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Epigenetic Regulation of Heat Stress 
in Plant Male Reproduction
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In flowering plants, male reproductive development is highly susceptible to heat stress. 
In this mini-review, we summarized different anomalies in tapetum, microspores, and 
pollen grains during anther development under heat stress. We then discussed how 
epigenetic control, particularly DNA methylation, is employed to cope with heat stress in 
male reproduction. Further understanding of epigenetic mechanisms by which plants 
manage heat stress during male reproduction will provide new genetic engineering and 
molecular breeding tools for generating heat-resistant crops.

Keywords: heat stress, male reproduction, anther, tapetum, and pollen development, epigenetic regulation, 
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INTRODUCTION

Short- and long-term heat stress have detrimental effects on overall growth and development 
in plants (Kotak et  al., 2007); however, reproductive organs, particularly the male reproductive 
organ, are more susceptible to elevated temperatures comparing with vegetative organs (Abiko 
et  al., 2005; Sakata et  al., 2010; Sato et  al., 2014, 2019; Fragkostefanakis et  al., 2016; Begcy 
et  al., 2019; He et  al., 2019). Heat stress leads to partial or complete male sterility, which in 
turn causes yield loss in crops (Smith and Zhao, 2016). Being sessile, plants employ various 
mechanisms to cope with heat stress. Besides the genetic control, transcriptome and genome-
wide DNA methylation analyses have revealed that the epigenetic regulation plays a pivotal 
role in reprogramming expression of genes required for plants to manage heat stress during 
reproductive development. In this mini-review, we  focus on discussing research in epigenetic 
mechanisms underlying heat stress response in male reproduction.

PLANT MALE REPRODUCTION IS HIGHLY SENSITIVE TO 
HEAT STRESS

Heat stress impairs anther wall cell differentiation, microsporogenesis, and pollen formation, 
resulting in partial or complete male sterility in various plants. Stamen is the male reproductive 
organ of flowering plants, comprising of an anther where pollen (the male gametophyte) 
develops and a filament that anchors the anther to the flower. A typical anther has four lobes 
(microsporangia; Goldberg et  al., 1993; Zhao, 2009; Feng et  al., 2013; Walbot and Egger, 2016); 
within each lobe, the central pollen mother cells (PMC or microsporocytes) are surrounded 
by four concentrically organized layers of somatic cells: the epidermis, endothecium, middle 
layer, and tapetum (outside to inside). PMCs give rise to pollen via a series of events. PMCs 
undergo meiosis to produce tetrads that release microspores. After two rounds of mitosis, 
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microspores eventually become pollen grains which contain a 
vegetative cell and two sperm cells (Sanders et  al., 1999; 
Figure  1). The somatic anther wall cells, particularly tapetal 
cells (tapetum), are essential for the normal development and 
release of pollen. Tapetum, consisting of a monolayer or 
multilayers of endopolyploid cells, which is associated with 
successive stages of PMC, tetrads, microspores, and developing 
pollen as anther development progresses (Goldberg et al., 1993; 
Scott et  al., 2004; Walbot and Egger, 2016; Figure  1). Early 
on, tapetal cells secrete enzymes required for releasing haploid 
microspores from tetrads (Pacini et  al., 1985; Clément and 
Pacini, 2001; Hsieh and Huang, 2007; Ishiguro et  al., 2010; 
Parish and Li, 2010). Later, tapetal cells provide energy and 
materials for pollen development and pollen coat formation 
(Wu et al., 1997; Wang et al., 2003; Parish and Li, 2010; Huang 
et  al., 2017). Lack of a tapetum or an abnormal tapetum 
impairs microspore and pollen development, causing male 
sterility (Mariani et  al., 1990; Zhao et  al., 2002; Zhang et  al., 
2014). Furthermore, endothecium is necessary for anther 
dehiscence (Cecchetti et  al., 2013; Murphy et  al., 2015).

