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The rapid development of high-throughput phenotypic detection techniques makes it
possible to obtain a large number of crop phenotypic information quickly, efficiently,
and accurately. Among them, image-based phenotypic acquisition method has been
widely used in crop phenotypic identification and characteristic research due to its
characteristics of automation, non-invasive, non-destructive and high throughput. In
this study, we proposed a method to define and analyze the traits related to leaf sheaths
including morphology-related, color-related and biomass-related traits at V6 stage. Next,
we analyzed the phenotypic variation of leaf sheaths of 418 maize inbred lines based on
87 leaf sheath-related phenotypic traits. In order to further analyze the mechanism of leaf
sheath phenotype formation, 25 key traits (2 biomass-related, 19 morphology-related
and 4 color-related traits) with heritability greater than 0.3 were analyzed by genome-
wide association studies (GWAS). And 1816 candidate genes of 17 whole plant leaf
sheath traits and 1,297 candidate genes of 8 sixth leaf sheath traits were obtained,
respectively. Among them, 46 genes with clear functional descriptions were annotated
by single nucleotide polymorphism (SNPs) that both Top1 and multi-method validated.
Functional enrichment analysis results showed that candidate genes of leaf sheath
traits were enriched into multiple pathways related to cellular component assembly and
organization, cell proliferation and epidermal cell differentiation, and response to hunger,
nutrition and extracellular stimulation. The results presented here are helpful to further
understand phenotypic traits of maize leaf sheath and provide a reference for revealing
the genetic mechanism of maize leaf sheath phenotype formation.
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INTRODUCTION

Maize leaf sheath is located at the base of leaf and wraps around
the stem node. It plays a role of protecting and supporting the
leaf. At the same time, it can protect the young and tender
intermediate meristems and young buds on the stem, and
enhance the mechanical support of the stem (Dong et al., 2019).
In the sink-source relationship, the leaf sheath can be used as
a nutrient storage organ in the early stage, namely, “sink.” And
it can be also used as an organ for the production or export of
assimilates in the later stage of growth, that is, “source.” It is
well known that leaf sheaths usually have elongation zones. As
a result of intercellular growth, the cells elongate in two separate
directions, above and below, and differentiate into longitudinally
parallel vascular bundles (Russell and Evert, 1985). Hence, maize
leaf sheaths can also be used as part of the “flow.” In summary,
the role of maize leaf sheaths in the plant is very important and
deserves more attention and in-depth study. In addition, maize
purple plant pigments are anthocyanin pigments. A large number
of domestic and foreign studies have shown that purple-red
anthocyanin pigments have anti-oxidation, anti-aging, immune
enhancement and tumor prevention functions (Zhang et al.,
2014; Li et al., 2020; Peniche-Pavia and Tiessen, 2020; Chatham
and Juvik, 2021). Therefore, it is of great theoretical and practical
importance to study the phenotypic characteristics of maize leaf
sheaths and to analyze their genetic structure.

Maize has a rich diversity due to its long planting history and
wide geographical span. Among them, the leaf sheath phenotype
of maize also varies between populations, particularly in color.
As a consequence, traditional studies of maize leaf sheaths are
usually based on a qualitative description or classification of leaf
sheath color. The leaf sheaths of maize commonly come in purple
and green. It has been pointed out that these color changes are
usually related to pigments (Fan et al., 2008). Li et al. (2018)
conducted genetic analysis and gene localization for the purple
leaf sheath trait using a recombinant inbred line population of
maize and found that the gene GRMZM5G822829 was highly
significantly differentially expressed between the purple and
green leaf sheath parents. Yang S. et al. (2014) used the maize
white sheath inbred line K10 as the research material, and
conducted preliminary genetic mechanism and gene mapping
of the white sheath traits. The results showed that the white
leaf sheath trait has nothing to do with cytoplasmic inheritance,
but was controlled by recessive nuclear genes and was under
polygenic control.

Nowadays, with the rapid development of high-throughput
phenotyping technology, it has become possible to obtain massive
crop phenotypic information quickly, efficiently and accurately
(Zhao et al., 2019). Among them, image-based phenotype
acquisition methods have been widely used in crop phenotype
identification and characterization due to their automatic, non-
invasive, non-destructive, and high-throughput characteristics
(Green et al., 2012; Tanabata et al., 2012; Bucksch et al., 2014;
Gage et al., 2017; Chopin et al., 2018; Zhang et al., 2020; Zhou
et al., 2021). Based on image data, a variety of phenotypes
can be analyzed, which can break through the limitations of
subjective cognition and carry out deeper research (Mir et al.,

2019). For example, the web-based tool PhenoPhyte is a flexible
affordable method to quantify 2D phenotypes from imagery.
And it can distinguish different experimental Settings through
experimental database management and calculate the phenotypic
parameters related to leaf area in phenotypic images (Green
et al., 2012). SmartGrain, as a high-throughput phenotyping
software for measuring seed shape through image analysis, using
a new image analysis method to reduce the time taken in the
preparation of seeds and in image capture (Tanabata et al., 2012).
TIPS is a system for automated image-based phenotyping of
maize tassels, and it allows morphological features of maize
tassels to be quantified automatically, with minimal disturbance,
at a scale that supports population-level studies. And it is
expected to accelerate the discovery of associations between
genetic loci and tassel morphology characteristics (Gage et al.,
2017). Another maize image analysis software is Maize-IAS,
which is an integrated application supporting one-click analysis
of maize phenotype, embedding multiple functions, with a high
efficiency and potential capability to image-based plant research
(Zhou et al., 2021). Thus, image technology has become a
high-throughput means to obtain and analyze the phenotypic
information of large populations of crops. The phenotypic
information can be used for quantitative trait loci mapping and
genome-wide association studies. It is helpful to break the gap
between crop traits and genetic markers and promote the study
of crop phenotypic-genotype association (Zhao et al., 2019; Yang
et al., 2020; Song et al., 2021).

Genome-wide association study (GWAS) as an analytical
method for identifying the relationship between a target trait and
a genetic marker or candidate gene within a group of individuals,
provides a powerful tool for researchers concerned with and
exploring the genetic mechanisms of phenotype formation across
multiple individuals (Xiao et al., 2016; Liu and Yan, 2019). In
particular, the mixed linear model (MLM) methods have proven
useful in controlling for population structure and relatedness
within GWAS. In the MLM-based methods, population structure
is fitted as a fixed effect, while kinship among individuals is
incorporated into the variance-covariance structure of individual
random effects (Zhang et al., 2010). Since the publication of
maize B73 reference genome (Schnable et al., 2009), GWAS has
been widely used in maize genetics research, and has played
a great role in the analysis of genetic mechanisms such as
traditional maize agronomic traits (Wallace et al., 2016; Zhou
et al., 2016; Li et al., 2017; Dai et al., 2018; Du et al., 2018;
Zhou et al., 2018; Owens et al., 2019), key phenotypes (Cui
et al., 2016; Li et al., 2016; Liu et al., 2016; Zhang et al.,
2016a; Sanchez et al., 2018; Guo et al., 2019; Mazaheri et al.,
2019) and stress resistance (Zhang et al., 2016b; Shi et al.,
2018; Cooper et al., 2019; Wang et al., 2019; Xie et al., 2019).
However, there are few genetic studies on the phenotype of
maize leaf sheath.

