to
the training parameters in the “Experimental configuration
and hyperparameter setting” section. Figure 5 shows the
accuracy curve and loss curve of the above eight networks and
GMA-Net on the validation dataset. It can be seen from the
accuracy curve and loss curve that GMA-Net has the highest

FIGURE 5 | Accuracy curve and loss curve of rubber leaf disease validation set. (A) Accuracy curve. (B) Loss curve.
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TABLE 4 | Comparison of the identification results of different CNN models.

Models Precision Recall F1_score Accuracy Size (MB) Parameters (M) FLOPs (M)

VGG16 85.45 85.44 85.09 84.53 1000 134 268.5

ResNet50 93.26 93.39 93.20 92.61 180 23.6 47.1

InceptionV3 93.15 93.23 93.03 92.31 167 21.8 43.6

DenseNet121 96.61 96.67 96.55 96.01 54.6 7.04 13.9

MobileNetV1 93.90 93.97 93.77 94.20 24.8 3.23 6.43

MobileNetV2 91.73 91.69 91.38 92.13 17.8 2.28 4.48

ShuffleNetV1 93.94 93.88 93.70 92.82 16.2 1.94 3.83

ShuffleNetV2 92.22 92.14 91.84 91.96 10.5 1.28 2.52

GMA-Net 97.66 97.71 97.63 98.06 5.62 0.65 1.83

FIGURE 6 | Confusion matrix of GMA-Net. (A) Without normalization. (B) Normalized (“Healthy Leaves”: 0, “Powdery Mildew Disease”: 1, “Rubber Tree
Anthracnose”: 2, “Periconla Leaf Spot Disease”: 3, “Abnormal Leaf Fall Disease”: 4).

recognition accuracy and quickest convergence rate than other
models on the rubber leaf disease dataset, and the model
performance is better than the traditional CNN model and
lightweight model.

Table 4 compares the nine networks with the precision,
recall, F1-score, accuracy, model size, parameters, and FLOP. The
GMA-Net model has the best performance, with an accuracy
of 98.06%. Model parameters, size, and FLOPs are 0.65, 5.62,
and 1.83 M, respectively. The accuracy of VGG16, ResNet50,
InceptionV3, and DenseNet121 models is 84.53, 92.61, 92.31, and
96.01%, respectively. Compared with the classical CNN model,
the size and FLOPs of our constructed model are ten times
smaller, and the accuracy of the proposed GMA-NET is increased
by 13.53, 5.45, 5.75, and 2.05%, respectively. Meanwhile,
compared with MobileNetV1, MobileNetV2, ShuffleNetV1, and
ShuffleNetV2 lightweight networks. The size, parameters, and
FLOPs of the GMA-NET model are not only smaller, but
also the model accuracy is improved by 3.86, 5.93, 5.24, and
6.1, respectively.

In general, the GMA-Net model has a relatively small
number of parameters and floating-point calculation to obtain
better convergence and the highest accuracy of rubber leaf

disease among the compared classical CNN model and
lightweight model.

In addition, the confusion matrixes are used to summarize the
performance of GMA-Net, as shown in Figure 6. The diagonals
in the matrix are correctly classified, while all other entries are
misclassified. It can be seen from the confusion matrix without
normalization that 397 healthy leaves (0_HL), 494 Powdery
Mildew Disease (1_PMD), 456 Rubber Tree Anthracnose
(2_RTA), 463 Periconla Leaf Spot Disease (3_PLSD), and 462
Abnormal Leaf Fall Disease (4_ALFD) were correctly classified,
and the number of misclassifications for 0_HL, 1_PMD, 2_RTA,
3_PLSD, and 4_ALFD is 0, 9, 14, 17, and 16, respectively. It can
be seen from the confusion matrix that the accuracy of healthy
leaves, rubber tree anthracnose, and powdery mildew disease was
more than 97%, and the accuracy of periconla leaf spot disease
and abnormal leaf fall disease reached 96.5 and 96.7%. Therefore,
we can say that it is difficult to distinguish between periconla leaf
spot disease and abnormal leaf fall disease classes.

Ablation Experiment of Model Structure
To determine the final structure of the model, ablation
experiments were carried out on the proposed model. We
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TABLE 5 | Classification results of different numbers of GMA blocks.