Heat stress causes male sterility and seed yield loss are 
mainly ascribed to aberrant tapetum and pollen development 
(Parish et  al., 2012; De Storme and Geelen, 2014). Decreased 
pollen viability due to heat stress has been reported in many 
crops, such as common bean (Gross and Kigel, 1994; Prasad 
et  al., 2002), rice (Endo et  al., 2009), cotton (Min et  al., 2014; 
Song et al., 2015), tomato (Pressman et al., 2002; Giorno et al., 
2013), pepper (Erickson and Markhart, 2002), wheat (Saini 
and Aspinall, 1982; Saini et  al., 1984), barley (Sakata et  al., 
2010), cowpea (Ahmed et al., 1992), peanut (Vara Prasad et al., 
1999; Zoong Lwe et  al., 2020), and flax (Cross et  al., 2003; 

Table  1). In crops, such as wheat, episodes of male sterility 
were observed upon 3 days of treatment at 30/30°C (day/night, 
the same thereafter) during meiosis, and irregular tapetum 
degeneration is a plausible cause for pollen abortion (Saini 
et al., 1984). In heat-sensitive wheat varieties, elevated temperature 
(35/24°C) caused tapetum degradation and pollen abortion 
(Browne et al., 2021). Premature pollen development in common 
bean at 33/29°C is also a result of early tapetum degeneration 
(Suzuki et  al., 2001). Furthermore, abnormally wavy, looped 
endoplasmic reticulum (ER) structures were detected in heat-
stressed tapetal cells (Suzuki et  al., 2001), suggesting that ER 
malfunction in tapetal cells might cause male sterility under 
heat stress (De Storme and Geelen, 2014). Heat stress results 
in DNA fragmentation, cytoplasmic shrinkage, and vacuolation 
in early tapetal cells of thermosensitive genic male-sterile 
(TGMS) rice, suggesting that the precocious programmed cell 
death (PCD) of tapetal cells during heat stress causes male 
sterility (Ku et  al., 2003). Impaired tapetal cells by heat stress 
also affects callose degradation in PMCs and pollen wall 
formation, such as exine patterning (Suzuki et  al., 2001; Parish 
et  al., 2012; Djanaguiraman et  al., 2014). Moderately high 
temperature (30/25°C) causes aberrant mitochondria, ER, and 
nuclear membranes in PMCs (Oshino et  al., 2007). Moreover, 
abnormal meiosis occurred in PMCs in heat-stressed wheat 
(Omidi et al., 2014). Recently, abnormal cross-over was observed 
in Arabidopsis male meiocytes under high temperature (De 
Storme and Geelen, 2020). Heat stress (36–38°C) also impaired 
chromosome segregation and cytokinesis during male meiosis 
in Arabidopsis (Lei et  al., 2020). Moreover, acute heat stress 
on Arabidopsis causes defects in male germline and sporophytic 
anther tissues (Hedhly et  al., 2020). A recent report showed 

FIGURE 1 | Schematic representation of stages susceptible to heat stress (indicated by sun symbols) during male reproduction and their methylation patterns. 
CHH methylation is decreased under heat stress at tetrad and tapetum degradation stages in anthers of heat-sensitive plants. CHH methylation is increased under 
heat stress at tetrad and tapetum degradation stages in anthers of heat-tolerant plants, as well as at the anther dehiscence/pollen stage in anthers of both heat-
sensitive and -tolerant plants (H in CHH representing A, T, or G).
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that pollen abortion was subjected to heat stress (35/25°C) at 
the pre-meiotic stage in maize with downregulated MAGO 
(MALE-ASSOCIATED ARGONAUTE-1 and -2) genes (Lee et al., 
2021). Further studies revealed that heat stress induced MAGO 
hypophosphorylation which affects accumulation of 21-nt 
phasiRNAs and then the activity of retrotransposons in anther 
wall cells. Thus, the surveillance mechanism mediated by 
Argonaute is important for protecting male sterility under 
heat stress.