Through image acquisition, image segmentation, feature
extraction and manual measurement of leaf sheaths of 418
maize inbred lines at V6 stage, this study proposed a method
to define and analyze the shape, size, color and other
phenotypes related to leaf sheaths, and developed a pipeline for
image-based traits with phenotypic data analysis and genetic
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FIGURE 1 | The flowchart of image-based high-throughput phenotypic analysis and genetic mechanism analysis of maize leaf sheaths at seedling stage. (A) Image
analysis and phenotypic traits extraction. (B) Phenotypic data analysis and key traits selection for genetic analysis. (C) Genetic mechanism analysis of key traits.

mechanism analysis (Figure 1). In addition, 87 leaf sheath-
related phenotypic traits including morphology, color and
biomass were obtained. Based on these phenotypic traits, leaf
sheath characteristics of maize association analysis population
were analyzed. In order to further analyze the mechanism
of leaf sheath phenotype formation, 25 key traits of maize
were analyzed by GWAS, and 1,816 candidate genes of 17
whole plant leaf sheath traits and 1,297 candidate genes of 8
sixth leaf sheath traits were obtained, respectively. This study
has achieved high-throughput acquisition of the phenotype
from maize leaf sheath. And it also can provide a reference
for revealing the genetic mechanism of maize leaf sheath
phenotype formation.

MATERIALS AND METHODS

Plant Materials, Growth Conditions, and
Sample Collection
418 inbred lines used in this study were from the maize
association mapping panel published by Yang et al. (2011);
Supplementary Table 1, which were classified into four
subpopulations: Non-stiff stalk (NSS) with 124 lines, Stiff stalk
(SS) with 31 lines, Tropical-subtropical (TST) with 164 lines, and
99 mixed lines (Mixed). The plants were grown in the Beijing
Academy of Agriculture and Foresting Science in Beijing, China.
Maize seeds were planted manually at a depth of 5 cm on 17 May
2019. Each inbred line was planted in 4 rows with 7 plants per
row. Planting density and water and fertilizer management were
based on local field production (Lu et al., 2020).

Image Acquisition, Analysis, and Feature
Extraction
Maize plants were grown to the V6 stage, and three plants were
sampled from each inbred line population. The leaf sheaths were
spread out on a white soft background plate and fixed with
pins. Blade images were captured by an image acquisition device
(Canon EOS 5D Mark III) with a resolution of 5,760 × 3,840
pixels. The image processing program (Figure 1A) is developed
by Visual Studio Express 2015, using the open-source image
processing library OpenCV 2.3.

The image processing and feature extraction methods were
summarized as follows: (a) Identification of interested areas.
The original color image was converted into a grayscale image, an
adaptive thresholding algorithm was used to segment foreground
and background. (b) Object abstraction. The foreground
contained a circular marker, a color checker board and leaf
sheaths, these components were separated according to shape,
inner composition pattern and chromatic property. (c) Organ
dissection. The largest contour was considered as the sixth
leaf sheath, the rest contours were labeled as the fifth leaf
sheath candidate regions. First, found out bounding box of these
candidate regions, and calculated length/width ratio, if the ratio
value was more than 3.0, then we argued that belonged to
leaf sheath candidate. Chosen the largest leaf sheath candidate
regions to compute centroid coordinate which denote by Ccdit ,
and centroid of sixth leaf sheath denoted by Csix, the Euclidean
distance of above two point is Dcent , if the Dcent was less than
1/2 length of sixth leaf sheath bounding box, the candidate
regions was labeled as the fifth leaf sheath, repeated the procedure
for the remaining candidates, until the last one was tested. (d)
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Phenotypic traits calculation. Phenotypic measurement and
image-based feature extraction were performed on the whole
plant leaf sheath and the sixth leaf sheath of maize at the
V6 stage, respectively. The specific calculation and definitions
for each trait are detailed in Supplementary Table 2 and
Supplementary Note 1.

Together with the two biomass traits, dry weight (DryWeight)
and fresh weight (FreshWeight) of the whole plant, measured
manually by electronic balances, totally 87 leaf sheaths related
traits that covering three types (morphology, color and biomass)
and two objects (the whole plant leaf sheath and the sixth leaf
sheath) were obtained in this study (Supplementary Table 2).

Statistical Analysis of Phenotypic Data
The “lm” function in R (Version 3.6.3) software1 was used to carry
out linear regression analysis on the leaf sheath area extracted by
the image-based method and the dry/fresh weight measured by
manual. The R2 obtained from the model represent the accuracy
of the software algorithm.

Analysis of variance (ANOVA) and descriptive statistical
analysis were conducted via R (Version 3.6.3) software to
determine whether each phenotype is different between different
subpopulations. Pearson correlation analysis was used to
calculate the correlation coefficients among phenotypic traits.
And pamk, a function of R package “FPC,” was used to perform
unsupervised hierarchical cluster analysis (HCA) using Pearson
correlation coefficient as distance measure, and then 87 traits
were grouped based on clustering.

Broad sense heritability (H2) usually means the percentage of
genetic variation (VA) to the total variation of a phenotype. It
can be used to compare the relationship between genetic (σ2

A)
and environmental (σ2

e ) factors for a specific phenotypic variation
(VP). Heritability (H2) was calculated for each trait as follows:

H2
=

VA

VP
=

σ2
A

σ2
A + σ2

e

where σ2
A is the genetic variance, σ2

e is the environmental
variance. The analysis was performed in ASReml-R v.4.0 by using
the “asreml” function of R package asreml (Butler, 2009).

