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The success in the response of plants to environmental stressors depends on the
regulatory networks that connect plant perception and plant response. In these
networks, phosphorylation is a key mechanism to activate or deactivate the proteins
involved. Protein kinases are responsible for phosphorylations and play a very relevant
role in transmitting the signals. Here, we review the present knowledge on the
contribution of protein kinases to herbivore-triggered responses in plants, with a
focus on the information related to the regulated kinases accompanying herbivory
in Arabidopsis. A meta-analysis of transcriptomic responses revealed the importance
of several kinase groups directly involved in the perception of the attacker or
typically associated with the transmission of stress-related signals. To highlight the
importance of these protein kinase families in the response to arthropod herbivores,
a compilation of previous knowledge on their members is offered. When available, this
information is compared with previous findings on their role against pathogens. Besides,
knowledge of their homologous counterparts in other plant-herbivore interactions
is provided. Altogether, these observations resemble the complexity of the kinase-
related mechanisms involved in the plant response. Understanding how kinase-based
pathways coordinate in response to a specific threat remains a major challenge for
future research.

Keywords: Arabidopsis, arthropod herbivore, protein kinases, plant defense, transcriptomics

INTRODUCTION

Protein kinases constitute one of the largest gene families in plant genomes. These enzymes
catalyze the reversible phosphorylation of specific amino acids (serine, threonine, and tyrosine)
to regulate the activity of their target proteins. Protein kinases possess a catalytic domain
composed of 250–300 amino acid residues, which was used to classify plant protein kinases
into 9 major groups: AGC (Protein Kinase A, G, and C families), CAMK (Calmodulin/Calcium
regulated kinases), CK1 (Casein/Cell Kinase 1), CMGC (CDK, MAPK, GSK3 and CLK
families), RLK-Pelle (Receptor-Like Kinases), STE (Homologs of the yeast STE genes), TKL
(Tyrosine Kinase-Like), Plant-specific, and the Others group (Lehti-Shiu and Shiu, 2012).
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In the model plant Arabidopsis thaliana, about 4% of the
genes encode protein kinases, referred to as the Arabidopsis
kinome (Champion et al., 2004; Zulawski et al., 2014). More
than 60% of all Arabidopsis protein kinases belong to the large
group of receptor kinases (RLK-Pelle) (Shiu and Bleecker, 2001,
2003). This group includes transmembrane receptor kinases
composed of a variable extracellular domain, a transmembrane
segment, and a cytoplasmic domain with kinase activity, as
well as receptor-like cytoplasmic kinases (RLCK), which lack
the extracellular and transmembrane domains. Among the
soluble kinases, the most prominent groups are the CAMK
group including kinases related to calcium signals, the CMCG
group containing cyclin-dependent kinases (CDK) involved in
cell-cycle regulation, and the STE group formed mostly by
mitogen-activated protein kinases (MAPKs), involved in signal
transmission for responses to extracellular stimuli.

The abundance and variability of protein kinases are directly
related to the numerous cellular and biological processes
controlled by phosphorylation events. Most of these processes
are linked to the responses of the plant to environmental
signals. Plants must perceive and respond to many biotic
and abiotic stresses to survive, and phosphorylation is one
of the major post-translational modifications affecting the
activity of regulatory proteins (Chen Y. et al., 2021). Among
biotic stresses, most kinases participating in plant defense have
been identified in response to plant pathogens. In the last
years, considerable efforts have been done to describe the
role of RLKs in the perception of pathogen attack as well as
the implication of RLCKs, calcium-dependent protein kinases
(CDPKs), calcineurin B-like interacting protein kinases (CIPKs),
and MAPKs in the transmission of signals (Steinbrenner, 2020;
Sun and Zhang, 2020; Escocard de Azevedo Manhães et al.,
2021).

In contrast, the participation of phosphorylation signals has
been poorly documented in response to herbivory. A number of
features common in the plant response to the attack of arthropod
herbivores include the depolarization of the membrane, the
initiation of intracellular Ca2+ spikes, the production of reactive
oxygen/nitrogen species, and the triggering of phosphoprotein
cascades (Erb and Reymond, 2019). These events lead to the
activation of downstream responses to herbivore-specific cues,
including transcriptional activation of genes encoding defensive
proteins and enzymes for the biosynthesis of toxic compounds
(Howe and Jander, 2008; Wu and Baldwin, 2010).

Here, we review the present knowledge on the contribution
of protein kinases to herbivore-triggered responses in plants,
with a focus on the main groups related to the perception and
transmission of signals accompanying herbivory in Arabidopsis.

PROTEIN KINASES INDUCED BY
ARTHROPOD HERBIVORES

The participation of many proteins in stress responses is
directly related to the transcriptional induction of the genes
that encode these proteins. Thus, transcriptomic analyses should
offer clues on groups and individual protein kinases with a

higher implication in the general response to herbivores. The
data included in the comparative analysis performed previously
(Santamaria et al., 2021) may be used as the starting point
to address this question. In this analysis, a set of experiments
including datasets of differentially expressed genes in herbivore-
infested Arabidopsis plants was selected from transcriptomics
databases. The final collection was composed of 28 experiments
and included different types of herbivores: lepidopterans, mites,
aphids, leafminers, thrips, and hemipteran, and several time
points when possible.

After parsing this dataset with the list of Arabidopsis genes
encoding protein kinases downloaded from the iTAK database
(Zheng et al., 2016) and selecting experiments with more
than 20 protein kinases differentially expressed upon herbivore
treatment, 63 genes deregulated in at least seven experiments
were found (Table 1). These kinases should not be considered
universal kinases in response to herbivory since their expression
did not change in response to some herbivore treatments.
In this review, they are assigned as deregulated by herbivory
in the sense that their expression changed in a diverse set
of transcriptomic experiments using arthropod herbivores. Six
groups of kinases are represented in the list. Members of these
groups have previously been involved in different steps related to
the perception and transmission of external signals (Figure 1).
As expected, the RLK-Pelle group, directly involved in the
perception of the attacker, was the most numerous. Likewise,
the members of the CAMK and STE groups and the member
of the subfamily MAPK of the CMGC group belong to families
typically associated with the transmission of stress-related signals.
In addition, members of the AGC and TKL groups and one
member of the CMGC_CDK subfamily were deregulated.

