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Reactive oxygen species (ROS) play an essential role in the regulation of seed
dormancy, germination, and deterioration in plants. The low level of ROS as signaling
particles promotes dormancy release and triggers seed germination. Excessive
ROS accumulation causes seed deterioration during seed storage. Maintaining ROS
homeostasis plays a central role in the regulation of seed dormancy, germination, and
deterioration in crops. This study highlights the current advances in the regulation of
ROS homeostasis in dry and hydrated seeds of crops. The research progress in the
crosstalk between ROS and hormones involved in the regulation of seed dormancy and
germination in crops is mainly summarized. The current understandings of ROS-induced
seed deterioration are reviewed. These understandings of ROS-dependent regulation on
seed dormancy, germination, and deterioration contribute to the improvement of seed
quality of crops in the future.
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INTRODUCTION

Reactive oxygen species (ROS) are known as a class of highly reactive and oxygen-bearing molecules
including superoxide anion (O2

·−), hydrogen peroxide (H2O2), hydroxyl radical (OH), and singlet
oxygen (1O2) (Nathan and Ding, 2010). It has been well reported that ROS plays a pivotal
function in the regulation of seed dormancy, germination, and deterioration (Kurek et al., 2019;
Considine and Foyer, 2021). The low level of ROS as signaling particles promotes physiological
dormancy release and triggers seed germination (Kumar et al., 2015; Considine and Foyer, 2021).
However, the high level of ROS usually causes the orthodox seed deterioration under natural and
artificial aging conditions by influencing lipid peroxidation, membrane permeability, defective
proteins, antioxidant system, mitochondrial degradation, and DNA and RNA damages (Kurek
et al., 2019). Therefore, keeping a balance in the ROS levels in seeds plays an important role
in the regulation of seed dormancy, germination, and deterioration. In this study, the current
advances in the regulation of ROS in seed dormancy, germination, and deterioration in crops
are reviewed mainly considering three aspects: (1) the regulation of ROS homeostasis in seeds,
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(2) the crosstalk between ROS and hormones in seed dormancy
and germination, (3) and ROS involving in seed deterioration.

REGULATION OF REACTIVE OXYGEN
SPECIES HOMEOSTASIS IN SEEDS

Production of Reactive Oxygen Species
in Seeds
In dry seeds, the ROS are generated by the non-enzymatic
reaction, mainly the autooxidation of lipids (Bewley et al., 2012).
Lipids are easily oxidized as the main source of free radicals under
low humidity conditions in seeds during dry storage, while a
weakening lipid oxidation occurs with the increase in humidity
(Singh et al., 2014). When seed imbibition with the water content
increased from 8–10 to 50% or more, the production of ROS
begins to switch from non-enzymatic system to the enzymatic
system in seeds (Kibinza et al., 2006; Bazin et al., 2011; Basbouss-
Serhal et al., 2016; Bailly, 2019). The mitochondrion is an
important site for the main source of cellular ROS in seeds (Bailly,
2004). In the matrix of mitochondria, the oxygen consumed
during electron transport is reduced to superoxide through
the respiratory electron transport chain (RETC), and then the
produced superoxide is converted to H2O2 by Mn superoxide
dismutase (Mn-SOD) or Cu/Zn-SOD (Figure 1; Imlay, 2003;
Møller et al., 2020). Chloroplasts are another vital source of ROS
in photosynthesizing cells. Illumination of photosystem I (PSI)
and photosystem II (PS II) generates O2

·−, OH, and 1O2 (Pospíšil
et al., 2004; Pospíšil, 2009; Richards et al., 2015), and the O2

·− is
converted into H2O2 by Fe-SOD or Cu/Zn-SOD in chloroplasts
(Waszczak et al., 2018). Meanwhile, the glycolates derived from
chloroplast are converted into glyoxylate and H2O2 by glycolate
oxidase (GOX) in peroxisomes (Considine and Foyer, 2021).