Genome-Wide Association Study
Genotypic data of maize association mapping panel were
obtained from Maizego.2 Firstly, the genotypic data of 418 inbred
lines needed in this study were extracted, and 794,722 SNPs
with minimum allele frequency (MAF) greater than 0.05 and
call rate greater than 0.9 filtered by PLINK 1.09 software were
used in GWAS. For GWAS, a multi-locus random-SNP-effect
mixed linear model tool (R package “mrMLM” version 4.0)
(Zhang et al., 2019) including six multi-locus GWAS methods
(mrMLM, FASTmrMLM, FASTmrEMMA, ISIS EM-BLASSO,
pLARmEB, and pKWmEB) was used on each leaf sheath related
phenotypic traits separately to test the statistical association
between phenotypes and genotypes. In addition, population

1https://cran.r-project.org/
2www.maizego.org/Resources.html

structure estimated by STRUCTURE program version 2.3.4
(Hubisz et al., 2009) and relative kinship calculated by TASSEL
5 (Bradbury et al., 2007) with 794,722 SNPs were brought into
the model. These six Multi-locus GWAS methods were processed
in two steps. First, each SNP on the genome was filtered with a
P-value ≤ 0.5/N, N is the total number of genome-wide SNPs.
Then, all the SNPs that are potentially associated with the trait
were included in a multi-locus genetic model further screened
with a defeat P-value = 0.0002 to declare a significance of SNPs
that associated with a given trait. The results obtained by the six
multi-locus GWAS methods were regarded as significant SNPs
associated with phenotypic traits. Furthermore, SNPs with the
highest significance obtained by each method were regarded as
Top 1, and SNPs identified by multiple methods were considered
to be more reliable results. All candidate genes were annotated by
ANNOVAR software according to the latest maize B73 reference
genome (B73 RefGen_v4) available in EnsemblPlants3 and NCBI
Gene database.4

Functional and Network Analysis
The biological functions of candidate genes with high confidence
for each phenotypic trait (Top1 SNP annotation or multiple
GWAS validation) were explored by pathway enrichment
analysis. Enrichment analysis of Gene Ontology (GO)
(Ashburner et al., 2000) was conducted using PlantRegMap
(Jin et al., 2015). And KOBAS V3.0 (Bu et al., 2021) was used
to enrich Kyoto Encyclopedia of Genes and Genomes (KEGG)
(Kanehisa, 2002) pathway. Among them, GO terms and KEGG
pathways with the P-value less than 0.05 were considered to be
significantly enriched results.

In order to have a better view of the relationship between each
trait and its candidate genes, an open-source software platform
(Cytoscape v3.7.2) (Shannon et al., 2003) was used to visualize
the complex trait-candidate gene-pathway network and integrate
the input data by their attribute information.

RESULTS

Phenotypic Extraction of Leaf Sheath
In this study, image analysis was used to replace the traditional
leaf sheath phenotype acquisition methods. In addition to
conventional traits such as length, width, and surface area of leaf
sheaths, many traits such as leaf sheaths morphology and color
were also extracted based on image, realizing high-throughput
acquisition of phenotypic of maize leaf sheaths. After processing
the original image, a total of 1,116 valid image samples were
obtained, covering 418 inbred lines. According to these leaf
sheath images, the characteristics of the whole plant leaf sheath
and the sixth leaf sheath of maize at V6 stage were extracted,
and a total of 85 2D leaf sheath-related traits were obtained.
Together with two biomass traits obtained by measuring the
dry and fresh weight of the whole plant leaf sheath, totally
87 traits covering morphology, color and biomass these three

3http://plants.ensembl.org/Zea_mays/Info/Traits
4https://www.ncbi.nlm.nih.gov/gene
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types (Supplementary Table 2 and Supplementary Note 1) were
analyzed in this study. Of these, there were 50 whole plant leaf
sheath traits, including two biomass traits, 18 morphological
traits and 30 color traits. And 37 traits of the sixth leaf sheath,
including 7 morphological traits and 30 color traits.

The measurement accuracy of the image-based phenotypic
acquisition method was valued by the linear regression analysis
on the leaf sheath area extracted by the image-based method and
the dry/fresh weight measured by manual, and the R2 obtained
from the model represent the accuracy of the software algorithm.
As shown in Figure 2, the R2 of two models were 0.77 and 0.81,
respectively. The R2 of both models were close to 1, indicating
that the measurement accuracy of the image-based phenotypic
acquisition method is high, and the traits could be used for
subsequent analysis.

Phenotypic Characteristics of Leaf
Sheath
The basic statistical analysis results (Supplementary Table 3) of
87 leaf sheath traits showed that the phenotypic traits of inbred
lines in maize association analysis population had extensive
continuous variation, with the variation coefficient ranging
from –0.67 to 21.49. Furthermore, it can be seen from the
data histogram that the phenotypic traits data were normally
distributed, indicating that all traits were quantitative traits.

Pearson correlation analysis was performed on 87 leaf
sheath phenotypes, and clustering was performed based on
Pearson correlation coefficient, as shown in Figure 3. Cluster
analysis results showed that 87 phenotypes of the three types
could be divided into 6 groups, and each group had clear
characteristics (marked with different colors in Figure 3). The
Morphological characteristics of leaf sheath can be divided into
three groups. Group I (Morphological Traits_Basic): 16 basic
morphological traits describing leaf sheath length, width and
area, etc. Group II (Morphological Traits_Shape1): 4 traits were
used to describe the morphological shape of leaf sheath. And
Group III (Morphological Traits_Shape2): 5 traits to characterize
the variation of morphological type of leaf sheath. There was
no significant correlation between the 9 traits describing leaf
sheath shape in the two groups and other traits, indicating
that leaf sheath shape was basically unrelated to leaf sheath
size, area and color. The 16 basic morphological traits of leaf
sheath had a significant positive correlation with DryWeight
and FreshWeight (P-value < 0.05), and clustered into the same
group (Morphological Traits_Basic and Biomass Traits). This
result is consistent with prior knowledge, which indicates the
reliability of data and the significance of obtaining various traits
from images. The leaf sheath Color Traits were also divided into
three groups. The first group (Color Traits_Subset1) consisted
mainly of comprehensive color traits, the second group (Color
Traits_Subset2) of traits were mostly the variation degree of
the single-channel color values, and the third group (Color
Traits_Subset3) was composed of single-channel color traits
and four comprehensive color traits. The 24 comprehensive
color traits were separated into two groups, because CIVE,
CIVE_S, ExR, and ExR_S mainly represent red, while the other

comprehensive traits mainly represent blue and green, indicating
the accuracy of data extraction.