To highlight the importance of these protein kinase families
in the response to arthropod herbivores, a compilation of
knowledge on their members will be provided in the following
sections. If available, a thorough description of their functionality
against herbivores will be done, which will be compared with
previous findings on their role against pathogens. Finally, the
information of their homologous counterparts in other plant-
herbivore interactions will be provided.

RLK-PELLE GROUP

The RLK-Pelle group is composed of proteins with a cytoplasmic
kinase domain involved in the early signaling steps upon
the perception of extracellular stimuli. This group is formed
by kinases with and without extracellular domains. Based on
the ectodomains, Arabidopsis transmembrane RLKs can be
classified into 14 types (Jose et al., 2020). Many of these
types are represented in the most upregulated genes upon
herbivory (Table 1). According to their higher abundance
in the Arabidopsis genome, many herbivore-regulated kinases
belong to the leucine-rich repeat (LRR) subgroup or to the
DLSV/DSLV subgroup, formed by kinases with the Domain
of Unknown Function 26 (DUF26), also called Cysteine-
rich Receptor-like Kinases (CRKs). In addition, members of
some other subgroups are included in the Table, such as the
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TABLE 1 | Differentially expressed kinases in Arabidopsis upon herbivore infestation.
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AGC_RSK-2 AT3G25250 OXI1 4.38 3.27 3.82 3.13 1.56 0 −2.1 1.98 0 1.58 1.52 2.98 0 0 1.23 0 0 0 2.31

AGC-Pl AT3G08720 ATPK2 3.91 0 2.46 2.27 0 0 0 1.99 0 0 1.1 1.7 0 0 0 1.4 1.32 0 0

CAMK_CAMKL-CHK1 AT5G10930 CIPK5 −1.9 0 0 0 0 0 0 −2 −1.7 0 −1.1 −1.2 −1.8 −2.8 0 0 −3 0 0

CAMK_CAMKL-CHK1 AT1G48260 CIPK17 −1.7 −1.3 0 0 −1.1 0 0 0 0 −1.5 −1.7 −1.2 −1.1 0 0 0 0 0 0

CAMK_CAMKL-CHK1 AT5G57630 CIPK21 0 0 1.29 1.7 0 1.01 0 4.28 0 0 0 0 2.57 1.02 0 −1 2.45 0 0

CAMK_CAMKL-CHK1 AT2G30360 CIPK11 3.21 2.03 2.15 1.63 0 0 0 3.81 2.38 2.42 4.23 2.31 0 0 1.65 0 0 0 0

CAMK_CDPK AT3G19100 CRK2 0 0 0 0 0 0 0 0 1.92 1.58 1.87 2.64 0 1.08 1.28 1.89 0 0 0

CAMK_CDPK AT5G66210 CPK28 3.49 0 1.08 0 0 0 0 1.56 0 0 1.22 1.61 −2 −1.8 0 1.09 1.38 0 0

CAMK_OST1L AT1G78290 SRK2C 0 0 0 0 0 0 0 −2 −1.1 −1.3 0 0 −1.8 −1.4 0 1.95 −1.9 0 0

CMGC_CDK-CRK7-CDK9 AT1G33770 – 0 −2 −1 −1.2 0 0 0 0 1.31 −1.7 0 0 0 1.06 0 0 1.11 0 0

CMGC_MAPK AT1G01560 MPK11 5.43 2.51 3.26 3.27 1.78 0 −1.8 2.9 0 0 1.46 1.85 −1.3 0 0 0 1.09 2.92 1.2

RLK-Pelle_CrRLK1L-1 AT5G54380 THE1 1.35 0 0 0 0 0 0 −2 2.8 0 0 1.66 0 2.67 0 0 1.46 0 −1

RLK-Pelle_CrRLK1L-1 AT5G61350 – 0 1.33 0 0 0 −1.1 −1.2 0 0 0 0 0 −1.2 −1 0 0 −1.3 0 1.42

RLK-Pelle_DLSV AT1G56120 – 0 0 0 0 0 0 0 0 −1.8 −1.7 −1.6 −1.5 −1.7 0 0 0 0 2.27 1.59

RLK-Pelle_DLSV AT4G04540 CRK39 3.95 3.27 4.51 4.48 2.5 3.05 0 0 0 0 0 −1.6 0 0 0 0 0 0 0

RLK-Pelle_DLSV AT4G23200 CRK12 2.72 2.58 3.05 2.61 2.25 2.84 1.73 0 0 0 0 0 −1.5 0 0 0 0 0 0

RLK-Pelle_DLSV AT4G23210 CRK13 1.55 2.76 4.82 4.93 1.86 2.21 0 2.74 0 0 0 0 0 0 0 0 1.67 0 0

RLK-Pelle_DLSV AT4G04510 CRK38 0 0 3.12 4.57 2.17 3.41 1.52 0 0 0 0 −3.2 0 0 0 0 0 0 2.27

RLK-Pelle_DLSV AT4G04490 CRK36 1.29 0 1.28 1.93 1.55 1.32 0 0 0 0 0 −1.2 −1.2 0 0 0 0 2.41 1.11

RLK-Pelle_DLSV AT4G23150 CRK7 2.45 0 2.21 2.91 1.39 1.75 0 0 0 0 0 −2 −1.2 0 0 0 0 3.99 1.55

RLK-Pelle_DLSV AT4G04500 CRK37 0 0 2.2 3.02 1.28 2.5 0 0 0 0 0 −2.8 −1.6 −1.8 0 0 0 3.22 0

RLK-Pelle_DLSV AT4G23140 CRK6 2.16 2.2 1.65 2.19 1.16 1.14 0 0 0 0 0 −2.1 0 0 0 0 1.39 1.81 0

RLK-Pelle_DLSV AT4G23190 CRK11 3.37 1.02 1.34 0 1 0 0 2.69 0 0 0 0 0 0 0 0 1.56 2.01 0

RLK-Pelle_DLSV AT4G23220 CRK14 4.18 3.51 1.87 1.74 1.01 0 0 3.39 0 0 0 0 0 0 0 0 2.74 2.09 0

RLK-Pelle_DLSV AT4G21390 B120 5.57 2.36 3.09 3.3 1.79 1.73 0 3.39 0 0 1.44 2.14 0 2.53 0 1.55 2.27 0 0