Anther wall cells and pollen in tomato plants upon heat 
stress (32/26°C) witness decreased starch and soluble sugar 
contents (Pressman et  al., 2002). In sorghum, heat-stressed 
(36/26°C) microspores also showed reduced starch content and 
sucrose deficiency, thus reducing pollen germination (Jain et al., 
2007). Moreover, an imbalance in ROS (reactive oxygen species) 
homeostasis in tapetal cells due to heat stress possibly causes 
early PCD of tapetal cells (De Storme and Geelen, 2014). In 
rice anthers, ROS and superoxide dismutase (SOD) are 
significantly increased at the male meiosis stage (Zhao et  al., 
2018). In barley, male sterility is possibly attributed to the 
hyper-phosphorylation of the serine-5 residue at the C-terminal 
domain of RNA Polymerase (RNA Pol) II, which alters expression 
of many genes during early anther development under high-
temperature conditions (Abiko et al., 2005). Furthermore, auxin 
synthesis in Arabidopsis and barley anthers are reduced during 
high temperatures, whereas exogenous application of auxin to 
anthers improved pollen thermotolerance in barley (Sakata 
et  al., 2010; Higashitani, 2013). Auxin biosynthesis genes, such 

as YUCCA-YUC2 and YUC6, were suppressed in anthers exposed 
to high temperatures (33°C; Sakata et  al., 2010). Heat stress 
generally alters expression of various genes which affect cell 
proliferation, photosynthesis, hormones, starch metabolism, heat 
shock response, and ROS production (Yang et al., 2006; Yamakawa 
et  al., 2007; Endo et  al., 2009; Frank et  al., 2009; Bita et  al., 
2011; Mangelsen et  al., 2011; Guan et  al., 2013; Min et  al., 
2014; Song et al., 2014; Fragkostefanakis et al., 2015; González-
Schain et  al., 2016; Zhang et  al., 2017; Zhao et  al., 2018; 
Begcy et  al., 2019; Qian et  al., 2019b). Here we  mainly discuss 
the epigenetic mechanisms by which plants respond to heat 
stress during male reproduction.

EPIGENETIC MODIFICATIONS DURING 
HEAT STRESS RESPONSE

In contrast with the molecular mechanisms underlying heat 
stress at the transcriptional level, epigenetic regulation during 
high-temperature stress is not well understood in plants (Ohama 
et  al., 2017). Different plant organs/cells have been studied to 
understand the role of epigenetic modifications during heat 
stress. For instance, exposure of soybean root hairs and roots 
stripped root hairs to heat stress (40°C) caused hypomethylation 
of CHH (H = A, T or C; Hossain et  al., 2017). Heat stress 
also induced hypomethylation of CG and CHG in cultured 
microspores of Brassica napus (Li et  al., 2016). In maize 
seedlings, 325 differentially methylated genes (DMG) were 

TABLE 1 | Effects of heat stress on plant male reproduction.

Plant Temperature Effect Reference

Arabidopsis (Arabidopsis thaliana) 30–32°C 6 to 48 h; 36–38°C; 24 h Abnormal anther wall, male meiosis, male 
germline, and meiotic cytokinesis

De Storme and Geelen, 2020; Lei et al., 
2020

Cotton (Gossypium hirsutum) 35–39°C 7 days and 40/34°C Abnormal microspores, tapetum, and pollen 
grains

Min et al., 2014; Song et al., 2015; Ma 
et al., 2018

Barley (Hordeum vulgare) 30/25°C (day/night) 5 days Abnormal pollen mother cell and tapetum Abiko et al., 2005; Oshino et al., 2007; 
Sakata et al., 2010

Rice (Oryza sativa) 39/30°C (day/night) and 32°C Decreased pollen viability, premature 
tapetum degradation in TGMS rice