Transmembrane NADPH oxidases (NOXs) are well-studied
cytosolic ROS-producing enzymes in plants (Ishibashi et al.,
2015; Kai et al., 2016; Li et al., 2017). NOXs mediate the transfer
of electrons from cytosolic NADPH, through flavin adenine
dinucleotide (FAD) to penetrate the membrane, via hemes, to
oxygen, leading to superoxide generation (Figure 1; Katerina
and Cosa, 2016). The production of ROS also occurs in the
apoplastic system (Richards et al., 2015; Waszczak et al., 2018).
For example, H2O2 is generated by polyamine oxidase (PAO)
during the catalytic synthesis between spermidine and spermine
(Yoda et al., 2006; Moschou et al., 2008). The OH is converted
from O2

·− and H2O2 by ascorbate (Fry, 1998; Schopfer, 2001)
and secreted class III heme-containing peroxidases (POD III)
in the apoplastic system (Mika et al., 2008; Heyno et al., 2011;
Miura, 2012). Interestingly, OH could be produced from H2O2
through metal-based (Fe2+, Cu+, or Mn2+) Haber-Weiss or
Fenton reactions in all mitochondria, chloroplasts, and cytoplasm
(Pospíšil et al., 2004; Pospíšil, 2009). The enzymatic reactions
in dry seeds are inactive, while the ROS generation by non-
enzymatic reactions remains poorly understood in crops. It is
important to understand the contributions of each site such
as mitochondrion, peroxisomes, chloroplasts, cytoplasm, and
apoplastic systems on ROS generation in the future.

Scavenging System of Reactive Oxygen
Species in Seeds
To keep ROS homeostasis in seeds, the internal antioxidant
defense systems comprising of both enzymatic and non-
enzymatic components are activated to relieve oxidative
damages. Superoxide dismutase (SOD) including Mn-SOD,
Fe-SOD, and Cu/Zn-SOD as important enzymatic components
are widely distributed in the mitochondrial, chloroplasts,
cytosol, and extracellular space of cells (Imlay, 2003). SODs
can dismutate superoxide radicals into H2O2 (Figure 1).
Then, H2O2 is converted into water and oxygen by catalase
(CAT), glutathione peroxidase (GPX), peroxiredoxins (PRX),
or by the ascorbate-glutathione (AsA-GSH) cycle (Figure 1).
Several components such as ascorbate peroxidase (APX),
monodehydroascorbate (MDHA), monodehydroascorbate
reductase (MDHAR), dehydroascorbate reductase (DHAR),
and glutathione reductase (GR) involve in the AsA-GSH cycle
(Noctor and Foyer, 1998; Bailly, 2004), in which AsA is utilized
as a specific electron donor to invert H2O2 to water by APX.

Several non-enzymatic components such as ascorbic acid
(AsA, vitamin C), glutathione (GSH), hioredoxin (TRX),
α-tocopherol (vitamin E), and carotenoids have been identified
as the potent antioxidants in seeds (Figure 1). Of them, AsA and
GSH have long been considered to function together in the AsA-
GSH cycle (Foyer and Halliwell, 1976). Both GSH and TRX can be
used as reducing substrates by GPX in the detoxification of H2O2
(Herbette et al., 2002). It has also been reported that membrane
lipids, α-tocopherol (vitamin E), and carotenoids play important
roles in clear 1O2 produced in the chloroplast (Krieger-Liszkay
and Trebst, 2006; Ramel et al., 2012).

Metallothioneins (MTs) can bind metal ions through the thiol
groups of their cysteine residues, which have been reported to
be involved in the scavenging of ROS in the past decades. For
example, the MTs can scavenge·OH and O2

·− in seeds (Figure 1;
Hassinen et al., 2011), and overexpression of OsMT2b can reduce
the H2O2 production in rice (Wong et al., 2004). Altogether,
ROS homeostasis is controlled through a complex network of
ROS production and scavenging systems, while its molecular
mechanisms such as MTs involved in ROS homeostasis remain
unclear. Maintaining ROS homeostasis plays a central role in seed
dormancy, germination, and deterioration, and whether MTs
involved in seed dormancy, germination, and deterioration needs
further investigation.