RLK-Pelle_DLSV AT1G61610 – 2.83 3.4 4.19 4.72 3.21 2.72 1.3 4.35 2.75 3.38 4.44 2.72 0 2.07 0 1.22 1.6 0 0

RLK-Pelle_DSLV AT4G11890 – 3.83 3.52 1.63 2.62 1.26 0 −1.1 3.24 0 0 0 −2.2 −1.3 −1.6 0 0 2.71 3.1 0

RLK-Pelle_L-LEC AT5G60300 LECRK19 0 0 1.38 1.46 1.54 1.59 0 2.31 1.33 1.64 2.35 1.94 0 0 2.35 0 0 0 0

RLK-Pelle_L-LEC AT5G65600 LECRK92 2.73 0 1.43 2.8 2.42 2.31 1.51 2.28 0 0 −1.1 0 1.99 2.6 0 0 0 0 1.29

RLK-Pelle_L-LEC AT5G01540 LECRK62 3.58 2.9 2.92 2.64 0 0 0 2.47 0 0 0 0 −2.1 0 0 1.34 0 2.27 0

RLK-Pelle_L-LEC AT1G70130 LECRK52 6.52 7.69 8.92 7.91 0 0 0 0 3.04 3.33 4.57 3.31 0 0 0 0 0 0 2

RLK-Pelle_LRK10L-2 AT1G67000 LRK10L-2.8 0 0 1.15 2.18 2.13 2.19 1.76 1.86 0 0 1.07 0 0 0 0 0 0 0 1.17

RLK-Pelle_LRR-I-1 AT2G19190 SIRK 0 0 0 1.61 1.68 0 0 2.98 0 0 0 −2.9 −1.7 −1.5 0 0 0 3.02 0

RLK-Pelle_LRR-I-1 AT1G51890 – 0 0 0 1.87 1.51 1.79 0 2.71 0 0 0 −2.3 0 0 1.1 0 0 2.57 0

RLK-Pelle_LRR-I-1 AT1G51790 – 2.21 1.42 0 1.62 1.26 0 0 1.55 0 0 −1 0 0 0 0 0 1.05 0 0

RLK-Pelle_LRR-I-1 AT1G51820 – 3.6 2.38 1.52 1.12 1.59 0 −2.1 2.17 0 2.44 0 1.34 0 0 0 0 0 0 0

RLK-Pelle_LRR-I-1 AT1G51800 IOS1 4.25 2.95 1.95 2.41 2.07 1.61 −1.1 3.01 0 0 0 −1.1 0 0 0 0 1.41 0 0

RLK-Pelle_LRR-Xb-2 AT1G74360 – 2.78 1.33 1.85 1.9 0 0 0 2.62 0 0 0 0 0 0 0 0 1.35 1.53 0

RLK-Pelle_LRR-XI-1 AT1G73080 PEPR1 2.16 0 1.18 0 0 0 0 1.84 1.4 2.02 2.19 2.36 0 0 1.08 0 0 0 0

RLK-Pelle_LRR-XI-1 AT5G25930 – 3.27 1.77 0 1.75 1.61 0 0 2.86 0 0 0 0 0 1.52 0 0 2.44 0 0

RLK-Pelle_LRR-XI-1 AT1G09970 LRR XI-23 2.87 2.16 2.38 2.07 1.12 1.17 0 2.31 1.24 0 0 1.23 1.49 1.69 2.35 0 2.16 1.93 0

RLK-Pelle_LRR-XI-1 AT1G17750 PEPR2 2.27 1.42 2.38 1.62 2.4 1.57 0 2.23 1.66 2.58 3.53 3.24 0 1.25 1.04 0 0 0 0

RLK-Pelle_LysM AT2G33580 LYK5 2.58 1.07 1.57 1.23 0 1.03 0 0 0 0 1.18 1.27 −1.8 0 0 0 0 1.54 1.01

RLK-Pelle_RLCK-VIIa-2 AT3G09830 – 3.26 1.55 1.75 1.57 1.2 0 0 2.27 0 0 0 0 0 0 0 0 1.02 0 0

RLK-Pelle_RLCK-VIIa-2 AT5G25440 – 2.97 2.26 1.9 1.6 0 0 0 2.43 0 0 0 0 0 0 0 0 1.52 1.6 0

RLK-Pelle_RLCK-VIIa-2 AT1G14370 PBL2 2.02 0 1.27 1.29 0 1.33 0 2.17 0 0 0 0 0 0 1.01 0 1.11 1.8 0

RLK-Pelle_RLCK-VIIa-2 AT1G69790 PBL18 1.61 1.92 1.65 1.22 0 0 0 1.53 0 0 1.35 0 −1.4 0 0 0 0 0 0

RLK-Pelle_RLCK-VIII AT3G59350 – 3.88 0 0 0 0 0 0 2.03 1.9 0 0 1.2 1.91 2.02 0 0 3.75 0 0

RLK-Pelle_RLCK-XIII AT4G10390 – 2.28 3.06 3.45 2.78 3.7 2.83 0 3.07 2.66 3.47 4.13 2.27 1.36 2.25 3.68 1.75 0 0 0

RLK-Pelle_SD-2b AT5G24080 – 3.4 4.12 3.22 2.51 0 0 0 3.48 4.81 4.13 5.79 6.27 1.08 0 0 0 0 0 −1

(Continued)
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TABLE 1 | (Continued)
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RLK-Pelle_WAK AT4G31110 WAKL18 1.61 1.25 1.64 2.98 0 0 0 0 0 1.96 3.05 3.4 0 0 0 0 0 0 0

RLK-Pelle_WAK AT1G79680 WAKL10 3.94 0 2.5 3.92 3.86 0 0 4.35 0 0 1.23 0 0 2.52 0 0 2.42 1.91 1.36

