
fpls-13-823865 March 11, 2022 Time: 12:27 # 1

ORIGINAL RESEARCH
published: 11 March 2022

doi: 10.3389/fpls.2022.823865

Edited by:
Xianzhong Feng,

Northeast Institute of Geography
and Agroecology, Chinese Academy

of Sciences (CAS), China

Reviewed by:
Hong He,

Shandong University, China
Xiaohui Yuan,

Wuhan University of Technology,
China

Bin Wang,
Nanjing University of Finance

and Economics, China

*Correspondence:
Shiping Zhu

zspswu@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Technical Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

Received: 15 December 2021
Accepted: 17 January 2022
Published: 11 March 2022

Citation:
Wei X, Kong D, Zhu S, Li S,

Zhou S and Wu W (2022) Rapid
Identification of Soybean Varieties by

Terahertz Frequency-Domain
Spectroscopy and Grey Wolf

Optimizer-Support Vector Machine.
Front. Plant Sci. 13:823865.

doi: 10.3389/fpls.2022.823865

Rapid Identification of Soybean
Varieties by Terahertz
Frequency-Domain Spectroscopy
and Grey Wolf Optimizer-Support
Vector Machine
Xiao Wei1,2†, Dandan Kong1†, Shiping Zhu2* , Song Li2, Shengling Zhou2 and Weiji Wu3

1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China, 2 College of Engineering
and Technology, Southwest University, Chongqing, China, 3 China Tianjin Grain and Oil Wholesale Trade Market, Tianjin,
China

Different soybean varieties vary greatly in their nutritional value and composition.
Screening for superior varieties is also essential for the development of the soybean
seed industry. The objective of the paper was to analyze the feasibility of terahertz (THz)
frequency-domain spectroscopy and chemometrics for soybean variety identification.
Meanwhile, a grey wolf optimizer-support vector machine (GWO-SVM) soybean variety
identification model was proposed. Firstly, the THz frequency-domain spectra of
experimental samples (6 varieties, 270 in total) were collected. Principal component
analysis (PCA) was used to analyze the THz spectra. After that, 203 samples from the
calibration set were used to establish a soybean variety identification model. Finally, 67
samples from the test set were used for prediction validation. The experimental results
demonstrated that THz frequency-domain spectroscopy combined with GWO-SVM
could quickly and accurately identify soybean varieties. Compared with discriminant
partial least squares (DPLS) and particles swarm optimization support vector machine,
GWO-SVM combined with the second derivative could establish a better soybean
variety identification model. The overall correct identification rate of its prediction set
was 97.01%.

Keywords: soybean, DPLS, PSO-SVM, GWO-SVM, THz spectroscopy

INTRODUCTION

Soybean is one of the most important raw materials for oil and feed (Herman et al., 2018; Kumar
et al., 2021; Wei et al., 2021a). Differences in soybean varieties lead to significant differences in their
protein, fat, and other constituent contents (Wang et al., 2020a,b). At the same time, soybean variety
screening has a crucial impact on the quality of soybean products. Currently, common methods for
soybean variety identification include simple sequence repeat (SSR) molecular marker assays (Lu
et al., 2018; Wen et al., 2020) and detection of soybean components to determine their varieties
(Larsen, 1967; Ujiie et al., 2005), among others. Although the accuracy of the above methods
is relatively high, and the sensitivity is relatively strong, and the application is relatively wide.
However, they have problems such as relatively long time consuming, relatively low efficiency,
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and relatively complicated detection process. In recent years,
Near-infrared spectroscopy (NIRS) technology has been
introduced for the detection of agricultural varieties (Lun Liu
et al., 2010; Teye et al., 2014). Compared to SSR molecular
marker assays and the soybean component-based detection
variety method, the NIRS technology has the advantage of
not requiring pre-treatment of samples. Nevertheless, it has
limitations in detecting soybeans with surface defects (Zhu et al.,
2010) and limited detection accuracy (Chen et al., 2019; Rong
et al., 2020). Hence, it is essential to study a rapid and accurate
identification method suitable for different varieties of soybeans.