REACTIVE OXYGEN SPECIES INVOLVED
IN REGULATION OF SEED DORMANCY
AND GERMINATION

Roles of Reactive Oxygen Species in
Regulation of Seed Dormancy and
Germination
The regulatory roles of ROS in dormancy release and seed
germination in crops have been reported. For example, the
non-enzymatic ROS generation frequently occurs in seeds
contributing to dormancy release during desiccated seed storage
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FIGURE 1 | Regulation of reactive oxygen species (ROS) homeostasis in crop seeds. NADP+, nicotinamide adenine dinucleotide phosphate; NADPH, reduced form
of NADP+; NAD+, nicotinamide adenine dinucleotide phosphate; NADH, nicotinamide adenine dinucleotide; NOXs, transmembrane NADPH oxidases; RETC, the
respiratory electron transport chain; SOD, superoxide dismutase; GPX, glutathione peroxidase; AsA, ascorbate; GSH, glutathione; AsA-GSH cycles, the
ascorbate-glutathione cycles; APX, ascorbate peroxidase; MDHAR, monodehydroascorbate reductase; DHAR, dehydroascorbate reductase; GR, glutathione
reductase; MDHA, monodehydroascorbate; DHA, dehydroascorbate; GSSG, oxidized glutathione; PRX, peroxiredoxins; PSI/II, photosystem I/II; TRX, thioredoxin;
MT2b, type 2 metallothioneins; CAT, catalase; GOX, glycolate oxidase; PAO, polyamine oxidase; POD III, secreted class III heme-containing peroxidases.

(Finch-Savage and Leubner-Metzger, 2006). The accumulation of
H2O2, OHs, and superoxide radicals has been widely observed
during seed germination (Schopfer, 2001; Morohashi, 2002;
Kranner et al., 2010; Li et al., 2017). Rice PAO OsPAO5 oxidizes
PAs and releases H2O2, which is involved in coleorhiza-limited
seed germination (Chen et al., 2016). The ROS produced by
NOXs are involved in radical and root elongation during rice
seed germination (Li et al., 2017). It has been reported that
ROS-regulated dormancy release might be involved in mRNA
oxidation (Bazin et al., 2011), protein carbonylation (Oracz
et al., 2009), and oxidation (Bailly et al., 2008) in plants
(Figure 2). For example, the oxidation of a specific subset
of seed-stored mRNAs has been observed during dormancy
alleviation by dry after-ripening. A total of 24 stored mRNAs,
such as protein phosphatase 2C PPH1, mitogen-activated protein
kinase phosphatase 1, and phenyl ammonia lyase 1, became
highly oxidized during after-ripening in sunflower (Bazin et al.,
2011). When seed germination, ROS can directly interact
with polysaccharides of the cell wall that might promote cell
elongation of the radical (Figure 2; Fry, 1998). A suitable ROS
level will alleviate seed dormancy and trigger seed germination;
however, the threshold of ROS level induced seed dormancy

to germination, and its molecular mechanisms are understood
poorly in most crops.

Crosstalk Between Reactive Oxygen
Species, Abscisic Acid, and Gibberellins
in Regulation of Seed Dormancy and
Germination
Abscisic acid (ABA) and gibberellins (GAs) are the main plant
hormones that antagonistically mediate seed dormancy and
germination (Finch-Savage and Leubner-Metzger, 2006). ABA
induces seed dormancy and inhibits seed germination (Vaistij
et al., 2013), while GA promotes dormancy release and facilitates
seed germination (Gubler et al., 2008; Graeber et al., 2012). The
involvement of ROS in seed dormancy and germination might
be through the regulation of ABA and GA metabolisms in seeds
(Figure 2). For instance, the biosynthesis of GA is stimulated
by ROS through mitogen-activated protein kinase (MAPK)
cascades (Kumar et al., 2015). The accumulation of H2O2 causes
ABA degradation through influencing ABA catalytic enzyme
(Ishibashi et al., 2015, 2017; Amooaghaie and Ahmadi, 2017;
Li et al., 2018; Anand et al., 2019). The ascorbic acid and
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FIGURE 2 | The crosstalk between ROS and hormones in regulation of seed dormancy and germination in crops. ABA, abscisic acid; GA, gibberellins; ETH,
Ethylene; AUX, auxins; JA, jasmonates; SA, salicylic acid; BR, brassinosteroids. Arrows and lines with slanted dashes indicate positive and negative effects,
respectively, and the dot lines indicate the putative effects.