87 phenotypic traits were analyzed among different
subpopulations in turn. The results showed that the inbred
lines of TST subpopulation had distinct characteristics and were
significantly different from at least one subpopulation in 84 traits
(96.55%) (P-value < 0.05). Among them, 64 traits (73.56%)
showed significant differences between TST and all other three
subpopulations (P-value < 0.05) (Supplementary Figure 1).
The traits with significant differences between TST and other
subpopulations covered all three types of traits, indicating that
the leaf sheaths of tropical and subtropical maize inbred lines
(TST) were different from those of other climate zone maize
inbred lines in terms of morphology, color and biomass. In
order to further explore which traits had the greatest difference
between TST and other subpopulations, excluding the two
biomass traits, the other 62 phenotypic traits were divided
into four groups according to trait types and research objects.
Consequently, the four groups were 12 leaf sheath morphological
traits of whole plant, 21 leaf sheath color traits of whole plant, 4
leaf sheath morphological traits and 25 leaf sheath color traits of
the sixth leaf, respectively. Then principal component analysis
(PCA) was carried out for each group of traits, and the results
showed that the samples analyzed in each group were divided
into two categories (Figure 4A and Supplementary Figure 2).
However, the Average Silhouette Width is the highest after
clustering according to 12 morphological traits of the whole
plant leaf sheath, which is 0.54 (Figure 4B). In addition, 10 of
the 12 traits (T_Area_Avg_SS, T_Area_Sd_SS, T_Area_Sum_SS,
T_Compactness_Avg_SS, T_Length_Avg_SS, T_Width_Avg_SS,
T_Length_Sd_SS, T_Width_Sd_SS, T_LWRatio_Avg_SS,
T_Width_Sum_SS, T_Perimeter_Avg_SS, T_Perimeter_Sd_SS)
were basic morphological traits of leaf sheath morphology,
suggesting that the main differences between TST and other
subpopulations were manifested in the conventional phenotypic
traits such as leaf sheath length, width and area.

Heritability Analysis
Heritability analysis was performed on 87 leaf sheath phenotypic
traits extracted from 2D images, and the results are shown
in Figures 5A,B. For the whole plant leaf sheath traits, the
heritability of these 50 traits ranged from 1.01E-07 to 0.6601.
Among them, the heritability of DryWeight and FreshWeight
was 0.5234 and 0.5429, respectively. And the heritability of
18 morphological traits ranged from 0.1029 to 0.5470, and 13
(72.22%) of these traits had a heritability greater than 0.3. Except
VARI-S, the heritability of the other 29 color traits ranged from
0.3142 to 0.6601, and 29 (96.67%) of these color traits had a
heritability greater than 0.3. For the sixth leaf sheath traits, the
heritability of these 37 traits ranged from 0.1594 to 0.5754. And
the heritability of 7 morphological traits ranged from 0.2683 to
0.5754, of which 6 (85.71%) had heritability greater than 0.3. The
heritability of 30 color traits ranged from 0.1594 to 0.5955, and
27 (90.00%) of them had heritability greater than 0.3. To further
investigate the genetic mechanism of phenotypic traits related to
maize leaf sheaths, traits with heritability greater than 0.3 were
screened for further genetic analysis in this study.
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FIGURE 2 | The R2 obtained from the linear regression analysis on the leaf sheath area extracted by the image-based method and the dry (A)/fresh (B) weight
measured by manual.

FIGURE 3 | Correlation analysis and clustering of 87 leaf sheath traits. 87 traits were obtained from two objects: the whole plant leaf sheath and the sixth leaf
sheath. After clustering, 87 traits were divided into six groups and marked with different colors: Morphological Traits_Basic and Biomass Traits, Morphological
Traits_Shape1, Morphological Traits_Shape2, Color Traits_Subset1, Color Traits_Subset2 and Color Traits_Subset3.
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FIGURE 4 | Sample grouping results based on 12 morphological traits of the whole plant leaf sheath. (A) Clusplot of the first two principal components of 12
morphological traits of the whole plant leaf sheath. (B) Silhouette plot of samples characterized by 12 morphological traits of the whole plant leaf sheath.

However, due to the large number of color traits with
heritability greater than 0.3, PCA was applied to the color
traits of the whole plant and the sixth leaf sheath separately
to accomplish the dimensionality reduction and key feature
extraction. The results showed that for the color traits of these two
objects, the first and second principal components (PCs) were
strongly correlated with most color variables, and the cumulative
contribution value of the first two principal components was
0.72 and 0.66, respectively (Figures 5C,D). Therefore, 4 traits
that consisted of the first two PCs of the two objects color traits
were selected for subsequent GWAS. Adding to the 21 non-
color traits with heritability greater than 0.3, totally 25 key traits
(2 biomass-related, 19 morphology-related and 4 color-related
traits) with high heritability was used to explore the genetic
mechanisms by GWAS.

Significant Single Nucleotide
Polymorphism Obtained by
Genome-Wide Association Study
In conclusion, the multi-locus random-SNP effect mixed linear
model in R software package “mrMLM” (version 4.0) (Zhang
et al., 2019) was used for GWAS analysis of biomass traits,
morphological traits and color principal components related
to 2D leaf sheaths, including 17 whole plant leaf sheath traits
and 8 sixth leaf sheath traits. Finally, 1142 SNPs significantly
related to 17 whole plant leaf sheath traits and 755 SNPs

significantly related to 8 sixth leaf sheath traits were identified
(P-value < 6.4e-07) (Table 1). Additionally, among the results
of the 6 GWAS methods, the most significant (Top1) SNP
obtained by each method and the SNPs verified by two or more
methods were considered to be highly reliable results. As a
consequence, 152 SNPs significantly associated with 17 whole
plant leaf sheath traits and 85 SNPs significantly associated with
8 sixth leaf sheath traits were obtained. These highly significant
or multi-method verification results will be reported as the key
findings of this study.

Identification and Annotation of
Candidate Genes
Gene annotation was performed on 1142 SNPs significantly
related to 17 whole plant leaf sheath traits and 755 SNPs
significantly related to 8 sixth leaf sheath traits by using the
latest maize B73 reference genome (B73 RefGen_v4) available
in EnsemblPlants and NCBI Gene databases. Finally, 1,816
candidate genes of 17 whole plant leaf sheath traits and
1,297 candidate genes of 8 sixth leaf sheath traits were
obtained, respectively. Among them, 275 genes of 17 whole
plant leaf sheath traits and 146 genes of 8 sixth leaf sheath
traits were derived from the most significant SNP (Top1)
obtained by each method and SNPs annotations verified
by multiple methods (Table 1). Genes annotated by SNPs
with the highest significance or multi-method validation were
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FIGURE 5 | The broad-sense heritability (H2) of the investigated 87 phenotypic traits and principal component analysis (PCA) of color traits with heritability greater
than 0.3. (A) The broad-sense heritability (H2) of the 50 phenotypic traits of the whole plant leaf sheath. (B) The broad-sense heritability (H2) of the 37 phenotypic
traits of the sixth leaf sheath. (C) The first five principal components for color traits of the whole plant leaf sheath. (D) The first five principal components for color
traits of the sixth leaf sheath.

further retrieved in NCBI Gene database, and 270 candidate
genes of 25 key traits for leaf sheath phenotype had detailed
functional descriptions (Supplementary Table 4). Among
them, a total of 46 genes with clear functional descriptions

were annotated by SNPs that both Top1 and multi-method
validated (Table 2).