Ku et al., 2003; Endo et al., 2009; Zhao 
et al., 2018

Maize (Zea mays) 35/25°C (day/night) 3 days Decreased pollen viability Lee et al., 2021
Tomato (Lycopersicon esculentum) 36/26°C (day/night) 3 days and 

32/26°C
Aberrant male gametogenesis, decreased 
pollen grain viability

Pressman et al., 2002; Giorno et al., 
2013

Wheat (Triticum aestivum) >30 and 30°C for 3 days Abnormal anthers, tapetum degradation, 
sporogenesis, and pollen grain viability

Saini and Aspinall, 1982; Saini et al., 
1984; Omidi et al., 2014; Browne et al., 
2021

Bean (Phaseolus vulgaris) 32.7 and 32/27°C (1 or 5 days) Abnormal pollen grains and tapetum Gross and Kigel, 1994; Suzuki et al., 
2001

Cowpea (Vigna unguiculata) 33/20°C or 33/30°C (day/night) Tapetum, tetrads disorganized, Abnormal 
pollen grains

Ahmed et al., 1992

Bell pepper (Capsicum annuum) 36°C Deformed pollen grains Erickson and Markhart, 2002
Brachypodium distachyon 36°C Aborted uninucleate, vacuolated 

microspore, ruptured tapetal cells, 
Abnormal pollen grains

Harsant et al., 2013

Flax (Linum usistatissimum) Increase of 3°C per hour to 40°C for 
7 h, held for 2 h at 40°C

Compressed and folded pollen grains Cross et al., 2003

Grain sorghum (Sorghum bicolor) 36/26°C and 38/28°C for 10 days Reduced pollen germination Jain et al., 2007; Djanaguiraman et al., 
2014

Peanut (Arachis hypogaea) 28, 34, 42, and 48°C Pollen viability Vara Prasad et al., 1999; Zoong Lwe 
et al., 2020
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identified responding to heat stress (42°C). Interestingly, 9 
DMG associated with spliceosome showed the decreased 
methylation level during heat stress (Qian et al., 2019a). Moreover, 
the Brassica napus heat-sensitive genotype possesses a higher 
level of DNA methylation than the heat-tolerant genotype 
during heat stress (37–45°C; Gao et  al., 2014). Collectively, 
these findings reveal that DNA methylation is responsive to 
heat stress. The effect of heat stress on methylation in various 
plants is summarized in Table  2.

Genes involved in DNA methylation, histone modification, 
chromatin modeling, and small RNA biogenesis were studied 
for their roles in response to heat stress. Loss-of-function 
mutant of the NUCLEAR RNA POLYMERASE D2A (NRPD2) 
gene which encodes the second largest subunit of RNA POL 
IV and POL V is sensitive to heat stress (Popova et  al., 2013). 
A RPD3-type of histone deacetylase mutant hda6 is sensitive 
to heat stress. In contrast, DNA methyltransferase mutants, 
such as domains rearranged methylase1 (drm1), domains 
rearranged methylase2 (drm2), and chromomethylase3(cmt3), 
presented less pronounced response to heat stress (Popova 
et  al., 2013). Interestingly in wild-type Arabidopsis plants, heat 
stress induced expression of the key DNA methyltransferase 
gene DRM2 as well as NUCLEAR RNA POLYMERASE D1A 
(NRPD1) and NUCLEAR RNA POLYMERASE D1B (NRPE1) 
which encode the largest subunit of RNA Pol IV and RNA 
Pol V, respectively (Naydenov et  al., 2015). Conversely, the 
prolonged heat exposure decreased expression of DNA 
methyltransferase genes METHYLASE1 (MET1) and 
CHROMOMETHYLASE3(CMT3; Naydenov et  al., 2015). The 
DRM2 expression during heat stress might be  regulated by 
RNA Pol IV and/or RNA Pol V (Naydenov et  al., 2015).