Models Precision Recall F1_score Accuracy Size (MB) Parameters (M) FLOPs (M)

GMA-Net-V1 96.95 96.95 96.86 97.03 2.04 0.22 0.68

GMA-Net-V2 97.37 97.36 97.29 97.51 3.53 0.39 1.29

GMA-Net-V3 97.66 97.71 97.63 98.06 5.62 0.65 1.83

GMA-Net-V4 97.50 97.49 97.42 97.46 12.3 1.52 4.67

GMA-Net-V5 96.88 96.90 96.81 97.16 38.6 4.96 14.7

TABLE 6 | Effect of standard and dilated convolution.

Models Parameters (M) F1_score Accuracy

0_HL 1_PMD 2_RTA 3_PLSD 4_ALFD

Without dilated convolution 0.658 0.99 0.97 0.97 0.95 0.96 96.91

Without CAFF 0.657 0.99 0.98 0.98 0.94 0.95 96.82

Base (With dilated convolution, CAFF) 0.658 0.99 0.98 0.98 0.96 0.97 98.06

TABLE 7 | Visualization results of different models.

Class Original image ResNet50 ShuffleNetV2 DenseNet121 MobileNetV2 GMA-Net

Rubber tree anthracnose

Powdery mildew disease

Periconla leaf spot disease

Abnormal leaf fall disease

only retained the GMA block1 and GMA block2 mentioned
in the “Network architecture” section and used them as basic
models. Based on the basic model, we designed the following
five combinations: GMA-Net-V1 (N = 1), GMA-Net-V2 (N = 2),
GMA-Net-V3 (N = 3), GMA-Net-V4 (N = 4), and GMA-Net-V5
(N = 5) to test the dataset we constructed, where N represents the
number of GMA blocks added to the basic model. The specific
experimental results are shown in Table 5. In the beginning, as
the number of cascaded GMAB blocks increases, the accuracy
improves. For example, the recognition accuracy of GMA-Net-
V1 is 97.03%. The recognition accuracy of GMA-Net V2 is
97.51%, and the GMA-Net V3 has a better effect of 98.06%, which
is the highest among all comparison models. However, when
the number of cascades of GMA blocks reaches 4 and 5, the
accuracy of GMA-Net V4 and GMA-NET-V5 is 0.6 and 1.9%
lower than that of GMA-NET-V3, and the model parameters
are also improved by 0.87 and 4.31 M. The excessive number
of cascaded GMA blocks may cause parameter redundancy,

computational resource waste, and precision decline due to
overfitting problems. If the number of cascaded GMA blocks
is too small, the classification result will be unsatisfactory. In
general, the appropriate number of GMAB blocks can effectively
improve the accuracy of recognition but do not significantly
increase the amount of computation.

Effect of Dilated Convolution and
Cross-Scale Attention Feature Fusion
Module
Compared with other deep learning models, this study utilizes
multiple dilated convolutions with different dilation rates to
extract multi-scale receptive field features and increase the
model’s adaptability to the scale variability of disease spots. To
verify the effect of dilated convolution on classification, all the
dilated convolutions were replaced by standard convolutions, and
the comparison results are shown in Table 6.
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FIGURE 7 | Accuracy curve and loss curve of PlantVillage validation set. (A) Accuracy curve. (B) Loss curve.

TABLE 8 | Results of the PlantVillage test set.

Models Precision Recall F1_score Top-1 Top-5 Parameters (M) Size (MB) FLOPs (M)

VGG16 86.53 85.43 89.18 89.25 98.99 134 1000 268.5

ResNet50 95.35 95.21 95.87 96.14 99.23 23.6 180 47.1

InceptionV3 96.84 96.79 97.68 97.75 99.88 21.8 167 43.6

DenseNet121 96.80 97.17 97.67 97.62 99.76 7.07 54.9 13.9

MobileNetV1 96.78 96.82 97.57 97.45 99.83 3.27 25.1 6.43

MobileNetV2 97.55 97.53 98.17 98.19 99.87 2.32 18.1 4.48

ShuffleNetV1 97.26 97.47 98.01 98.18 99.96 1.99 16.6 4.21

ShuffleNetV2 96.34 96.54 97.33 97.25 99.88 1.31 10.8 2.58

GMA-Net 99.14 99.14 99.36 99.43 99.97 0.69 5.88 2.21

It can be seen that the recognition accuracy of standard
convolution is 96.91%, but after replacing standard convolution
with dilated convolution, the accuracy is improved from 96.91
to 98.06%, which improves the recognition accuracy of rubber
leaf diseases. The reason why standard convolution shows an
inferior performance is that it only samples at a fixed scale,
which could not capture the scale variability of disease spots.
Dilated convolution contributes to learn multi-scale useful
information of disease spots and improves the recognition
accuracy of the model.