STE_STE11 AT2G32510 MAPKKK17 1.1 1.78 3 2.08 3.21 3.32 0 2.44 2.35 3.01 4.17 2.35 0 2.03 1.88 0 0 0 0

STE_STE11 AT5G67080 MAPKKK19 3.25 3.1 3.59 3.66 5.56 3.17 0 4.58 3.42 3.76 4.85 1.43 1.68 2.52 0 2.65 1.79 1.7 0

STE_STE11 AT1G05100 MAPKKK18 2.86 1.74 2.29 0 0 0 0 3.51 3.45 3.03 4.48 4.13 0 0 0 0 0 0 0

STE_STE11 AT2G30040 MAPKKK14 2.55 0 2.41 1.41 0 0 0 2.23 1.59 3.17 3.73 2.9 −2.1 0 1.33 0 0 0 1.62

STE_STE11 AT4G36950 MAPKKK21 6.29 6.99 7.19 5.89 4.96 2.37 0 0 2.73 3.24 4.47 1.31 0 0 0 0 0 0 0

STE_STE7 AT1G73500 MKK9 2.13 1.31 0 1.57 0 1.39 0 2.53 0 1.28 1.01 1.25 0 0 1.76 1.12 1.01 1.68 0

TKL_CTR1-DRK-1 AT2G31010 – 1.92 0 0 0 0 0 0 0 2.05 0 0 0 1.8 2.32 0 −1.3 1.83 0 −1.4

TKL-Pl-4 AT5G40540 – 2.87 1.44 1.55 0 0 0 0 0 1.15 2.6 1.87 1.73 0 0 0 0 0 0 0

TKL-Pl-4 AT5G01850 – 0 1.68 2.63 1.71 1.36 0 0 0 0 1.09 1.79 0 0 0 1.93 0 0 0 0

TKL-Pl-4 AT4G38470 STY46 0 0 0 0 0 0 0 1.55 1.86 0 0 1.21 1.79 1.67 0 0 1.11 0 −1.1

TKL-Pl-5 AT4G18950 – 2.8 0 1.08 0 0 0 0 0 1.03 1.26 1.82 1.37 0 0 0 0 1 0 0

Numbers refer to the log2FC values exhibited in herbivore-infested plants compared to control plants. Herbivore and time of infestation are included for each individual
experiment. Data were extracted from the dataset previously used in Santamaria et al. (2021). Tur, Tetranychus urticae; Byo, Brevipalpus yothersi; Lhui, Liriomyza
huidobrensis; Prap, Pieris rapae; Pbra, Pieris brassicae; Mbra, Mamestra brassicae; Splitt, Spodoptera littoralis; Focc, Frankliniella occidentalis; Bbra, Brevicoryne
brassicae; Mper, Myzus persicae. Background red/green pattern corresponds to up/down regulated genes.

L-lectin (L-LEC), the wall-associated (WAK), the Catharanthus
roseus RLK1-like (CrRLK1L), the S domain 2b (SD-2b),
the LysM domain-containing (LysM), and the LRK10-like
type 2 (LRK10L-2).

In these proteins, the kinase activity depends on the
interaction of the extracellular domain with its specific
interactors. Typically, compounds present in pathogens and pests
are recognized by these domains. Among the best-characterized
RLKs are the LRR-type receptors FLS2 (flagellin-sensitive 2)
and EFR (elongation factor Tu receptor), which recognize
universal bacterial proteins (Kunze et al., 2004; Chinchilla
et al., 2007). Likewise, the LysM-type RLKs LYK5 (lysine motif
receptor kinase 5) and CERK1 (chitin elicitor receptor kinase
1) bind bacterial and fungal carbohydrates (Miya et al., 2007;
Cao et al., 2014). Despite the crucial role of the receptors in
the perception of elicitors associated with herbivory, little is
known on the particular RLKs involved in these interactions
(Reymond, 2021).

A detailed analysis of the most common RLKs induced
by herbivores provides interesting insights into the general
mechanisms triggered in the plant. The most relevant finding is
the shared induction by pathogens and pests of a set of RLKs
in response to damage or danger-associated molecular patterns
(DAMPs). These receptors are involved in the recognition of
intracellular and cell wall derived molecules released upon
damage and in the reception of induced secreted peptides or
phytocytokines produced in the attacked cell to alert other
cells (Li P. et al., 2020; Zhou and Zhang, 2020). Upon cell
damage, plant cells secrete peptides that are preferentially
recognized by members of the LRR subgroup. Among the scarce
peptide-receptor pairs previously described, some receptors of
the RLK-Pelle_LRR-XI-1 group are present in the herbivore-
regulated dataset. PEPR1 and PEPR2 sense secreted Peps
(plant elicitor peptides) and LRR XI-23 (RLK7) binds PIPs
(PAMP-induced secreted peptides), inducing the reinforcement

FIGURE 1 | Schematic representation of protein kinase groups participating in
the perception and transduction of signals associated with arthropod
herbivory. Kinase domains are colored in red, EF-hands are colored in orange,
CBL-interacting region is colored in green, extracellular domains involved in
the perception of signals associated with herbivory are colored in blue.

of immune signaling (Huffaker et al., 2006; Hou et al.,
2014).

In contrast, there are several classes of RLKs capable of sensing
cell wall derived carbohydrate ligands, including receptors from
the WAK, LysM, CrRLK1L, and LRR families (Bacete et al.,

Frontiers in Plant Science | www.frontiersin.org 4 May 2022 | Volume 13 | Article 824422

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-824422 April 28, 2022 Time: 14:48 # 5

Romero-Hernandez and Martinez Plant Kinases in Arthropod Herbivory

2018; Lorrai and Ferrari, 2021). Several WAK proteins have
been reported to bind cell wall-associated pectins or wound-
induced short oligogalacturonic acid fragments derived from
pectin (Kohorn et al., 2009; Brutus et al., 2010). The herbivore-
responsive protein THE1 is a member of the CrRLK1L family
that has been suggested to participate in the perception of
unknown cell wall damage-derived signals (Hématy et al.,
2007). The LRR-RLK MIK2 has been also proposed to carry
out a role in sensing cell wall damage, probably functioning
in the same pathway as THE1 (Van der Does et al., 2017).
Finally, several members of the LysM containing family have
been broadly involved in recognizing saccharide elicitors. For
effective chitin-triggered immune signaling, the LysM receptors
CERK1 and LYK5 are necessary (Cao et al., 2014). Broadly
deregulated upon herbivore attack, LYK5 protein binds chitin
with higher affinity than CERK1, but their kinase domain
is inactive. In this manner, CERK1-LYK5 heterodimers are
required for the activation of immune responses (Cao et al.,
2014). Moreover, CERK1 has been shown to be necessary
for immune responses triggered by 1,3-b-D-glucans present in
plant cell walls (Mélida et al., 2018). Likewise, mixed-linked β-
1,3/1,4-glucans present in some plant cell walls, such as the
trisaccharide β-D-cellobiosyl-(1,3)-β-D-glucose, trigger immune
responses partially dependent on the LysM members CERK1 and
LYK5 (Rebaque et al., 2021).

