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The altitudinal gradient is one of the driving factors leading to leaf trait variation. It is
crucial to understand the response and adaptation strategies of plants to explore the
variation of leaf traits and their scaling relationship along the altitudinal gradient. We
measured six main leaf traits of 257 woody species at 26 altitudes ranging from 1,050 to
3,500 m within the eastern Qinghai-Tibet Plateau and analyzed the scaling relationships
among leaf fresh weight, leaf dry weight, and leaf area. The results showed that leaf dry
weight increased significantly with elevation, while leaf fresh weight and leaf area showed
a unimodal change. Leaf dry weight and fresh weight showed an allometric relationship,
and leaf fresh weight increased faster than leaf dry weight. The scaling exponent of leaf
area and leaf fresh weight (or dry weight) was significantly greater than 1, indicating
that there have increasing returns for pooled data. For α and normalization constants
(β), only β of leaf area vs. leaf fresh weight (or dry weight) had significantly increased
with altitude. All three paired traits had positive linear relationships between α and β.
Our findings suggest that plants adapt to altitudinal gradient by changing leaf area and
biomass investment and coordinating scaling relationships among traits. But leaf traits
variation had a minor effect on scaling exponent.

Keywords: scaling relationship, leaf trait, elevational gradient, arid valley, alpine plant

INTRODUCTION

Leaves are crucial for plant metabolic performance, have significant functions in biogeochemical
cycles (Cui et al., 2020; Cubino et al., 2021), and influence global climate change (Niinemets, 2001;
Li et al., 2008; Cubino et al., 2021). Previous studies have confirmed that leaf size spans six orders
of magnitude (Milla and Reich, 2007; Wright et al., 2017), and this variation in leaf size is the basis
for maintaining biodiversity (Mi et al., 2021). For leaves, abiotic factors (e.g., altitude) are one of
the driving forces of variation (Chen et al., 2021; Jiang et al., 2021; Ren et al., 2021). The scaling
relationship between leaf traits caused by leaf size may affect leaf biomass and element allocation,
and this relationship has also been proven to be one of the strategies for species to acquire resources,
and even affect species coexistence and community construction (Li et al., 2008; Ren et al., 2021).
Although variations in leaf and scaling relationships between different climatic regions and life
forms have been widely documented (Niklas et al., 2007; Li et al., 2008), how they vary along
elevation gradient remains unclear.
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Plant leaves have abundant phenotypic variation. Milla and
Reich’s (2011) study showed that leaves gradually became thicker
and water content decreased with elevation, and Guo et al.’s
(2018) study showed that the leaves gradually became smaller
with altitude. These variations are thought to be better adapted
to the environment, with smaller, thicker leaves that can endure
mechanical damage from intense radiation, freezing, and wind
(Xiang et al., 2009; Pan et al., 2013). However, at present,
many studies only focus on the changes of leaf traits along
the elevation gradient, and such static changes only represent
the leaves’ current situation, while the dynamic changes among
traits, such as allometric relationship (or scaling relationship),
are ignored. Another very important aspect is that although Sun
et al. (2017) and Guo et al. (2018) have done some work on
allometric variation along elevation gradients, a single species
(bamboo) is not a good representative plant for the whole
community. Therefore, it is urgent to explore whether leaves
allometric growth at the community level is affected by altitude.

Elevational gradient represents a combination of various
changing environmental factors, namely, colder climate,
decreasing soil depth, and less fertile soil, but also reduced
human disturbance with increasing altitude (Kühn et al., 2021).
Meanwhile, the elevation gradient is known as a “natural
platform” for studying plant variation (Thakur et al., 2019).
With increasing altitude, most functional traits, namely, leaf area
(LA), leaf dry weight (LDW), leaf fresh weight (LFW), and water
content, decreased significantly (Guo et al., 2018). Because most
traits are correlated, these will further lead to variation in the
scaling relationship. For instance, Pan et al. (2013) found that
the scaling exponent between LA with LDW gradually increased
from 0.859 to 1.258 along the elevational gradient for 121 vascular
species ranging from 414 to 1,462 m on Mt. Tianmu, and they
attributed the reason to environmental variations that cause
different leaf biomass allocation. However, Thakur et al. (2019)
showed that the scaling exponent of LA and LDW decreased
significantly from 1.08 to 0.85 with increasing elevation with
the altitude from 3,350 to 5,150 m in the western Himalaya.
Therefore, we attempted to further summarize the general
relationship between LDW–LFW, LA–LFW, and LA–LDW
through a larger elevation scale, and test the relationship between
leaf size and scaling exponent to systematically elucidate the
variation mechanism of leaf traits and their internal relationships
with altitudes. These will help to expand our understanding
of plant light capture cost mechanisms and their response and
adaptation to elevation gradient.