DNA methylation associated with NRPD2 and histone 
modification mediated by HDA6 might play different roles in 

transcriptional reprogramming for coping with heat stress. 
Transcriptomic analysis of directly heat-stressed hda6 mutants 
revealed a larger set of mis-regulated genes comparing with 
the heat-stressed nrpd2 mutant, while after recovery from heat 
stress a much broader transcriptional response was detected 
in nrpd2 mutants than hda6 mutants and wild-type plants 
(Popova et  al., 2013). In hda6 mutants, mis-regulated genes 
are involved in diverse functions, such as protein processing, 
hormone signaling, vegetative and reproductive development, 
transport, and metabolism; however, GO enrichment analysis 
found that mis-regulated genes in nrpd2 mutants were associated 
with starch catabolism, fatty acid oxidation, abiotic stress 
response, and auxin and cytokinin signaling pathways. A little 
overlap of mis-regulated gene sets between hda6 and nrpd2 
mutants suggests that HDA6 and NRPD2 function differently 
at different stages of heat response (Popova et  al., 2013). 
Similarly, in the heat-stressed (42°C) maize seedling, some of 
the key KEGG pathway enrichment involve spliceosome, RNA 
transport, ubiquitin-mediated proteolysis, and carbon metabolism 
(Qian et al., 2019a), suggesting that heat stress affects a diverse 
range of biological pathways which might be  regulated via 
the epigenetic control.

Heat stress activates the ONSEN (“hot spring” in Japanese) 
retrotransposon and synthesis of extrachromosomal DNA copies 
in Arabidopsis seedlings (Ito et  al., 2011). Heat stress triggers 
accumulation of ONSEN in mutants lacking RNA Pol IV and 
RDR2, which are main components in the RdDM pathway. 
Interestingly, the memory of heat stress (i.e., transgenerational 
inheritance of ONSEN insertion) can only occur in the progeny 
of mutant plants defective in siRNA biogenesis. Heat stress 
induced epigenetic memory associated with hypermethylation 
of H3K4me2 and H3K4me3 can be  maintained for several 
days in Arabidopsis somatic cells (Lamke et al., 2016). Moreover, 
transgenerational epigenetic memory induced by heat stress is 
transmitted via HEAT SHOCK TRANSCRIPTION FACTOR 
A2 (HSFA2) activated H3K27me3 demethylase in Arabidopsis 
(Liu et  al., 2019; Yamaguchi et  al., 2021). Thus, histone 
modification is essential for thermotolerance memory.

EPIGENETIC REGULATION OF HEAT 
STRESS DURING MALE 
REPRODUCTION

Besides genetic regulation, the epigenetic control, particularly 
DNA methylation, is an important mechanism for plants to 
manage heat stress during male reproduction. RNA-directed 
DNA methylation (RdDM) in plants involves various components, 
such as small interfering RNAs (siRNA) and DNA 
methyltransferase DRM2 (Law and Jacobsen, 2010). Methylation 
of DNA occurs at specific sites: symmetric patterns of CpG/
CpNpG and asymmetric CpNpN. In plants, methylation of 
asymmetric cytosine (CpNpG) is regulated by 
CHROMOMETHYLASE (CMT; Bartee et  al., 2001).

Pollen comprises one vegetative nucleus and two sperm 
nuclei which maintain more stable methylation patterns than 

TABLE 2 | Methylation patterns in plants during heat stress.

Plant Temperature Tissue
Methylation 
pattern

Reference

Soybean 
(Glycine max)

40°C Roots Hypomethylation 
CHH context

Hossain 
et al., 2017

Rapeseed 
(Brassica 
napus)

37°C for 2 h 
and 45°C for 
3 h

Seedling Hypermethylation 
in heat-sensitive 
variety

Gao et al., 
2014

Maize 
(Zea mays)

42°C for 8 h Seedlings Reduced 
methylation of 9 
differentially 
methylated genes

Qian et al., 
2019a

Rapeseed 
(Brassica 
napus cv. 
Topas)