Hence, it was obvious that each leaf sheath-related trait had
its own specific candidate gene, whether it was from the whole
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TABLE 1 | Summary of significant loci from genome-wide association study.

Object Category Trait No. of unique
SNPs

No. of unique
annotated

genes

No. of genes
only related to
specific trait

No. of
significant
SNPs listed
Top 1* and

validated by
multiple
methods

No. of unique
annotated

genes listed
Top1 and

validated by
multiple
methods

No. of genes
only related to
specific trait
listed Top 1

and validated
by multiple
methods

Whole plant leaf
sheath

Biomass DryWeight 35 62 26 6 12 12

Freshweight 47 86 49 10 19 17

Color Sum_PC1 58 105 79 11 22 16

Sum_PC2 75 132 101 9 18 18

Morphology T_Area_avg_SS 43 72 26 10 19 14

T_Area_Sd_SS 46 77 25 10 16 8

T_Area_sum_SS 41 71 22 12 24 14

T_Compactness_Avg_SS 213 348 242 11 19 17

T_Length_Avg_SS 53 94 50 9 18 14

T_Length_Sd_SS 34 59 36 9 15 10

T_Length_Sum_SS 50 87 50 12 21 17

T_LWRatio_Avg_SS 38 74 54 9 18 18

T_Perimeter_Avg_SS 35 65 30 8 14 7

T_Perimeter_Sum_SS 48 91 46 13 26 16

T_Rectangularity_Avg_SS 347 591 456 12 21 17

T_Width_Avg_SS 31 62 27 5 10 6

T_Width_Sum_SS 45 84 25 7 14 8

Summary 1,142 1,816 1,344 152 275 229

Sixth leaf
sheath

Color Sixth_PC1 75 134 102 12 22 18

Sixth_PC2 269 478 400 11 21 21

Morphology T_Area_S0 45 77 25 10 18 6

T_Compactness_S0 72 122 85 13 21 19

T_Length_S0 53 95 42 14 23 19

T_LWRatio_S0 136 245 192 11 18 16

T_Perimeter_S0 48 83 26 11 18 12

T_Width_S0 84 154 97 9 16 12

Summary 755 1,297 969 85 146 123

*Top1: the most significant SNP obtained by each GWAS method.

plant or the sixth leaf alone. In addition to the common traits
that could be extracted in previous studies, the 2D leaf sheath-
related traits proposed in this study also identified significant loci
and candidate genes. Consequently, it is necessary to subdivide
and refine the phenotype of plants at maize seedling stage
(Table 1). In addition, some of these traits had overlapped genes
in the whole plant and the sixth leaf sheath (Table 1), indicating
that these traits were genetically related to a certain degree. If
the study on the sixth leaf sheath can be used instead of the
whole plant study at V6 stage, it will greatly save the cost of
phenotype acquisition.

Pathways Enriched by Functional
Enrichment Analysis
In order to further explore the function of candidate genes, we
used functional enrichment analysis to enrich the candidate
genes annotated by the most significant SNP (Top1) and verified

by multiple methods in the whole plant and the sixth leaf sheath,
respectively. For the whole plant leaf sheath traits, a total of 81
GO terms and 1 KEGG pathways (P < 0.05) were obtained by
enrichment of candidate genes for leaf sheath phenotype, among
which 37 GO terms belonged to GO BP (biological process)
(Figures 6A–D). In GO BP terms, the pathways with the highest
significance were related to cellular component assembly and
organization. For instance, “ribosome assembly” (GO:0042255,
P-value = 2.70E-09), “organelle assembly” (GO:0070925,
P-value = 3.50E-09), “ribonucleoprotein complex assembly”
(GO:0022618, P-value = 6.90E-08), “cellular macromolecular
complex assembly” (GO:0034622, P-value = 1.30E-05), “cellular
component assembly” (GO:0022607, P-value = 5.80E-05) and
“cellular component organization or biogenesis” (GO:0071840,
P-value = 0.00016). Notably, several pathways related to cell
proliferation and epidermal cell differentiation were identified by
GO analysis: “regulation of cell proliferation” (GO:0042127,
P-value = 0.00834), “cell proliferation” (GO:0008283,

Frontiers in Plant Science | www.frontiersin.org 9 June 2022 | Volume 13 | Article 826875

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-826875 June 22, 2022 Time: 14:27 # 10

Wang et al. GWAS of Maize Leaf Sheaths

TABLE 2 | Detailed functional descriptions of 46 genes annotated by both Top1 and multi-method validated SNPs.

Gene Description Chromosome Genomic_
nucleotide_
accession.version

Start_position_
on_the_genomic_
accession

End_position_on
_ the_genomic_
accession

Trait Object

GRMZM2G073826 Transcription factor
MYB3R-5

5 NC_050100.1 137,986,909 138,015,364 FreshWeight Whole plant
leaf sheath

GRMZM2G418206 Proteinaceous RNase P 1,
chloroplastic/ mitochondrial

5 NC_050100.1 137,893,158 137,908,282 FreshWeight Whole plant
leaf sheath

GRMZM2G040452 Catalytic/protein
phosphatase type 2C

4 NC_050099.1 237,957,682 237,960,493 Sum_PC1 Whole plant
leaf sheath

GRMZM2G085945 Zinc finger protein 5 NC_050100.1 219,927,636 219,928,886 Sum_PC2 Whole plant
leaf sheath

Zm00001d009690 RNA cytidine
acetyltransferase 1

8 NC_050103.1 76,264,531 76,273,801 Sum_PC2 Whole plant
leaf sheath

GRMZM2G103721 Phosphatidylinositol
3-kinase, root isoform

4 NC_050099.1 74,538,889 74,548,829 T_Area_Avg_SS Whole plant
leaf sheath

GRMZM2G134248 Long chain base
biosynthesis protein 1a

4 NC_050099.1 74,702,902 74,704,363 T_Area_Avg_SS Whole plant
leaf sheath

GRMZM2G156238 C2 Domain-containing
protein At1g53590

4 NC_050099.1 226,930,981 226,946,730 T_Area_Avg_SS Whole plant
leaf sheath

GRMZM2G126860 Protein SUPPRESSOR OF
K(+) TRANSPORT
GROWTH DEFECT 1

8 NC_050103.1 14,003,169 14,008,552 T_Area_Avg_SS Whole plant
leaf sheath

GRMZM2G126956 DNA damage-binding
protein 2

8 NC_050103.1 14,023,075 14,027,906 T_Area_Avg_SS Whole plant
leaf sheath

GRMZM2G161169 Taxane
10-beta-hydroxylase

4 NC_050099.1 6,214,120 6,216,528 T_Area_Sum_SS Whole plant
leaf sheath

GRMZM2G065496 B3 Domain-containing
protein

1 NC_050096.1 168,954,911 168,957,922 T_Compactness_
Avg_SS

Whole plant
leaf sheath

zma-MIR169i MicroRNA MIR169i 4 NC_050099.1 49,606,834 49,607,024 T_Compactness_
Avg_SS