The eastern region of the Qinghai-Tibet Plateau has diverse
native flora and is significant for protecting biodiversity and
ecosystem balance (Chen et al., 2021; Liu et al., 2021). Some
vegetation of this region has been severely disturbed in the
past. After decades of restoration and conservation, most of the
vegetation is recovering (Yan et al., 2013; Chen et al., 2021).
Therefore, the region is one of the most powerful “natural
laboratories” for studying the elevation responses of the plant
(Thakur et al., 2019). To explore changes of scaling exponents
and normalization constants along the elevation gradient, we set
26 plots in different altitudes along 1,050–3,500 m located at
the eastern Qinghai-Tibet Plateau. In this research, we measured

leaf traits—i.e., LA, LFW, LDW, specific leaf area (SLA), and
leaf dry matter content (LDMC)—of 257 woody plant species
with the following objectives: (1) How do the leaf traits change
along the altitudinal gradient? (2) Whether elevation gradient
will affect the variation of scaling exponent and normalization
constant?

MATERIALS AND METHODS

Study Sites
The study sites located in Gongbahe of Bailong River (GBR) in
Zhouqu County, Southern Gansu Province, P.R. China (103◦
57′ 05′′–104◦ 42′ 05′′ E, 33◦ 14′ 32′′–33◦ 53′ 52′′ N, 998–
3,600 m a.s.l.), which is the transition zone of temperate
monsoon, subtropical monsoon, and plateau montane climate
zones, and at the boundary between semihumid and semiarid
regions (Chen et al., 2021). According to the last 30 years of
climatic data, the mean annual rainfall, evaporation of GBR,
relative humidity, and mean annual temperature are 951 mm,
918 mm, 82%, and 4.3◦C, respectively. The mean temperature of
the coldest month (January) is −13.3◦C; the mean temperature
of the hottest month (July) is 20.8◦C; and the annual frost-
free period is about 96.7 days. The annual sunshine duration
is 1,398.4 h, and the sunshine percentage is 32.0%. The old-
growth vegetation of GBR had been logged several decades
ago and the regrowth of restored vegetation is well underway
(Yang et al., 2021).

During previous in situ surveys, we found that vegetation
gradually changed from arid valley dwarf xerophytic shrubs,
deciduous broad-leaved forests, to the evergreen coniferous forest
and evergreen broad-leaved shrubs from 1,050 to 3,500 m (Chen
et al., 2021; Yang et al., 2021). We set up a transect along an
elevational gradient and surveyed 26 plots of 20 m × 20 m at
different altitudes (Appendix 1).

Sampling and Measurement of Leaves
We identified a total of 257 woody plant species (some
plants were found in multiple plots), belonging to 55
families and 115 genera (Appendix 2) according to Flora
of China,1 selected three healthy branches of each woody
species, and collected five leaves from the middle-upper
canopy of each plant at 10:00–14:00. Then, put the leaves
into plastic self-sealing bags in a portable incubator with
ice bags (to prevent blades from deforming and losing
water), and then brought them to the forest research
station to measure.