32°C for 6 h Cultured 
Microspores

Hypomethylation 
CG and CHG 
context

Li et al., 
2016

Arabidopsis 
(Arabidopsis 
thaliana)

42°C Leaves Decreased DNA 
methylation

Korotko 
et al., 2021

Cotton 
(Gossypium 
hirsutum)

35°C to 
39/29°C to 
31°C day/
night for 
7 days

Anthers Hypomethylation 
in heat-sensitive 
variety

Min et al., 
2014; Ma 
et al., 2018
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leaves and roots (Hsieh et  al., 2016). The vegetative nucleus 
lacks DECREASE IN DNA METHYLATION 1 (DDM1), leading 
to reactivation of transposable elements. Reduction of DNA 
methylation in pollen causes transcriptional reprogramming 
(Slotkin et  al., 2009). Cell-specific DNA methylation studies 
revealed that CG and CHG methylation were retained in 
microspores and sperm cells, whereas the CHH methylation 
was lost (Calarco et  al., 2012). Interestingly, DNA methylation 
is reestablished in the vegetative cell via siRNA-mediated RdDM 
(Calarco et al., 2012). Repetitive elements were found to be active 
during pollen development (Slotkin et  al., 2009), while heat 
stress can activate repetitive elements in Arabidopsis seedlings 
by epigenetic regulation (Pecinka et  al., 2010). Most key genes 
required for DNA methylation, such as DRM2, NRPD1, and 
NRPE1, are upregulated during heat stress in Arabidopsis 
(Naydenov et  al., 2015), supporting the involvement of DNA 
methylation in heat stress. New findings suggest that sperm 
cells have asymmetric mCHG, whereas vegetative nuclei and 
microspores possess symmetric mCHG (Borges et  al., 2021). 
DNA methylation changes during male reproductive development 
were recently summarized (Papareddy and Nodine, 2021).

Transcriptome studies on heat-treated cotton anthers identified 
various genes involved in histone modification and DNA 
methylation. Under heat stress, the heat-tolerant cotton line 
produces normal anthers and pollen, while the heat-sensitive 
line is defective in anther dehiscence and fails to form viable 
pollen. Heat stress decreased expression of DNA CYTOSINE-
5-METHYLTRANSFERASE (DRM1) and S-ADENOSYL-l-
METHIONINE-DEPENDENT METHYLTRANSFERASE (DRM3) 
at tetrad and tapetum degradation stages in heat-sensitive cotton 
anthers, while their expression remains similar in heat-tolerant 
cotton anthers with an exception of increased expression of 
DRM3 at the tetrad stage (Min et al., 2014). Similarly, expression 
of NEEDED FOR RDR2-INDEPENDENT DNA METHYLATION 
(NERD), NUCLEAR RNA POLYMERASE D1B (NRPD1B), and 
S-ADENOSYL-L-HOMOCYSTEINE HYDROLASE1 (SAHH1), 
which are required for normal DNA methylation, is suppressed 
by heat stress in heat-sensitive cotton anthers (Min et al., 2014). 
During heat stress, heat-sensitive cotton anthers undergo DNA 
hypomethylation, while heat-tolerant cotton anthers have a high 
level of DNA methylation. Furthermore, pollen sterility and 
defects in anther dehiscence are possibly caused by 
hypomethylation in the heat-sensitive cotton (Ma et  al., 2018). 
Studies on expression changes of genes associated with DNA 
methylation in cotton anthers under heat stress provide strong 
evidence that the epigenetic regulation is required for plants 
to cope with heat stress.