Interestingly, other families could act as carbohydrate-binding
receptors. Several families present an extracellular lectin or lectin-
like domain, such as the L-LEC and SD-2b families (Bellande
et al., 2017). In addition, the cysteine-rich receptors of the
DLSV family have two extracellular lectin-like domain folds
(Vaattovaara et al., 2019), probably binding chitin oligomers
(Vanholme et al., 2014). However, members of these families
are also able to sense non-carbohydrate ligands. The L-LEC
receptors LECRK15 and LECRK19 (DORN1) binds extracellular
ATP (eATP), which is assumed to be released during cell damage
(Choi et al., 2014; Pham et al., 2020). LECRK62 and LECRK18
are potential receptors for extracellular NAD+ (eNAD+) and
NADP+ (eNADP+) and play pivotal roles in plant immunity
(Wang et al., 2017, 2019). Again, the danger sensors LECRK19
and LECRK62 are present in the herbivore-regulated dataset. In
addition, two other L-LEC receptors, LECRK92 and LECRK52,
are broadly deregulated upon herbivore attack. The kinase
domain of LECRK92 recruits calcium-dependent protein kinases
to phosphorylate RBOHD for immune activation (Luo et al.,
2017; Xu et al., 2020). LECRK52, together with LECRK71, is
critical in MeJA-mediated stomatal closure in response to the
bacterial attack (Yekondi et al., 2018). Although the ligands for
SD-2b and CRK families are still unknown, their implications in
plant immunity have been largely documented. The herbivore-
responsive SD-2b receptors have been previously related to
plant defense. At1g61610 has been shown to be upregulated by
flagellin, chitosan, and P. syringae DC3000 (Ko et al., 2006;
New et al., 2015). At4g21390 is upregulated in the presence of
fungal elicitors (Chae et al., 2009). Likewise, most of the CRK
receptors widely deregulated by herbivores have been formerly
associated with disease resistance and cell death in plants. In
gene expression analyses, most CRKs were induced by pathogen
treatment or biotic-related compounds (Wrzaczek et al., 2010;

Bourdais et al., 2015; Lee et al., 2017). Besides, overexpression
of CRK6, CRK13, CRK36, and CRK45 in Arabidopsis led
to enhanced resistance to P. syringae DC3000 (Chen et al.,
2003; Acharya et al., 2007; Zhang et al., 2013; Yeh et al.,
2015).

As above stated, little is known about the functional
characterization of RLKs in response to herbivory and the
consequences of their transcriptional deregulation on the
triggered signaling pathways. Regarding Arabidopsis responses
to herbivory, very scarce information has been provided. The
Arabidopsis LRR-RLK BAK1 is required for the defense response
to aphid attack (Prince et al., 2014). The critical function of
BAK1 as a co-receptor for RLKs and RLPs (Receptor-Like
Proteins, similar to RLKs but lacking the kinase domain) supports
its relevance in sensing herbivory (DeFalco and Zipfel, 2021).
Besides, the oral secretion extracted from larvae of Spodoptera
litura caused the formation of homomultimers of an LRR-RLK,
AtHAK1, that interacted with the cytoplasmic signaling kinase
PBL27 resulting in herbivory resistance in an ethylene-dependent
manner (Uemura et al., 2020). Finally, an L-type LecRLK18 was
found to be locally upregulated upon Pieris brassicae oviposition
and egg extract treatment. In lecRK18 mutant plants, egg extract
treatment caused a significant reduction of ROS, SA production,
PR1 expression, and cell death (Gouhier-Darimont et al., 2019).
Recent evidences suggest that LecRLK11 functions in the same
signaling pathway as LecRLK18 in response to eggs of P. brassicae
(Groux et al., 2021).

In addition, several findings have been reported for the
perception of herbivores by RLKs in other plant-herbivore
models. The rice leucine-rich repeat receptor-like kinase 1
(OsLRR-RLK1) is involved in the defense responses of rice
against striped stem borer (Hu et al., 2018). Besides, two RLKs
from soybean, GmHAK1 and GmHAK2, are herbivore-specific
RLKs mediating herbivore danger transmission caused by
S. litura (Uemura et al., 2020). Similar to the involvement
in plant-microbe interactions, it has been shown in several
plant species that LecRLKs are involved in the perception
of insect feeding. A G-type LecRLK in Nicotiana attenuata,
NaLecRK1, was transcriptionally induced under the attack
of Manduca sexta, which promotes the suppression of SA
production and contributes to the accumulation of JA-
mediated defense response (Gilardoni et al., 2011). Besides,
rice LecRKs were shown to serve positively for defense
responses of the host plant during damage by the herbivore
Nilaparvata lugens (Liu et al., 2015; Ye et al., 2020). More
recently, a cowpea LRR-RLP was described as a receptor
of inceptins, molecules responsible for elicitor-induced
responses and enhanced defense against Spodoptera exigua
(Steinbrenner et al., 2020).