Each leaf was scanned, and images were saved as bitmap
images at a 480-dpi resolution using a scanner (EPSON V39,
Indonesia). Image J software (version 1.48)2 was used to
obtain a leaf profile in a black and white image. Then, the
length, width, and area of the blade were measured by the
Image J. We then measured LFW and dried the leaves in
a ventilated oven at 105◦C for 15 min and turned to 75◦C

1http://www.iplant.cn/frps
2https://imagej.net/software/fiji/
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until achieving a constant dry weight (i.e., LDW) (Huang
et al., 2019a; Guo et al., 2021; Jiang et al., 2021). LFW
and LDW were both measured using an electronic balance
(0.0001 g, Zhuojing Experimental Equipment Co. Ltd., BMS,
Shanghai, China).

Data Analysis
The arithmetic mean value is often used to represent the average
of a series of measurements. But when data are not normally
distributed, the median may be more representative. Thus,
we tested the normality of the dataset, and five out of six
traits showed non-normal distribution (Figure 1). So, we first
calculated the mean for every individual leaf trait as a species
traits value, then, for each altitude (plot), we calculated each plot
species median traits value as a community traits value. Some
previous studies found that LFW is better for describing the
scaling relationship between leaf biomass and LA (Huang et al.,
2019b; Shi et al., 2020). So, we calculated SLA by LFW and LDW,
which were used by SLAF and SLAD, respectively.

We established scaling relationships between traits based on
species at each altitude (plot). The relationships of LDW–LFW,
LA–LFW, and LA–LDW can be described as y = β x α, linearized
under the form log (y) = log (β) + α log (x). The values of
α determine whether the relationship is isometric (α = 1.0) or
allometric (α > 1.0 or α < 1.0). The term β is the y-intercept of
the relationship (Xiang et al., 2009; Pan et al., 2013). Its value does
not determine the form of the relationship and, if two lines of the
same slope are compared, the difference between their respective
values of β indicates the difference independent of parameters.
The 95% CIs of α and β were calculated using the SMATR
Version 2.0 (Falster et al., 2006). For the three paired traits, we
compared its α with 1.0 to test the difference. If the slope is not
significantly different from 1.0, the relationship between the two
indexes represents roughly isometric growth; and if the slope is
greater or less than 1.0, the relationship between the two indexes
is allometric growth (Xiang et al., 2009; Sun et al., 2017). We used
the coefficient of determination (R2) to determine the goodness of
fit. The images describing scaling exponents and normalization
constants were analyzed by the mgcv (2011) package and of R
4.0.5 software (R Core Team, 2021).

RESULTS

Leaf Traits Variation Along the Altitudinal
Gradient
Leaf fresh weight (LFW) and LA showed significant unimodal
variation across the elevational gradient (Figures 2A,D) and
ranged from 0.024 g and 1.456 cm2 to 0.366 g and 24.619 cm2,
respectively. LDW gradually increased and then decreased
(p < 0.05) at 3,200 m (Figure 2B). LDMC ranged from
24.21 to 48.96% and had no obvious relationship with altitude
(Figure 2C). SLAF and SLAD ranged from 41.686 and
116.582 cm2·g−1 to 112.179 and 437.291 cm2·g−1, respectively
(Figures 2E,F). They neither showed a significant relationship
with elevations, but had a maximum unimodal at 2,500 m.

Scaling Relationship Between Leaf Traits
for Pooled Data
The log-transformed relationships of LDW–LFW, LA–LFW,
and LA–LDW exhibited strong linear (Figure 3). The scaling
exponent of LDW–LFW was 0.962 (95% CI, 0.951–0.973)
(Figure 3A), which was significantly less than 1.0 (p< 0.001). The
scaling exponents of LA–LFW and LA–LDW were 1.066 (95% CI,
1.044–1.088) and 1.108 (95% CI, 1.082–1.136) (Figures 3B,C),
both significantly greater than 1.0 (p < 0.001).

Scaling Exponent and Normalization
Constant Variation Along the Altitudes
All α of LDW–LFW, LA–LFW, and LA–LDW showed no
relationship with altitudinal gradient (Figures 4A,C,E). For LA–
LFW and LA–LDW, the β first increased and then slowly
converged with altitude (Figures 4B,D,F).