Whole plant
leaf sheath

FHA9 Myosin-9 1 NC_050096.1 5,773,058 5,778,341 T_Length_Avg_SS Whole plant
leaf sheath

GRMZM2G371137 Probable LRR receptor-like
serine/threonine-protein
kinase At1g12460

1 NC_050096.1 5,836,567 5,841,667 T_Length_Avg_SS Whole plant
leaf sheath

GRMZM2G047715 Homeobox-leucine zipper
protein HOX7

4 NC_050099.1 126,441,242 126,446,006 T_Length_Avg_SS Whole plant
leaf sheath

GRMZM2G105933 Putative protein kinase
superfamily protein

4 NC_050099.1 126,356,761 126,359,205 T_Length_Avg_SS Whole plant
leaf sheath

GRMZM2G097605 DNA repair helicase UVH6 10 NC_050105.1 91,197,531 91,202,542 T_Length_Sd_SS Whole plant
leaf sheath

GRMZM2G135770 Putative regulator of
chromosome condensation
(RCC1) family protein

4 NC_050099.1 84,989,713 84,995,057 T_Length_Sum_SS Whole plant
leaf sheath

GRMZM2G419305 Agenet domain-containing
protein/bromo-adjacent
homology (BAH)
domain-containing protein

4 NC_050099.1 85,143,298 85,148,546 T_Length_Sum_SS Whole plant
leaf sheath

GRMZM2G030839 Phosphomevalonate kinase 9 NC_050104.1 148,330,626 148,338,890 T_LWRatio_
Avg_SS

Whole plant
leaf sheath

GRMZM2G094592 IRK-interacting protein 7 NC_050102.1 138,421,602 138,423,876 T_Perimeter_
Avg_SS

Whole plant
leaf sheath

GRMZM2G143160 Serine/threonine-protein
kinase MPS1

1 NC_050096.1 271,894,088 271,899,733 T_Perimeter_
Sum_SS

Whole plant
leaf sheath

GRMZM2G147332 Oxysterol-binding
protein-related protein 1C

1 NC_050096.1 271,997,558 272,015,271 T_Perimeter_
Sum_SS

Whole plant
leaf sheath

GRMZM2G319357 Low molecular weight
protein-tyrosine-
phosphatase
slr0328

1 NC_050096.1 209,876,521 209,881,331 T_Perimeter_
Sum_SS

Whole plant
leaf sheath

(Continued)
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TABLE 2 | (Continued)

Gene Description Chromosome Genomic_
nucleotide_
accession.version

Start_position_
on_the_genomic_
accession

End_position_on
_ the_genomic_
accession

Trait Object

GRMZM2G022926 OSJNBa0070C17.17-like
protein

10 NC_050105.1 144,286,874 144,289,145 T_Perimeter_
Sum_SS

Whole plant
leaf sheath

GRMZM2G028676 Vacuolar ATPase assembly
integral membrane protein
VMA21-like domain

10 NC_050105.1 144,223,404 144,224,474 T_Perimeter_
Sum_SS

Whole plant
leaf sheath

GRMZM2G128248 dnaJ protein 8 NC_050103.1 172,072,905 172,075,250 T_Rectangularity_
Avg_SS

Whole plant
leaf sheath

GRMZM2G123537 Pumilio homolog 3 4 NC_050099.1 176,122,607 176,128,541 T_Width_Sum_SS Whole plant
leaf sheath

zma-MIR172c MicroRNA MIR172c 4 NC_050099.1 176,265,726 176,265,848 T_Width_Sum_SS Whole plant
leaf sheath

GRMZM2G309025 S-domain class
receptor-like kinase 3

7 NC_050102.1 165,446,107 165,448,937 T_Width_Sum_SS Whole plant
leaf sheath

GRMZM2G339645 CSLF3—cellulose
synthase-like family F

7 NC_050102.1 165,345,171 165,348,432 T_Width_Sum_SS Whole plant
leaf sheath

GRMZM2G066997 Remorin 5 NC_050100.1 193,077,446 193,080,950 T_Width_Sum_SS,
T_Area_S0,
T_LWRatio_S0

Whole plant
and Sixth
leaf sheath

GRMZM2G477314 CF9 1 NC_050096.1 288,099,406 288,101,023 Sixth_PC1 Sixth leaf
sheath

GRMZM2G091303 Xyloglucan
endotransglucosylase/
hydrolase protein 24

10 NC_050105.1 143,472,231 143,474,095 Sixth_PC1 Sixth leaf
sheath

CKX10 Cytokinin dehydrogenase
10

1 NC_050096.1 21,236,2957 212,366,306 Sixth_PC2 Sixth leaf
sheath

GRMZM2G122126 6-
Phosphogluconolactonase

1 NC_050096.1 212,272,609 212,274,483 Sixth_PC2 Sixth leaf
sheath

GRMZM2G138355 Nudix hydrolase 13 10 NC_050105.1 114,632,712 114,636,142 Sixth_PC2 Sixth leaf
sheath

Zm00001d027570 Putative protein
phosphatase 2C 48

1 NC_050096.1 8,216,152 8,220,401 T_Area_S0 Sixth leaf
sheath

GRMZM6G207008 Characterized
LOC100272314

4 NC_050099.1 172,883,765 172,884,420 T_Compactness_
S0

Sixth leaf
sheath

Zm00001d051817 DNA topoisomerase 2 4 NC_050099.1 172,603,028 172,604,370 T_Compactness_
S0

Sixth leaf
sheath

GRMZM2G339907 NDR1/HIN1-like protein 26 7 NC_050102.1 163,429,440 163,430,393 T_LWRatio_S0 Sixth leaf
sheath

GRMZM2G039811 Transmembrane 9
superfamily member 9

2 NC_050097.1 204,934,314 204,938,233 T_Perimeter_S0 Sixth leaf
sheath

GRMZM2G153369 Hydrophobic protein RCI2B 2 NC_050097.1 205,006,561 205,007,668 T_Perimeter_S0 Sixth leaf
sheath

GRMZM2G007122 Putative
ubiquitin-conjugating
enzyme family

6 NC_050101.1 175,737,238 175,740,387 T_Perimeter_S0 Sixth leaf
sheath

GRMZM2G155686 Gibberellin 2-oxidase8 6 NC_050101.1 175,763,619 175,765,545 T_Perimeter_S0 Sixth leaf
sheath

P-value = 0.02853), “root epidermal cell differentiation”
(GO:0010053, P-value = 0.02308), “plant epidermal cell
differentiation” (GO:0090627, P-value = 0.02853) and “plant
epidermis development” (GO:0090558, P-value = 0.02884). In
addition, the one KEGG pathway was “Sphingolipid metabolism”
(zma00600, P-value = 0.02218).