CALCIUM-REGULATED KINASES

In plants, the calcium ion (Ca2+) is a second messenger involved
in the regulation of diverse physiological responses. In basal
conditions, calcium concentrations are relatively low, around
10−7 M in the cytosol. However, upon perception of a variety of
stimuli, the calcium content of the cytosol rapidly increases, with
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rising concentrations around 10−6 M (McAinsh and Pittman,
2009; Dodd et al., 2010). To detect the increase and influx of
calcium to the cell, several sensors play a relevant role. These
sensors typically present a motif Elongation Factor-hand (EF-
hand) to bind free Ca2+ or to regulate the ion homeostasis
acting as Ca2+ chelators (Mohanta et al., 2019). When calcium is
sensed, a conformational change is produced to let downstream
signals, commonly related to the activation of calcium-regulated
protein kinases (Sanyal et al., 2016). Four major groups of
Ca2+ decoders play a role in this process: Calmodulins (CaMs),
Calcineurin B-Like proteins (CBLs), Calcium-Dependent Protein
Kinases (CDPKs or CPKs), and CDPK-Related Kinases (CRKs).
CBLs bind calcium and trigger phosphorylation signaling by
its interaction with CBL-Interacting Protein Kinases (CIPKs),
a group of kinases specific for plants (Ma et al., 2020). CPKs
and CRKs are two closely related families of kinases. While
CPKs harbor functional EF-hands, degenerate EF-hands are
found in CRKs. Contribution to calcium signaling by CRKs
could be associated with their capacity to interact with calcium-
binding CaMs (Yip Delormel and Boudsocq, 2019). Regarding
the role in plant defense of calcium-regulated protein kinases,
it has been largely reported that CIPKs and CPKs are needed
to sense and decode Ca2+ signaling induced by pathogens into
phosphorylation events (Seybold et al., 2014; Yuan et al., 2017;
Bredow and Monaghan, 2019). However, little is known on the
role of particular Ca2+ sensors in response to herbivory.

Seven calcium-regulated kinases were found as associated with
herbivory (Table 1). Four of them are CIPKs. CBL-CIPKs pairs
have been associated with the regulation mediated by reactive
oxygen species (ROS), which are generated as a response to
the attack of herbivores or pathogens and regulate intracellular
calcium concentration (Ma et al., 2020). ROS function as
signaling molecules in response to biotic stresses and are closely
linked to RBOH (respiratory burst oxidase homolog) proteins.
RBOHF together with RBOHD functions in ROS-dependent
ABA signaling in guard cells and both are required for ROS
signaling in plant defense responses (Marino et al., 2012).
As RBOHF is regulated by CIPK11 (Han et al., 2019), the
upregulation of CIPK11 by herbivory would trigger the activation
of RBOHF and the release of Ca2+. Besides, many CBL-CIPK
pairs have been related to the regulation of ion channels both
in the plasma membrane and the tonoplast (Saito and Uozumi,
2020). Interestingly, two herbivore-responsive CIPKs (CIPK5 and
CIPK17) were commonly downregulated, and the other two
(CIPK11 and CIPK21) upregulated. CIPK11 has been associated
with movement to ensure rapid stomatal closure, which is a
widely reported response to different abiotic and biotic stresses.
CIPK11 attenuates stomatal opening by phosphorylation of the
plasma membrane H + -ATPase AHA2 (Fuglsang et al., 2007;
Yang et al., 2010) and promotes stomatal closing by activation
of the anion channel SLAC1 (Geiger et al., 2010). In addition,
CIPK11 phosphorylates and activates ABI5, a transcription factor
involved in ABA signaling (Zhou et al., 2015). ABI5 has been
associated with a positive function in plant ABA signaling and
thus, with processes leading to acquire tolerance to abiotic
stresses, such as stomatal regulation (Collin et al., 2021). Likewise,
CIPK5 phosphorylates and activates the potassium efflux channel

GORK, inducing stomatal closure (Förster et al., 2019). This
process is triggered by wounding through the JA signaling
cascade. Strikingly, despite the shared role of CIPK11 and CIPK5
in stomatal closure, herbivory commonly induces the expression
of CIPK11 and represses the expression of CIPK5. In contrast,
CIPK17 and CIPK21 showed a consistent pattern to that observed
for CIPK11. CIPK17 was downregulated by herbivory and has
been proposed to negatively regulate ABA signaling during
stomatal movement (Song et al., 2018). CIPK21 is upregulated by
herbivory and ABA treatment and mediates the response to salt
and osmotic stress in the tonoplast (Pandey et al., 2015).

On the other hand, two kinases of the CAMK-CDPK
group, CPK28 and CRK2, were typically upregulated by
herbivory. CPK28 has a negative effect in plant defense
against pathogens and has not been previously associated
with responses to herbivores. This kinase negatively regulates
PAMP-induced ROS signaling by reducing the stability of the
RBOHD stimulating enzyme BIK1 through the phosphorylation
and activation of the plant U-box type E3 ubiquitin ligases
PUB25/26 (Monaghan et al., 2014; Wang et al., 2018). In
contrast, CRK2 has been implicated in the defense response
of Arabidopsis plants against the generalist herbivore S. litura
(Miyamoto et al., 2019). CRK2 phosphorylates and activates
the ethylene-responsive transcription factors ERF13 and RAP2.6
(Nemoto et al., 2015), and was positively regulated by JA and
ABA. Besides, Arabidopsis plants overexpressing CRK2 or CRK3
showed increased expression levels of the defensin gene PDF1.2,
and a higher protection against S. litura (Miyamoto et al.,
2019). In a previous report, the importance of the CPK3 and
CPK13 proteins was determined in Arabidopsis plants attacked
by Spodoptera littoralis (Kanchiswamy et al., 2010). Following
attack, the cpk3 and cpk13 mutants showed reduced transcript
levels of PDF1.2. These results support a role of members of both
CPK/CDPK and CRK groups in the response of the Arabidopsis
plant to herbivory.

Finally, SRK2C/SnRK2.8 was the only member of the
CAMK_OST1L family deregulated by herbivory. This kinase is
involved in plant defense against pathogens. SRK2C/SnRK2.8 is
induced by SA-independent systemic signals and phosphorylates
the transcription factor NPR1 during systemic acquired response.
This phosphorylation is necessary for the import of NPR1
to the nucleus, where it induces the expression of defensive
pathogenesis-related genes (Lee et al., 2015). SRK2C/SnRK2.8
was commonly downregulated by herbivore attack, which
highlights the global dissimilarity in the plant response to
pathogens and herbivores.

MAP KINASES

Mitogen-Activated Protein Kinases (MAPKs) are conserved
signaling proteins present in all eukaryotes. In plants, MAPKs
have been related to development, abiotic, and biotic factors
(Zhang et al., 2018). They are characterized by the formation of
cascades of three different kinases activated by phosphorylation
(Krysan and Colcombet, 2018). The first kinase involved in the
cascade is a MAPKKK (also called MAP3K or MEKK), triggered
by external factors, sensors, or receptors (as RLKs/RLPs). Once a
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MAP3K is activated, it can phosphorylate Ser/Thr amino acids
in the activation loop of the second protein of the cascade, a
MAPKK (also named MAP2K, MKK, or MEK). Finally, a MAPK
(or MPK) is phosphorylated by the previous one in Thr/Tyr
amino acids located in the activation loop (Jagodzik et al., 2018).
The activation of the last MAPK of the cascade triggers the
regulation by phosphorylation of other kinases, transcription
factors, or enzymes. In A. thaliana has been found 80 MAPKKKs,
10 MAPKKs, and 20 MAPKs (Colcombet and Hirt, 2008).
Five MAP3Ks, MAPKKK14, 17, 18, 19, and 21; the MAP2K
MKK9; and the MAPK MPK11 were commonly regulated by
herbivory (Table 1).