The Relationship Between Leaf Traits
and Scaling Parameters
The relationships among two scaling parameters (i.e., α and β)
and other derived parameters were very complex (Figures 5–
7). Overall, only the α and β of the three paired traits had a
significant quadratic relationship (all p < 0.001) (Figures 5H,
6H, 7H), other traits and scaling parameters had no clear linear
relationship (Figures 5A–G, 6A–G, 7B–G). Even so, we still
detected a weakly relationship between α of LA-LDW with LA
(R2 = 0.351, p = 0.088) (Figure 7A).

DISCUSSION

Plant traits response and adaptation to the environment are
critical for plant survival. Combining with scaling relationship to
explore the connection between leaf traits provides a theoretical
basis for leaf variations with altitudinal gradient. Based on this
study, we have found that plants adapt to altitude gradient mainly
by adjusting LA and leaf mass, and the change of area and mass
further affects scaling relationships.

Effects of Altitude on Leaf Traits
Plants can produce adaptive strategies to cope with the
environmental variation caused by the elevational gradient
(Rudgers et al., 2019; Cui et al., 2020; Cubino et al., 2021).
Previous studies had suggested that as elevation increases, the
temperature always lowers, heat and energy supply limited LA
expansion (Pan et al., 2013; Sun et al., 2017). But our study
showed that the LA gradually increased up to 2,500 m. This non-
intuitive pattern might be caused by the influence of precipitation
on LA. The lowest elevation of our plots was located in a dry
valley, where plants exhibited smaller leaves (Niinemets, 2001;
Rudgers et al., 2019; Sun et al., 2020). As the altitude increased,
precipitation and atmospheric humidity gradually increased,
and LA also increased. Beyond a critical altitude (in our case,
perhaps 2,500 m), temperature and heat may have limited LA
increasing (Nikita et al., 2018). At low temperatures, smaller
leaves reduce thermal convection in the boundary layer, which
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FIGURE 1 | Frequency distribution histogram and normality test of leaf traits. (A) LFW; (B) LDW; (C) LDMC; (D) LA; (E) SLAF -based fresh weight; and
(F) SLAD-based dry weight. ME, mean value; MD, median value; S, skewness; K, kurtosis; N, total number.

is very important for maintaining leaf heat and keeping the
appropriate temperature of photosynthesis (Cubino et al., 2021;
Lyu et al., 2021). LFW and LA have the same variation model.
By comparison, LDW increased continuously with the altitude,

and then gradually convergent. The increase of leaf biomass with
altitude may reflect the conservative strategy of leaves, that is, the
harsher the environment, the more investment in leaf biomass
(Pan et al., 2013; Zhang et al., 2020; Yang et al., 2021). Abundant
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FIGURE 2 | The variation of leaf traits along elevation gradient. (A) LFW; (B) LDW; (C) LDMC; (D) LA; (E) SLAF -based fresh weight; and (F) SLAD-based dry weight.
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FIGURE 3 | The scaling relationship between leaf traits. (A) The scaling
relationship between LFW and LDW. (B) The scaling relationship between
LFW and LA. (C) The scaling relationship between LDW and LA. The blue
circle represents observed values, the red line represents the SMA regression
line, and the black-dotted line represents the 1:1 line; R2 is the coefficient of
determination that is used to measure the goodness of fit; p represents the
significant level of goodness of fit at 0.05 level.

investment of leaf biomass promotes the denser mesophyll tissue,
this not only helps prevent freezing injury but also reduces
mechanical damage (Niinemets, 2001; Nikita et al., 2018).

In this study, SLA showed a unimodal change with altitude,
the result is inconsistent with Umaña and Swenson (2019), who
found that SLA of four out of six species decreased with elevation.
This difference may cause by the relatively limited range of
altitudes in their study (only ranged from 250 to 1,075 m a.s.l.).
In addition, Costa et al. (2018) researched trait patterns along
tropical elevation gradient ranging from 1,620 to 3,060 m also
found that LA, SLA, and LDMC showed different patterns along
their elevational gradient—sometimes decreasing, increasing, or
showing no clear changes. Unimodal patterns of leaf traits may
also reflect changes in biodiversity. Many studies have linked
changes in leaf traits to species richness (Costa et al., 2018; Chen
et al., 2021; Liu et al., 2021); competition among species may
increase as species abundance increases. Furthermore, increased
species abundance may promote niche differentiation, which can
also influence the leaf traits pattern (Costa et al., 2018; Zhu et al.,
2019; Guo et al., 2021). The biotas and succession along the
altitudinal gradient may be one of the main factors leading to the
variation of leaf traits.