ROS involved in the inhibition of rice seed germination have
been reported through influencing ABA levels (Ye et al., 2012).
A recent study has shown that H2O2 enhances the germination
capacity of primed tomato seeds due to the decrease in ABA/GA3
ratio by enhancing the expression of GA biosynthesis gene
GA3ox1 and ABA catabolism gene ABA 8-hydroxylase (ABA-
H) (Anand et al., 2019). These reports illustrate that ROS plays
a positive role in GA synthesis and ABA degradation, which, in
turn, facilitates dormancy release and seed germination.

Interestingly, the accumulation of ROS affected by GA and
ABA has been observed in seeds (Figure 2). Exogenous GA
treatments have been elucidated to induce ROS production. For
example, the content of H2O2 and O2

·− will be increased
in caryopsis, embryo, and aleurone layer under GA3
treatment during the early imbibition stage in Avena fatua
(Cembrowska-Lech et al., 2015). Similarly, exogenous GA3 and
GA4+7 treatments could effectively promote the production
of endogenous ROS during seed germination in Brassica
parachinensis (Chen et al., 2021). However, the production of
H2O2 and O2

·− is suppressed by ABA treatment in both dormant
and non-dormant seeds in sunflower (El-Maarouf-Bouteau et al.,
2015). Therefore, the balance of ROS and ABA/GA levels plays

an important role in seed dormancy and germination. For
example, the changing of balance between ABA and ROS is active
in barley seed embryos after imbibition and then regulates seed
dormancy and germination (Ishibashi et al., 2017). One major
QTL qSE3, which encodes a K+ transporter gene OsHAK21,
positively regulates seed germination and seedling establishment
by increasing ABA biosynthesis and activating ABA signaling
responses, and then decreasing H2O2 level in germinating seeds
under salinity stress in rice (He et al., 2019). Furthermore,
the antagonism between ABA and GA partially mediated by
ROS during seed germination has also been observed in rice
(Ye and Zhang, 2012).

The molecular mechanism of the relationship between ROS
homeostasis and the ABA signaling pathway has been conducted
in Arabidopsis. It showed that Arabidopsis Abscisic Acid-
Insensitive 5 (ABI5), a key component in ABA signaling, directly
binds to the CAT1 promoter and activates CAT1 expression,
and then ROS homeostasis is altered by ABI5 though affecting
CATALASE expression and catalase activity (Finkelstein, 1994a,b;
Bi et al., 2017). ABI4 directly combines with NADPH oxidase
gene RbohD and Vitamin C Defective 2 (VTC2), the key genes
involved in the ROS production and scavenging, to modulate
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ROS metabolism during seed germination under salinity stress
(Luo et al., 2021). However, the molecular mechanisms of the
crosstalk between ROS, ABA, and GA in the regulation of seed
dormancy and germination are still poorly understood in crops.

Crosstalk Between Reactive Oxygen
Species and Other Hormones in
Regulation of Seed Dormancy and
Germination
Other hormones such as ethylene (ETH), auxins, and jasmonates
(JA), salicylic acid (SA), and brassinosteroids (BR) are also
involved in the regulation of seed dormancy and germination
(Figure 2). Several reports indicate that ROS might be also
involved in the regulation of ETH and auxins on seed dormancy
or germination in crops. For instance, the treatment of ROS-
generated compound methylviologen increases the expression
of ETH receptors ETR2 and ETH-responsive factors ERF1 in
dormant sunflower embryos (Oracz et al., 2009). Exogenous ETH
promotes dormancy release due to the ROS accumulation in
dormant embryonic axes through activating NADPH oxidase
by ETH in sunflower (El-Maarouf-Bouteau et al., 2015). The
interaction of ROS, ABA, and ETH has been reported to regulate
dormancy release in sunflowers (El-Maarouf-Bouteau et al.,
2015). However, whether the crosstalk between ROS and ETH is
involved in the regulation of seed germination remains unclear
in crops. Biochemical analysis has revealed that the increase in
H2O2 and the activation of peroxidases promote the oxidative
degradation of IAA (Gazarian et al., 1998). In Arabidopsis,
auxin promotes the production of superoxides such as NADPH
oxidase and superoxide oxidase, while reducing the expression
of antioxidant enzymes such as catalase and ascorbate oxidase
(Iglesias et al., 2010; KrishnaMurthy and Rathinasabapathi,
2013). Similarly, the exogenous auxin regulates H2O2 metabolism
by affecting the expression and activity of CuZn-superoxide
dismutase, catalase, and peroxidase in tomatoes (Ja et al., 2009).
The inhibition of auxin-stimulated NADH oxidase activity has
been reported in the elongation growth of soybean hypocotyls
(Morre et al., 1995). The crosstalk between ROS and auxin in the
regulation of seed dormancy or germination might be through
the influencing ROS homeostasis and auxin level.