For the sixth leaf sheath traits, a total of 57 GO terms
and 4 KEGG pathways (P-value < 0.05) were enriched in
the sixth leaf sheath phenotype candidate genes, among

which 31 GO terms belonged to GO BP (Figures 6E–H).
In GO BP terms, several pathways related to response
to hunger, nutrition and extracellular stimulation were
enriched by genes GRMZM2G147450 and GRMZM2G059121:
“cellular response to phosphate starvation” (GO:0016036,
P-value = 0.00245), “cellular response to starvation”
(GO:0009267, P-value = 0.00643), “disaccharide metabolic
process” (GO:0005984, P-value = 0.00779), “response to
starvation” (GO:0042594, P-value = 0.00779), “cellular
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response to nutrient levels” (GO:0031669, P-value = 0.00842),
“response to nutrient levels” (GO:0031667, P-value = 0.01184),
“cellular response to extracellular stimulus” (GO:0031668,
P-value = 0.01184) and “cellular response to external stimulus”
(GO:0071496, P-value = 0.01284). In addition, candidate genes
for the sixth leaf sheath traits were also enriched in multiple
pathways related to cell proliferation and epidermis development.
For example, “plant epidermis morphogenesis” (GO:0090626,
P-value = 0.00519), “cell proliferation” (GO:0008283,
P-value = 0.00606) and “plant epidermis development”
(GO:0090558, P-value = 0.03493). The most striking result
of KEGG is “Alanine, aspartate and glutamate metabolism”
(zma00250, P-value = 0.01283). And the other three pathways
are “Pyrimidine metabolism” (zma00240, P-value = 0.01379),
“Metabolic pathways” (zma01100, P-value = 0.01382) and
“Phagosome” (zma04145, P-value = 0.03899).

Trait-Candidate Gene-Pathway Network
Visualization
Cytoscape V3.7.2 was used to draw the trait-candidate gene-
pathway network of 2D maize leaf sheath traits at seedling stage,
and to show the relationship between 270 candidate genes and
25 key traits, and between candidate genes and their enriched
pathways. The whole network consisted of 444 nodes and 1,144
edges (Figure 7). In the network, there were 25 traits (the
largest nodes), including 17 whole plant leaf sheath traits (round
rectangle nodes) and 8 sixth leaf sheath traits (octagon nodes).
And the types of traits—morphology, color and biomass—were
also marked in blue, orange and green, respectively. In addition,
the candidate genes were marked with small gray circular nodes,
and the pathways were marked with small diamond. Among
them, pathways related to cellular component assembly and
organization were marked in earthy yellow, pathways related to
cell proliferation and epidermal cell differentiation were marked
in grass green, and pathways related to response to hunger,
nutrition and extracellular stimulation were marked in red.

DISCUSSION

Maize leaf sheaths wrap stem to provide structural support
and protect developing leaves, which is of great biological
significance. This study broke the traditional method of
phenotypic acquisition of maize leaf sheath, and proposed
an image-based high-throughput acquisition and data
analysis scheme for phenotypic traits of maize leaf sheath
from image acquisition, image phenotypic analysis and leaf
sheath phenotypic data analysis. Firstly, a simple and reliable
environment for maize leaf sheath image acquisition was
established, and the acquisition time of a single sample image
was less than 10s. Then, a maize leaf sheath phenotypic
image analysis software with friendly interactive interface was
developed based on open-source software development tools.
Based on the image analysis, 85 leaf sheath phenotypic traits
including shape and color can be analyzed, and the calculation
time for a single image was less than 60s. Finally, phenotypic
traits were extracted and analyzed from leaf sheath images of

418 maize inbred lines, and the statistical description results
of leaf sheath phenotypic traits of large maize populations
were obtained. It is time-consuming and laborious to obtain
the traditional traits such as length and width of leaf sheath
manually, but the image-based phenotypic acquisition method
can quickly obtain the length and width of leaf sheath in less
than 1 min. Besides, more than 80 phenotypic traits can also
be extracted. Thus, efficient and high-throughput acquisition of
leaf sheath phenotypes was achieved. Moreover, this method is
suitable for large populations and can help to obtain leaf sheath
phenotype in maize association analysis population.

A large number of traits can be extracted from plant images,
and a variety of new traits can be determined from different
dimensions. However, the interpretability of the traits still
needs further study. In this study, correlation analysis, cluster
analysis and PCA were performed on 87 leaf sheath-related
phenotypic traits of maize association analysis population. The
results showed that there were differences in morphological
characteristics and color traits of leaf sheath, with correlation
coefficients less than 0.5. In the morphological characteristics
of leaf sheath, it can be divided into three groups with definite
significance due to the different features described. Color traits
can be subdivided into three subsets with distinctive features.
Therefore, although some traits cannot explain their biological
significance by themselves, combined with trait grouping and
its highly correlated traits, the phenotypic traits with less clear
meanings can be characterized.

In order to verify the reliability of phenotypic acquisition from
leaf sheath images, correlation analysis was conducted between
dry and fresh weight of maize leaf sheath measured manually
and leaf sheath morphological traits obtained from images. The
results showed that 16 morphological characteristics of leaf
sheath had a significant positive correlation with DryWeight and
FreshWeight (p-value < 0.05), and clustered into the same group
(Morphological Traits_Basic and Biomass Traits). This result was
consistent with the prior knowledge, revealing the reliability of
the data, and demonstrating that the various traits obtained from
the image were meaningful. Moreover, among the color traits
extracted from the image, 24 comprehensive color traits were
divided into two groups, CIVE, CIVE_S, ExR and ExR_S mainly
represent red, while the remaining comprehensive traits mainly
represent blue and green. The clustering results based on the
phenotypic data were consistent with the trait characteristics,
which also showed the accuracy of the data extraction.