For plants, leaf water content is associated with photosynthesis
and light capture efficiency. Many studies have shown this for
bamboos, climbing plants, and alpine plant taxa (Huang et al.,
2019a, 2020; Wang et al., 2021). The goodness of fit between LFW
(R2 = 0.437) with altitude is greater than that LDW (R2 = 0.399)
with altitude, which is consistent with the findings of other
research. It may be due to the different leave shapes. Compared
with broad leaves, narrow leaves require dense tissue (lower water
content) to resist static loads. In other words, even given the same
leaf fresh mass, different plants will have a great difference in leaf
dry mass. Huang et al. (2019a) thought that the studies of leaf
allometry had to consider the influence of foliar water content on
the scaling relationship. However, in the field sampling process,
it is difficult to obtain the leaves’ fresh weight in time, so there are
still many operational difficulties.

Effects of Altitude on α and β
Allometric relationships among leaf traits reflect their priority
needs and dynamic growth. Based on the pooled data, the LDW
did not keep pace with LFW, and as the leaf size gradually
increased there was more biomass investment per unit area.
The result of this study did not support the law of diminishing
returns, which was inconsistent with Huang et al. (2019a,
2020). This implied that with the increasing of LFW, leaf water
content gradually increased or leaf dry matter content gradually
decreased. It may be because larger LA transpiration more
water and therefore need to store more water, and plenty of
water keeps photosynthesis going. So, leaf water content and
dry matter content will gradually increase, and the increased
rate of water content is higher than that of dry matter content.
Consistent with Yang et al.’s (2021) study, the fitness of LA–
LFW is better than that of LA–LDW. Most plant—like evergreen
and deciduous species have different hydraulic strategies and
photosynthetic efficiency (Niinemets, 2001; Cubino et al., 2021;
Wang et al., 2021), which may lead to differences in leaf water
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FIGURE 4 | The relationship between scaling exponent and normalization constant with elevation gradient. (A) Scaling exponent of LDW and LFW; (B) normalization
constant of LDW and LFW; (C) scaling exponent of LA and LFW; (D) normalization constant of LA and LFW; (E) scaling exponent of LA and LDW; and (F)
normalization constant LA and LDW.
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FIGURE 5 | The correlation relationship of parameters of LDW and LFW. (A) The relationship between α and LFW; (B) the relationship between β and LFW; (C) the
relationship between α and LDW; (D) the relationship between β and LDW; (E) the relationship between α and LDW/LFW; (F) the relationship between β and
LDW/LFW; (G) the relationship between β and LFWα; and (H) the relationship between β and α.

content or dry matter content, and thus lead to divergences in
LDW per unit area.

To our knowledge, few studies reveal the variation of scaling
parameters (i.e., scaling exponent and normalization constant)
for leaf traits at such a large scale. Scaling relationships among
leaf traits can reveal how the material allocation at leaf level
as they grow. We found that most scaling exponents and
normalization constants had no significant relationship between
altitudes, except for the β of LA–LFW and LA–LDW. Our
results were inconsistent with Pan et al. (2013) and Sun et al.
(2017), who reported that scaling exponents for leaf mass and
area significantly increased or was the V-shape with altitudinal
gradient. These might be different vegetation types. Their study