CHH methylation mediated by RdDM showed more 
prominent changes comparing to CG and CHG methylation, 
suggesting that heat stress mainly induces the RdDM activity 
in anthers. Most of heat-induced CHH methylations were found 
in promoters and downstream regions of protein-coding genes 
(Ma et  al., 2018). Interestingly, the DNA methylation status 
varies with anther stages upon heat stress. At tetrad, tapetum 
degradation, and anther dehiscence/pollen stages, the CHH 
methylation level in heat-tolerant cotton anthers is increased 
upon heat stress; however, heat-sensitive cotton anthers depicted 

hypo-CHH methylation patterns at tetrad and tapetum 
degradation stages, while an increased CHH methylation level 
at the anther dehiscence/pollen stage during heat stress 
(Figure  1). Hence, heat stress may affect RdDM function in 
an anther stage-specific manner (Ma et  al., 2018). Heat stress 
alters the DNA methylation level, which affects expression of 
genes involved in sugar metabolism and ROS generation. The 
abnormal concentration of sugar and ROS therefore impairs 
anther and pollen development. These discoveries shed light 
on a novel molecular mechanism by which plants ensure the 
success of male reproduction under high temperature, thus 
providing new tools for improving crops to adapt to the 
challenge of global warming.

Long non-coding RNA (lncRNA) is important for male 
fertility. In rice, an lncRNA named the long-day-specific male-
fertility-associated RNA (LDMAR) is essential for pollen 
development under the long-day condition (Ding et  al., 2012). 
A single nucleotide mutation in LDMAR increased CG 
methylation in the LDMAR promoter region, which decreased 
the LDMAR expression and thus induced PCD in anther cells. 
The lncRNA expression responds to stresses spatially and 
temporally in plants (Yu et  al., 2019). Among 54 putative heat 
stress-induced lncRNAs, TahlnRNA27 and TalnRNA5 were highly 
upregulated by heat stress in wheat (Xin et al., 2011). Differentially 
expressed lncRNAs were also observed during heat stress in 
Brassica rapa (Wang et al., 2019), Brassica juncea (Bhatia et al., 
2020), and maize (Lv et al., 2019). A recent study in Arabidopsis 
showed that 131 pollen-specific intergenic expressed loci (XLOC), 
which mostly encode lncRNAs, are heat stress responsive (Rutley 
et  al., 2021). These results suggest that lncRNAs might play 
an important role in heat stress response during male 
reproduction via epigenetic regulation.

MicroRNAs (miRNAs) are another set of non-coding RNAs 
which are known to regulate gene expression at the post-
transcriptional level (Bartel, 2004; Liu et  al., 2010; Chen et  al., 
2016; Huang et  al., 2016). In Brassica rapa seedlings, heat 
stress significantly decreased expression of novel miRNAs bra-
miR1885b.3 and bra-miR5716 (Yu et  al., 2011). In barley, heat 
stress induced expression of miR160a, 166a, 167h, and 5175a, 
while expression levels of their target genes, such as AUXIN 
RESPONSE TRANSCRIPTION FACTORs (ARFs), were reduced 
upon heat stress (Kruszka et  al., 2014). In Arabidopsis, the 
miR398 expression was rapidly induced by heat stress, while 
its target genes like CSD (encoding the copper/zinc SOD) and 
CCS (encoding a chaperone for CSD) were downregulated by 
heat stress (Guan et  al., 2013). Moreover, heat shock factors 
HSFA1b and HSFA7b are required for heat stress induced the 
miR398 expression. Furthermore, the heat stress-induced miR156 
plays a crucial role in regulating heat stress memory via 
repressing expression of SPL (SQUAMOSA-PROMOTER 
BINDING-LIKE) genes (Stief et al., 2014). These results suggest 
that miRNAs are generally important for heat stress response 
in plants.