It has been well reported that JA control seed dormancy
and germination mainly through modulating ABA metabolism
or signaling pathway. For example, JA promotes dormancy
release through the suppression of ABA biosynthesis Ta9-
cis-EPOXYCAROTENOID DIOXY-GENASE TaNCED1 and
TaNCED2 in wheat (Xu et al., 2016), while ABA promotes JA
biosynthesis to synergistically inhibit seed germination in rice
(Wang et al., 2020). However, whether the crosstalk between
ROS and JA is involved in the regulation of seed dormancy
and seed germination needs further investigation in crops
(Figure 2). Meanwhile, it has been reported that SA promotes
seed germination under high salinity by modulating antioxidant
activity in Arabidopsis (Lee et al., 2010). Spatiotemporal
variations in SA and H2O2 have been observed in sunflower seeds
during the transition from dormancy to germination (Vigliocco
et al., 2020). Exogenous BRs increase seed germination under

stress conditions in Brassica juncea (Soares et al., 2020). However,
whether the crosstalk between ROS, SA, and BR is involved in
the regulation of seed dormancy and germination needs further
investigation in crops (Figure 2). It is an intriguing task to
tackle the complicated network between ROS and hormones in
regulating seed dormancy and germination in crops.

REACTIVE OXYGEN SPECIES INVOLVED
IN REGULATION OF SEED
DETERIORATION

Seed Deterioration and Reactive Oxygen
Species Accumulation
Seed viability will be undermined due to deterioration under
natural and artificial aging conditions in crops. For example,
seed germination will be remarkably reduced after 18- and 24-
months seed storage in sunflower in the dry airtight container
under ambient temperature (Huang et al., 2021). In sweet corn,
seed germination will be significantly decreased after 30 days
of natural aging (17–28◦C, 30–60% of RH) or after 0.5 h of
artificial aging treatment (45◦C, 100% of RH) (Zhang et al.,
2022). Similarly, accelerated seed deterioration has been observed
in rice and common bean under elevated temperature (45◦C)
and moisture (100% of RH) conditions (Dantas et al., 2019).
When the seed experiences deterioration, the deleterious ROS
will be largely accumulated in the seeds. In orthodox seeds, seed
deterioration is caused by the reduction of antioxidant enzymes
and the high accumulation of ROS (Ebone et al., 2019). Similarly,
the higher accumulation of H2O2 could aggravate desiccation
damage of recalcitrant seeds such as tea (Camellia sinensis) under
chilling or drying stress (Chen et al., 2011). Thus, the instability
of the intracellular ROS status causes the consequent oxidative
damages to reduce seed viability in plants (Sano et al., 2016;
Ebone et al., 2019).

FIGURE 3 | Seed deterioration caused by ROS under natural and artificial
aging conditions in crops.
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Mechanisms of Reactive Oxygen Species
in Regulation of Seed Deterioration
Seed deterioration caused by ROS is mainly involved in lipid
peroxidation, protein oxidation, DNA and RNA damages, and
repair system damage (Figure 3). Lipid peroxidation is the
primary factor influencing seed deterioration (Zhao et al., 2021).
The excessive ROS attack the membrane polysaturated fatty acids
and divide the long-chain fatty acids into small compounds,
which affects membrane permeability and ionic homeostasis
(Oenel et al., 2017; Ebone et al., 2019). Lipid peroxidation
disrupts many organelles, especially the mitochondrial damage
influencing energy production for seed germination. Moreover,
the end products formed from lipid peroxidation are also
involved in seed deterioration. For example, the malondialdehyde
(MDA) level is widely regarded as an indicator of lipid
peroxidation and oxidative stress in seeds (Marnett, 1999). The 4-
hydroxy-2,3-non-enal (HNE) influences the expression of genes
by reacting with nucleic acids, proteins, and phospholipids
during seed deterioration (Oenel et al., 2017).