The relationship between MAPK cascades and defense
has been largely reported (Thulasi Devendrakumar et al.,
2018; Zhang et al., 2018). In Arabidopsis, most reports have
been focused on the activated MAPK cascades in response
to pathogens. These cascades typically involve the MAPKs
MPK3, MPK4, and MPK6, controlled by less characterized
MAP3K/MAP2K modules. MPK3/6 perform redundant
functions upon Botrytis cinerea or flagellin treatment, which
include the activation of the transcription factors WRKY33 and
ERF104, and the induction of genes involved in the synthesis
of camalexin and ethylene (Bethke et al., 2009; Mao et al., 2011;
Li et al., 2012). The wound-induced activation of MPK3 and
MPK6 is enhanced by grasshopper oral secretions (Schäfer et al.,
2011). Besides, MPK4 is required for basal defense (Zhang et al.,
2012). Despite this general stress-responsive role for MPK3/4/6
kinases, any of them was consistently deregulated in response
to herbivores. The only MAPK induced by herbivory is MPK11
(Table 1). MPK11 is also activated in response to flg22, a 22
amino acid PAMP derived from bacterial flagellin, and responds
to elf18 (derived from bacterial elongation factor EF-Tu) and ch8
(N-acetylchitooctaose derived from fungal chitin). Both PAMPs
led to rapid MPK11 transcript accumulation and increased
MPK11 kinase activity (Bethke et al., 2012; Eschen-Lippold
et al., 2012). In addition, MPK11 and MPK4 interact and
phosphorylate the transcription factor ERF8 in vitro. ERF8 has
been involved in resistance to the bacterial pathogen P. syringae
(Cao et al., 2018). Again, the role of MPK11 in plant-herbivore
interactions remains unknown.

MPKs are the final step of the MAP kinase cascade. To
date, four cascades have been associated with biotic stresses
in Arabidopsis, MAPKKK3/5/MEKK1-MKK4/5-MPK3/6;
MEKK1-MKK1/2-MPK4; MAPKKK14-MKK3-MPK1/2/7;
MAPKKK?-MKK9-MPK3/6 (Krysan and Colcombet, 2018; Lin
et al., 2021). Among the participants in these cascades, MKK9
and MAPKKK14 were found upregulated by herbivory (Table 1).
MKK9 is an upstream activator of MPK3 and MPK6 both
in vitro and in planta. Overexpressing MKK9 plants induced the
synthesis of ethylene and camalexin through the activation of
MPK3 and MPK6 (Xu et al., 2008). To date, a direct participation
of MKK9 in response to herbivores has not been reported. In the
case of MAPKKK14, its expression was induced in the response
to JA produced after wounding treatment (Sözen et al., 2020).
Wound-induced MAPKKK14 activates the MKK3-MPK1/2/7
module in a MKK4/5-independent manner. Notably, mkk3
mutant plants were more susceptible to herbivory from larvae

of S. littoralis, supporting a role of the MAPKKK14-MKK3-
MPK1/2/7 module in counteracting insect feeding. Among
the rest of MAP3K induced by herbivory, MAPKKK17, 18,
and 19 were also induced by wounding (Sözen et al., 2020),
which could be associated with their participation in similar
herbivore-related modules. In addition, MAPKKK17 and 18
are induced by ABA (Danquah et al., 2015). MAPKKK17/18
activates the MKK3-MPK1/2/7/14 module, and the entire
MAPKKK17/18-MKK3-MPK1/2/7/14 module is regulated by
ABA. Interestingly, mutant mapkkk18 plants are compromised
to close stomata in response to ABA (Mitula et al., 2015), which
could be related to a role in plant defense as open stomata make
the plants more vulnerable to microbial invasion.

Further findings have been reported on the relevance of MAP
kinase cascades in plant responses to herbivory in other plant-
herbivore models (Hettenhausen et al., 2015). In N. attenuata
plants, mechanical wounding and oral secretion of the herbivore
M. sexta activate the MAP kinases SIPK and WIPK (Wu et al.,
2007). These kinases regulate the levels of JA and SA in wounded
tobacco plants (Seo et al., 2007). In tomato, M. sexta feeding
activated the WIPK and SIPK homologs SlMPK3 and SlMPK1/2.
In silencing SLMPK1/2 plants, M. sexta larvae grew better and
caused a lower increase of JA levels (Kandoth et al., 2007).
Regarding the MAP kinase MPK4, while silencing MPK4 in
tobacco plants compromises the induction of JA-responsive genes
(Gomi et al., 2005), silencing N. attenuata MPK4 plants did
not affect JA production in response to the oral secretion of
S. littoralis but negatively affected the induction of JA levels by
oral secretions of M. sexta (Hettenhausen et al., 2013). In rice,
several OsMAPKs modulate herbivory-induced phytohormone
signaling pathways (Chen J. et al., 2021). OsMAPKK3 regulates
hormone dynamics in the interaction between rice and the
planthopper N. lugens (Zhou et al., 2019). OsMAPK3 and
OsMAPK4 act as positive regulators conferring resistance to
the lepidopteran Chilo suppressalis. OsMAPK3 modulates JA
signaling pathway and promotes the accumulation of trypsin
protease inhibitors (Wang et al., 2013). OsMAPK4 modulates JA,
ET, and SA signaling pathways (Liu et al., 2018). Additionally,
OsMAPK20-5 negatively regulates the accumulation of ET and
NO, and rice resistance to N. lugens (Li et al., 2019).