In both heat-tolerant and heat-sensitive cotton anthers, heat 
stress repressed the miR156 expression, which consequently 
increased expression of its target SPL genes (Ding et al., 2017). 
The miR160 expression was suppressed in heat-tolerant cotton 
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but increased in heat-sensitive cotton under heat stress. MiR160 
target genes ARF10 and ARF17 showed opposite expression 
pattens to miR160. A recent study identified a plethora of 
miRNAs which respond to heat stress at a stage-specific manner 
during cotton anther development (Chen et  al., 2020). For 
instance, expression of miR160, miR167, and miR2949 was 
elevated at the sporogenous cell proliferation stage under high 
temperature, while miR156 responded to heat stress at male 
meiosis and microspore release stages. MiRNAs are also involved 
in epigenetic regulation via controlling DNA methylation and 
histone modification. MiR165/166 mediates methylation of 
downstream coding sequences of their target genes PHABULOSA 
and PHAVOLUTA in Arabidopsis (Bao et  al., 2004). MiR156 
and its target genes SPLs control transition from juvenile to 
adult phase in Arabidopsis (Xu et  al., 2018; Manuela and Xu, 
2020). MIR156A and MIR156C loci are major contributors to 
the formation of mature miR156. The H2A histone variant 
H2A.Z promotes expression of MIR156A and MIR156C via 
increasing the H3K4me3 level in these two loci (Xu et  al., 
2018). Although lacking direct evidence, it is possible that 
miRNAs cope with heat stress via epigenetic regulation during 
male reproduction in plants.

CONCLUSION AND PERSPECTIVES

Male reproductive development is highly susceptible to episodes 
of heat stress. Heat stress leads to impaired tapetum, abnormal 
microspores, and pollen abortion, which cause male sterility 
in plants and adversely affect yield due to failure or reduction 
in fertilization. Different plants respond to heat stress differently, 
which makes it important to identify key stages susceptible 
to heat stress during male reproduction. This can help take 
correct measures to protect plants against heat stress at specific 
stages during plant male reproduction.

At the molecular level, plants respond to heat stress in 
multiple ways. Molecular genetics, transcriptomic, and proteomic 
studies identified a wide array of genes and gene networks 
associated with heat stress during male reproduction in various 
crops (Giorno et  al., 2013; Zhang et  al., 2017; Keller and 
Simm, 2018; Begcy et  al., 2019; Liu et  al., 2020; Lohani et  al., 
2020; Chaturvedi et  al., 2021). During male reproduction, heat 
stress not only affects expression of genes controlling epigenetic 
modifications, but also ultimately alters DNA methylation status. 
LncRNA and miRNA also appear important for heat stress 
response during plant male reproductive development, further 
suggesting that epigenetic control is a critical means for plants 
to cope with heat stress.

It is imperative to elucidate functional significance of epigenetic 
modifications and associated genes in heat stress response 

during male reproduction in economic plants. Tapetal cells, 
male meiocytes (microsporocytes), microspores, and pollen are 
sensitive to high temperature (Figure 1). Tapetal cells are special 
in terms of their endopolyploidy, formation of unique organelles 
(i.e., elaioplast, tapetosome, and ubisch body), highly active 
carbohydrate and lipid metabolism, and PCD. Tapetal cells are 
required for releasing haploid microspores from tetrads and 
for supplying energy and materials for pollen development 
and pollen coat formation. Numerous studies using various 
plants have found that heat stress affects tapetal cell differentiation 
and degeneration, which consequently leads to abnormal 
microspores and pollen abortion. Thus, it is necessary to preform 
single-cell transcriptomic and proteomic analyses to identify 
genes, gene networks, as well as particularly DNA methylation 
and histone modification marks that are responsible for heat 
stress in tapetal cells, male meiocytes, microspores, and pollen. 
In addition, it would be  worthwhile to investigate 
transgenerational epigenetic effects (epigenetic memory) on 
heat tolerance during male reproduction in plants. CRISPR-
based targeted modification of epigenetic marks has emerged 
as a powerful tool for improving plant traits, such as heat 
tolerance (Ghoshal et  al., 2021). Although emerging evidence 
suggests the importance of epigenetic regulation for heat stress 
response especially during male reproduction, applying the 
related findings to generating thermotolerant crops via genetic 
engineering and molecular breeding is still a challenge.
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