sites were located in subtropical monsoon regions, where most
plants were evergreen. Previous studies indicate that evergreen
and deciduous plants have different strategies to adapt to their
habitat. The evergreen plants are resource-conserved and have
greater leaf thickness and mass, lower SLA and water content, and
longer leaf life span; and the deciduous are resource-acquisitive,
with thinner leaves, greater SLA and lower dry matter content,
and shorter leaf life (Li et al., 2008; Wu et al., 2013). Generally,
evergreen plants have a higher biomass investment per unit
area than deciduous plants (Lyu et al., 2021; Zhang et al.,
2021). Another plausible explanation for this discrepancy may
be because of the elevation range; the other studies included
only 3 or 6 altitudes (Pan et al., 2013; Sun et al., 2017). If we
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FIGURE 6 | The correlation relationship of parameters of LA and LFW. (A) The relationship between α and LA; (B) the relationship between β and LA; (C) the
relationship between α and LFW; (D) the relationship between β and LFW; (E) the relationship between α and LA/LFW; (F) the relationship between β and LA/LFW;
(G) the relationship between β and LFWα; and (H) the relationship between β and α.

had selected only a few elevations, we would found a significant
linear relationship, too. In future studies, we suggest researchers
consider elevation amplitude and study variation across more
altitudes, vegetation types, and climatic regions.

Leaf mass and area are two important leaf traits for the most
vascular plants. The relative changes of leaf mass and area reveal
the metabolic activity and photosynthesis potential, which are
not invariable (Liu et al., 2016; Umaña and Swenson, 2019; Sun
et al., 2020). The scaling exponent and normalization constant
for LDW–LFW, LA–LFW, and LA–LDW of this study were
significant positive correlations. The altitude shifted leaf traits

and affected α and β, it is not clear whether altitude, leaves, or
their coupling relationship changes α and β. Along the altitudinal
gradient, the environment changes rapidly over a short distance.
Plants are subject to a lower temperature and higher irradiance
and strong wind at higher altitudes (Nikita et al., 2018; Zhang
et al., 2020; Kühn et al., 2021). However, in the middle altitude,
most plants are understory, a few dominant species may be
in the canopy. In other words, understory plants are rarely
exposed to wind and strong light irradiance (Pan et al., 2013;
Costa et al., 2018). Environmental variation at different stages of
altitudinal gradient (high, middle, and low altitude) may be the
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FIGURE 7 | The correlation relationship of parameters of LA and LDW. (A) The relationship between α and LA; (B) the relationship between β and LA; (C) the
relationship between α and LDW; (D) the relationship between β and LDW; (E) the relationship between α and LA/LDW; (F) the relationship between β and LA/LDW;
(G), the relationship between β and LDWα; and (H) the relationship between β and α.

main factors leading to the change of many traits that showed
unimodal patterns.

The Relationship Between α and β With
Derived Parameters
Scaling relationships for leaves quantifies the allometry
of resource allocation at the leaf scale and helps to
interpret correlations among traits and scaling parameters
(Thakur et al., 2019; Zhang et al., 2020). Our data showed close

relationships between scaling exponent and normalization
constant for all leaf traits. However, contrary to previous studies
(Milla and Reich, 2007; Sun et al., 2017), LA did not affect
α of LA–LFW and LA–LDW, LFW also did not affect α of
LDW–LFW. The reason might be that our target plant species
included conifer species such as Abies fabri, Pinus bungeana, and
Cupressus chengiana, and our results were the pooled data rather
than life-form or plant-specific.

In our study, we included conifer species, whose unusual leaf
morphology may have influenced the results of our analysis.
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For example, they have very small LA (needle or scale leaf),
specific LA, and water content, but have large leaf mass. They may
be a very strong disturbance when compared with broad-leaved
species, and we recommend that future studies treat broad-leaved
and coniferous species separately.

CONCLUSION

With the increase of altitude, the LFW and LA showed a
unimodal change, while the LDW was a slow increase. LA with
LFW and LDW showed an increasing returns relationship. Our
study demonstrates that there is no fixed variation pattern of
scaling relationship with altitude, and leaf traits had little effect on
the variation of scaling relationship. Therefore, the coordination
of leaf trait variation and scaling relationship may be the positive
response of plants to the elevation gradient. These provide a
possible biological explanation for the plant adaptation to high
radiation, freezing, and strong wind on altitude gradient.
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