In addition, we compare the classification accuracy of feature
extraction with the CAFF module and without the CAFF
module, respectively. It can be seen that the recognition accuracy
of models without CAFF module is 96.82%, but when the
CAFF module is added, the accuracy increases from 96.82 to
98.06%, which verifies the contribution of the CAFF module in
classification. The CAFF module has the advantage of integrating
multi-scale attention features, while reducing the influence of
complex background in the image, and can provide more
discriminative features.

Visualization Results for Different Models
To better understand the learning capacity of the proposed
GMA-Net model, Grad-cam (Selvaraju et al., 2016) was used to
display the visualization results of different models, as shown
in Table 7. The first column is disease class and the second

column is the original image, followed by the visualization
results of ResNet50, DenseNet121, MobileNetV2, ShuffleNetV2,
and GMA-NET model in sequence. The visualization result is
composed of the superposition of the rubber leaf disease image
and their heatmaps. Heatmaps of ResNet50 and ShuffleNetV2
highlight the local leaf spot area, but the accuracy of heat maps
was not high. Heatmaps of DenseNet121 and MobileNetV2
highlight the global leaf spot area but contain a lot of
irrelevant background information. Compared with ResNet50
and DenseNet121 benchmark CNN model and MobileNetV2 and
ShuffleNetV2 lightweight CNN model, the proposed GMA-NET
model can accurately focus on the key areas of rubber leaf spots,
with high heatmap accuracy and pays minimum attention to the
irrelevant complex background, thus achieving higher disease
recognition accuracy than other models.

Experiment on the Open Dataset
To verify the effectiveness and robustness of the proposed
GMA-Net, the PlantVillage public dataset was used for
verification. The PlantVillage dataset consists of 54,303 images
of healthy and unhealthy leaves, divided into 38 categories by
species and disease. According to the training parameters in
the “Experimental configuration and hyperparameter setting”
section, we divided the PlantVillage dataset into the training
set, the validation set, and the test set with 32,571, 10,852, and
10,852 pictures, respectively. Then, based on the PlantVillage
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dataset, a comparative experiment was carried out with
VGG16, ResNet50, InceptionV3, DenseNet121, MobileNetV1,
MobileNetV2, ShuffleNetv1, and ShuffleNetv2. Figure 7 shows
the accuracy curve and loss curve of the abovementioned eight
networks and GMA-Net on the validation dataset. It can be
seen from the accuracy curve that GMA-Net has the highest
recognition accuracy than other models, and the loss curve shows
that the loss value performed well. The test set accuracy, model
size, FLOPs, parameters, top-1 accuracy, and top-5 accuracy of
different models on the PlantVillage dataset are shown in Table 8.

Table 8 reports that the top-1 accuracy of VGG16, ResNet50,
InceptionV3, DenseNet121, MobileNetV1, MobileNetV2,
ShuffleNetv1, and ShuffleNetv2 is 89.25, 96.14, 97.75, 97.62,
97.45, 98.19, 98.01, and 97.25%, respectively. The top-1 accuracy
rates of the GMA-Net model are 99.43%, which is the highest
of all the models. In addition, the parameters, size, and FLOPs
of the GMA-Net model are 0.69, 5.88, and 2.21 M, respectively,
which are lower than those of other classical CNN models and
lightweight models. In general, the performance of the model
on the PlantVillage public dataset shows that the GMA-Net
model is efficient and robust, and it is an excellent lightweight
CNN network with good performance in the field of crop
disease identification.

CONCLUSION AND FUTURE WORK

In this article, GMA-Net was proposed for rubber leaf disease
image recognition. In our method, a GMDC module is
responsible for multi-scale feature extraction, including small-
scale fine-grained lesion features and large-scale coarse-grained
lesion features. In the next phase, the CAFF module is used
to fuse attention features of different scales by combining
the GMDC module and the CAFF module to build the
fine-grained GMA-Net model. To verify the effectiveness and
robustness of the model, experiments were conducted on
the constructed rubber leaf disease dataset and PlantVillage
public dataset and compared with the lightweight and classical
CNN models, such as ResNet50, DenseNet121, MobileNetV1,
MobileNetV2, ShuffleNetV1, and ShuffleNetV2. The recognition
accuracy of the model is 98.06 and 99.43%, which is the
highest. In future, we collect more images of different types
of rubber leaf diseases and deploy the proposed model
on mobile devices.
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