It can be seen from the results of this study that image-
based high-throughput phenotypic acquisition techniques can
obtain novel traits that breeders cannot evaluate through
traditional methods, such as geometric and color traits described
quantitatively. In this study, 88.51% (77/87) of leaf sheath-related
phenotypic traits had heritability greater than 0.3, indicating that
the formation of these phenotypes was influenced by genetic
factors. To further dissect the genetic mechanisms underlying
these phenotypes with heritability greater than 0.3, GWAS was
used to analyze the 25 key leaf sheath-related traits, and totally
3,113 candidate genes for leaf sheath-related traits were obtained.
The candidate genes with high significance or verified by multiple
methods were considered as high reliability results, which
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FIGURE 6 | Functional enrichment results of all candidate genes associated with phenotypic traits. (A) GO BP (biological process) terms enriched by the whole plant
leaf sheath candidate genes. (B) GO MF (molecular function) terms enriched by the whole plant leaf sheath candidate genes. (C) GO CC (cellular components) terms
enriched by the whole plant leaf sheath candidate genes. (D) KEGG pathways enriched by the whole plant leaf sheath candidate genes. (E) GO BP terms enriched
by the sixth leaf sheath candidate genes. (F) GO MF terms enriched by the sixth leaf sheath candidate genes. (G) GO CC terms enriched by the sixth leaf sheath
candidate genes. (H) KEGG pathways enriched by the sixth leaf sheath candidate genes.
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FIGURE 7 | The “trait-gene-pathway” network constructed by 25 key traits and their candidate genes and pathways. Traits, genes and pathways (GO terms and
KEGG pathways) are shown in different shapes and sizes. Of the 25 large nodes, 17 round rectangle nodes represent the whole plant leaf sheath traits, and 8
octagon nodes represent the sixth leaf sheath traits. And different color represents different type of traits (blue- morphology, orange- color and green- biomass). The
colorful small diamonds represent GO terms and KEGG pathways enriched by candidate genes. Among them, pathways related to cellular component assembly
and organization were marked in earthy yellow, pathways related to cell proliferation and epidermal cell differentiation were marked in grass green, and pathways
related to response to hunger, nutrition and extracellular stimulation were marked in red. Candidate genes are represented by the small gray circular nodes.

would provide reference for subsequent functional verification
of maize leaf sheath candidate genes. For example, cytokinin
dehydrogenase 10 (CKX10) is a candidate gene for major
component traits of the color of the sixth leaf sheath (Sixth_PC2).
Meanwhile, it has been reported that CKX10 plays an important
role in dry matter accumulation in V6 stage leaves (Lu et al.,
2020). CKX10 is a member of the CKX family, and a great deal of
work has been done on this gene family in gramineae (Mameaux
et al., 2012), including some studies on maize. In transcriptome
analysis of maize, CKX10 has also been reported as one of the
DEGs of KEGG pathways associated with hormone metabolism
(Zheng et al., 2020). Therefore, we speculate that CKX10 plays
an important role in the formation of leaf sheath color in
maize V6 stage. It is worth noting that some loci of these high
confidence results had a high explanatory power (PVE > 5%) for
phenotypic variation. For example, GRMZM2G135770, putative
regulator of chromosome condensation (RCC1) family protein,
was annotated by chr4.S_84970911 on chromosome 4, which
was significantly associated with the trait T_Length_Sum_SS, and
explained 6.54% of the phenotypic variance. GRMZM2G156238,

C2 domain-containing protein At1g53590, which has been
proved to be tissue-specific (Stelpflug et al., 2016). It was
reported in the study of organ-specific and stress-induced
gene expression mapping of maize (Hoopes et al., 2019). In
this study, it was annotated by chr4.S_224037650, also located
on chromosome 4, which was significantly associated with
the trait T_Area_Avg_SS, explaining 5.17% of the phenotypic
variance. And GRMZM2G156238 was also associated with the
other two leaf sheath morphological traits (T_Area_S0 and
T_Perimeter_Avg_SS). The above results proved the reliability of
the phenotype-genotype association analysis process and results
of this study. At the same time, it also reflects the significance
of trait refinement for the research of crop phenotypic genetics,
that is, the more refined the trait, the stronger the phenotype
interpretability of the obtained locus.

Pigment plays an important role in plant reproduction and
adaptability, and the research on plant pigment has always been
a hot topic. In this study, phenotypic traits of leaf sheath color
of maize inbred lines from four subpopulations with different
environmental adaptability were analyzed. The results showed
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that there were significant differences in 48 leaf sheath color traits
between tropical and subtropical maize inbred lines (TST) and
maize inbred lines from other climatic zones (P-value < 0.05),
which showed that the color of maize leaf sheath was closely
related to the ecological adaptability and evolution of maize. In
addition, the changes of pigment deposition, distribution and
shade among different kinds of maize are of great value to the
study of maize functional genome and the application of maize
genetics and breeding. Leaf sheath color is also an important
morphological marker to guide maize breeding. It can be used
for more intuitive selection and more directly genetic research
of related special traits. In this study, a total of 60 leaf sheath
color traits were extracted based on images, including 30 for
the whole plant leaf sheath and 30 for the sixth leaf sheath. In
addition to simple single-channel color traits, a number of novel
comprehensive color traits were also extracted. The results of
heritability analysis showed that the heritability of color trait was
generally high, so it was necessary to conduct GWAS analysis
to explore the genetic factors behind these traits. In our study,
PCA was used to reduce the dimensionality of the color traits
with heritability greater than 0.3, and then the first two principal
components were selected for GWAS. As a consequence, more
than 800 candidate genes related to color traits were identified
(Table 1). These results greatly enrich the existing research
results on maize leaf sheath genetics and provide a theoretical
basis for better explaining the mechanism of maize leaf sheath
phenotype formation.

In recent years, phenomics has emerged as a rapidly growing
data-intensive discipline. The rapid development of phenomics-
related technologies and research tools has brought about a
huge amount of phenotypic information at multiple scales and
data diversity, such as RGB, hyperspectral, near-infrared, thermal
and fluorescence imaging and other image data, as well as
data on various physiological traits during plant growth (Kim
et al., 2017). Crop life activity is a dynamic process under the
combined action of genes and environment. As high-throughput
sequencing technologies continue to develop and improve,
single-omics studies are becoming increasingly sophisticated.
And the integration of multi-omics data to study crops is on the
rise. Genomic studies combining genomic and phenotypic data
have been conducted in many crops and have rapidly decoded
the functions of a large number of unknown genes. In 2014,
13 traditional agronomic traits of rice were combined with two
newly defined traits and 141 related loci were identified using
GWAS (Yang W. et al., 2014). In 2015, 29 leaf phenotypic traits at
three key fertility stages were resolved using high-throughput leaf
phenotype acquisition (HLS) and subjected to GWAS analysis,
and 73 loci regulating leaf size, 123 loci regulating leaf color
and 177 new loci regulating leaf shape (Yang et al., 2015). In
2021, 48 maize stem micro-phenotypic traits were automatically
extracted by micro-CT image processing pipeline and 1,562
significant SNPs were identified for 30 key traits by GWAS
(Zhang et al., 2021). It is clear that combining high-throughput
phenotyping techniques with large-scale QTL or GWAS analysis
not only greatly expands our understanding of the dynamic
developmental processes in crops, but also provides a new tool
for plant genomics, gene characterization and breeding research.
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