Excessive ROS induces protein oxidation that is associated
with seed deterioration in many crops (Figure 3). For instance,
increased protein carbonylation has been observed in aged
lettuce seeds (Adetunji et al., 2021) and Vigna unguiculata
seeds (Boucelha et al., 2021). Several amino acids such as
arginine, lysine, proline, and threonine residues with nucleophilic
centers react with the reactive carbonyl species (RCS) derived
from HNE and MDA (Smakowska et al., 2014; Satour et al.,
2018; Biswas et al., 2020). However, Arabidopsis NADP-ME1
catalyzes the oxidative decarboxylation of malate to pyruvate
that protects protein oxidation, especially carbonylation during
seed deterioration (Yazdanpanah et al., 2019). The accumulation
of carbonylated proteins results in the disruption of the
tricarboxylic acid (TCA) cycle, electron transport chain (ETC)
enzymes, and glycolysis in seeds (Yin et al., 2017; Chen et al.,
2019; Zhang et al., 2021).

The disruption of DNA and RNA induced by ROS is also
involved in seed deterioration (Figure 3; Sano et al., 2016).
The nucleotide damage usually occurs in the hydroxylation at
the C-8 position in guanine (G) to form 8-oxoguanine (8-
oxoG) during seed deterioration, which results in transversion
mutations (GC → TA) due to a mispair of 8-oxoG with
adenine (A) or cytosine (C) during DNA replication (Johnston
et al., 2010; Boesch et al., 2011; Sano et al., 2016; Ebone
et al., 2019). The degradation of RNA is also observed in seed
deterioration during storage in soybean (Fleming et al., 2017,
2018). A significant reduction in mean RNA integrity number
(RIN) has been observed in soybean seeds after being stored
dry at 5◦C for 1–27 years, which is positively associated with
seed germination (Fleming et al., 2017). The fragmented mRNA
in dry-stored soybean seeds leads to inefficient translation and

faulty proteins and then results in the loss of germination capacity
(Fleming et al., 2018). To avoid seed deterioration, the repair
system is induced during seed germination (Long et al., 2015).
For example, the DNA and protein damages can be repaired by
base excision repair (BER) (Sano et al., 2016) and L-isoaspartyl
methyltransferase (PIMT), respectively (Mudgett et al., 1997;
Bewley et al., 2012; Sano et al., 2016). Nevertheless, if the extent
of seed deterioration is beyond the ability of the repair system,
the loss of seed vigor will not be restored. Overall, the molecular
mechanisms of seed deterioration are still poorly understood
in crops.

CONCLUSION

In conclusion, ROS is mainly produced by lipid oxidation in
dry seeds and enzymatic catalysis in hydrated seeds, respectively.
The processes of ROS production occur in the mitochondrion,
peroxisomes, chloroplasts, cytoplasm, and apoplastic systems
in seeds. The antioxidant systems include the enzymatic and
non-enzymatic systems involved in the scavenging ROS in
seeds. Maintaining ROS homeostasis plays a central role in
seed dormancy, germination, and deterioration in crops. The
crosstalk between ROS, ABA, and GA in the regulation of seed
dormancy and germination has been well investigated. However,
the crosstalk between ROS and other hormones such as ETH, JA,
SA, and BR involved in the regulation of seed dormancy and seed
germination remains unclear in crops. The seed deterioration
caused by excessive ROS accumulation is widely considered
due to influencing lipid peroxidation, protein oxidation, DNA
and RNA damages, and repair system damage in seeds under
natural and artificial aging conditions in crops. Overall, the
mechanisms of ROS regulation on seed dormancy, germination,
and deterioration remain poorly understood in crops.
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