OTHER KINASES. TKL AND AGC
GROUPS

Members of two additional groups of kinases (TKL and AGC) are
also shown in Table 1. Five genes belong to the TKL group and
two genes to the AGC group. The TKL group is formed by dual
serine/threonine and tyrosine kinases, also named STY kinases.
The AGC group is a heterogeneous group of serine/threonine
kinases that does not include the AGC-PI subgroup, which is
located in the others group.

The TKL group has not been extensively studied, but some
members could be involved in the regulation of some plant
metabolic and developmental processes. One of the genes
differentially expressed upon herbivory, STY46, encodes a protein
associated with the phosphorylation of transit peptides of
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chloroplast and mitochondria-targeted proteins (Lamberti et al.,
2011; Law et al., 2018). STY46 has also been involved in the
regulation of lipid metabolism and the response to abiotic
stresses (Parthibane et al., 2012; Dong et al., 2020). Regarding
plant defense, the induction of its expression by MeJA and
ethylene suggests a role for STY46 (Rudrabhatla et al., 2006).
Likewise, herbivore-induced STY5 and STY12 were upregulated
by MeJA or SA treatments (Rudrabhatla et al., 2006). However,
a direct association with the response of the plant to pathogens
or herbivores has not been reported for any protein of this
unexplored group yet.

Contrarily, the role of several members of the AGC group
has been thoroughly characterized. These proteins play essential
roles in many physiological processes related to cell growth
and differentiation, and in response to different stresses (Hirt
et al., 2011). One of the herbivore-induced kinases is OXI1,
required for ROS-mediated responses and for immunity against
the oomycete Hyaloperonospora arabidopsidis and the bacteria
P. syringae DC3000 (Rentel et al., 2004; Petersen et al., 2009).
OXI1 is also required for the full activation of MAPK3 and
MAPK6 in response to cellular injury and oxidative stress (Rentel
et al., 2004). Jasmonate-related responses are linked to OXI1.
The oxi1 mutant showed a reduced accumulation of jasmonate
together with a downregulation of genes associated with the JA
response, whereas genes that respond to SA were predominantly
upregulated (Shumbe et al., 2016). Interestingly, silencing oxi1
mutants were more resistant to the aphid M. persicae, which
is in agreement with the relevance of the SA-induced response
triggered by this aphid (Shoala et al., 2018). The second
herbivore-induced kinase is AtS6K2/AtPK2, which has been
mainly related to plant growth and exerts a positive regulation
of ABA response and drought resistance (Li L. et al., 2020).
Besides, AtS6K2 interacts with the viral genome-linked protein of
Turnip mosaic virus and Potato virus A, and this interaction has
the potential to interfere with AtS6K2 function (Rajamäki et al.,
2017). Thus, AtS6K2 could play an important role in both biotic
and abiotic stresses.

DISCUSSION

The participation of kinases in signaling is unquestionable.
However, unraveling the role of each individual kinase represents
a major challenge. Existing available datasets derived from
high-throughput experiments have been revealed as robust
tools to obtain valuable information. Regarding kinases,
transcriptomics and proteomics analyses are essential to
understanding the role of kinases in perception and response
to herbivore attacks. As post-translational modifications are
common regulatory forms for many stress-related proteins,
phosphoproteomic analyses can determine the relevance of the
phosphorylation events caused by herbivore-induced kinases.
However, searches in relevant proteomics databases, such are
the ProteomeXchange consortium of proteomics resources1

and the Arabidopsis Protein Phosphorylation Site Database
(PhosPhAt 4.02), reported a lack of proteomic datasets in

1http://www.proteomexchange.org
2https://phosphat.uni-hohenheim.de/

the Arabidopsis response to herbivory. Whereas proteomics
analyses have been done in response to pathogens, elicitors,
or hormonal treatments, any experiment using herbivory is
available in the databases yet. In contrast, the transcriptomics
responses of Arabidopsis plants to many herbivore threats
have been reported. In this way, parsing transcriptomic
data included in a previous comparative analysis using
Arabidopsis as a plant model permitted us to obtain several
clues on the kinase machinery involved in plant response to
arthropod herbivores.

The first clue is the participation of many kinase groups
in the signaling pathways. As expected, phosphorylation events
in the response of the plant to the herbivore mainly fall
on kinases involved in the perception of exogenous signals
and endogenous calcium, as well as in kinases participating
in the transmission of the signal to the nucleus. Notably,
most Arabidopsis transmembrane RLK types are represented
in the most deregulated genes upon herbivory, including
members of the LRR, DLSV/DSLV, L-LEC, WAK, CrRLK1L, SD-
2b, LysM, and LRK10L-2 groups. Likewise, calcium-regulated
kinases from the CIPK, CDPK, and OST1L groups are
deregulated by herbivory, as well as members involved in the
three levels of MAP kinase cascades, MAP3K, MAP2K, and
MPK. Altogether, these observations resemble the complexity
of the response.

The second point focuses on the particularities of the kinases
involved in the perception mechanisms. The final response to
an external stimulus is not linear, it depends on a network
of protein interactions with intrinsic redundancies. Multiple
receptors and transmitters are activated to confront a threat,
which commonly is perceived as a combination of stimuli.
Herbivore responses displayed a general behavior fitting this
multiple perception mechanism. Typical damage or danger-
associated transmembrane receptors are commonly activated by
herbivory. These receptors are involved in the recognition of
cell wall derived molecules released upon damage and in the
reception of induced secreted peptides produced in the attacked
cell. Besides, multiple RLKs capable of sensing carbohydrate
ligands are upregulated, probably binding chitin oligomers but
also able to sense non-carbohydrate ligands. In addition, oral
secretions, pheromones, vibrations, pest symbionts, eggs, and
frass could contribute to the perception of an herbivore threat.
In most aspects, whether these stimuli trigger general or specific
mechanisms remains to be elucidated.

The third tip affects the particularities in the specific
response to herbivory. Several herbivore-associated
Arabidopsis kinases have not been previously described
in response to pathogens. Although we cannot discard
an unidentified relevant role in the response to microbial
pathogens, these kinases could be specifically involved
in the perception of the plant to a common signal
associated with herbivory.

Understanding how kinase-related mechanisms coordinate in
response to a specific threat remains a major challenge for future
research. Redundancies and specificities in the ability of many
protein kinases to sense and signal both biotic and abiotic stresses
represent a fascinating challenge to decipher the key players that
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transform the activated combinatorial networks to a
precise response.
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