Terahertz (THz) spectroscopy has unique advantages in
soybean variety identification (Wei et al., 2020, 2021b). THz
spectroscopy is based on coherent THz pulses generated by
ultrafast optics. It is a broadband linear spectral detection
technique. Due to the weak interaction forces between biological
macromolecules (hydrogen bonding, van der Waals forces),
backbone vibrations and dipole rotations, etc. fall right in
the THz spectral range. At the same time, THz pulses have
a good temporal resolution (on the order of picoseconds).
Therefore, THz spectroscopy technology is currently cross-
cutting frontier research that is received great attention (Yang
et al., 2016). Currently, there has been some research on the
identification of agricultural product and food varieties through
THz spectroscopy. For instance, Wu et al. (2020) proposed
a method for sesame oil variety identification based on THz
time-domain spectroscopy. Eventually, the identification model
using radial basis kernel function achieved a 100% identification
rate. Yang et al. (2021) used THz spectroscopy and competitive
adaptive reweighted sampling (CARS) combined with support
vector machine (SVM) for the detection of high oil and common
maize. Ultimately, the model identification rate could reach
100%. Ge et al. (2015) applied THz spectra and partial least
squares regression (PLSR) models to discriminate wheat varieties.
Eventually, the prediction accuracy of the optimized model
using interval partial least squares was significantly improved.
The related coefficient of prediction set for their wheat variety
detection model was 0.992. Li et al. (2019) used THz spectra
and a neural network learning vector quantization model for
qualitative identification of maize varieties. By changing the
ratio of dividing the training and prediction sets, the final
prediction set had a 100% discrimination rate. Luo et al. (2019)
conducted a study on soybean variety identification using THz
spectroscopy and integrated learning methods. The studied
pre-processing methods, integrated classifiers, and comparison
methods. Finally, the average accuracy of the proposed model
was 89.29%. In summary, there are relatively few reports on
soybean variety identification based on THz frequency-domain
spectroscopy, and such related studies still have some academic
value and significance.

The objective of the study was to analyze the feasibility of THz
frequency-domain spectroscopy and chemometrics to identify
soybean varieties. Also, a soybean variety identification model
based on the grey wolf optimizer-support vector machine (GWO-
SVM) was proposed. After different pre-processing methods, the
discrimination results of three [discriminant partial least squares
(DPLS), particles swarm optimization-support vector machine

(PSO-SVM), and GWO-SVM] soybean variety identification
models were compared. The most appropriate pre-processing
method for each variety identification model was selected.

MATERIALS AND METHODS

Experimental Materials
Soybean samples of six varieties (HuaiDou 2, LuDou 1,
NiuMoHang, LuDou 4, HeDou 12, QiHang 34, abbreviated as
HD2, LD1, NMH, LD4, HD12, QH34) were collected for this
experiment. Among them, HD2, LD1, and NMH were each
two batches. LD4, HD12, and QH34 were each three batches.
Each batch of soybean samples was weighed 50 g to perform
subsequent experiments. Eighteen experimental samples were
prepared for each batch of soybean samples. A total of 270
samples were prepared. The soybean samples used in the
experiments were collected by the Quality Inspection Center of
the Tianjin Grain and Oil Wholesale Trading Market in China.
The quality inspection center conducted the soybean sample
collection in strict accordance with soybean varieties. This made
the subsequent soybean variety identification experiments in this
paper more rigorous and accurate.

Terahertz Spectroscopy Experimental
Equipment
In the experiment, the THz spectroscopy equipment from
EKSPLA was used for the spectral data acquisition of the
experimental sample. The equipment used the FF50 femtosecond
laser as the ultrashort pulse laser source. The central wavelength
was 1,064 nm, and the pulse duration was less than 150 fs.
The repetition frequency was about 80 MHz, and the output
power was greater than 40 mW, and the spot diameter was less
than 2 mm. The equipment used low-temperature-grown gallium
arsenide as the generator and detector of the THz wave. The
optical distance between the generator and detector was about
62.5 cm. The pump light source was divided into two beams of
55:45 by the beam splitter after passing through the half-wave
plate. The first pump light was guided by the reflector through
the fast delay line. After that, it was then directed through a set of
the optical lens into the THz emitter to excite the THz pulse. The
second part of the pump laser beam passed through the slow delay
line. Afterward, it was guided to the THz detector by a reflector.
The THz pulse was incident vertically on the experimental sample
through a metal parabolic mirror. Then, it was focused to reach
the THz detector, where it converged with the second part of
the beam. The beam signal was fed to the lock-in amplifier
for amplification. Finally, The THz time-domain spectra of the
experimental samples were obtained.

Experimental Sample Preparation and
Terahertz Spectrum Acquisition
Firstly, the soybean samples were dried in a 40◦C drying oven
for 3 h. This reduced the moisture in the samples during
transportation and storage, thus reducing the effect of moisture
in the soybean samples on the experiment. Afterward, the
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FIGURE 1 | Research flowchart.

soybean samples were crushed using a pulverizer. The crushed
samples were then further ground through a mortar and pestle
to obtain the soybean sample powder. Secondly, the soybean
sample powder was filtered through the sieve with pore sizes
of 0.074 mm. Later, the filtered sample powder was taken and
added to polyethylene powder (sample powder and polyethylene
powder were mixed in the ratio of 7:3). The two powders were
mixed thoroughly to obtain the experimental sample powder.
Finally, the experimental sample powder was weighed 135 mg
using a precision balance. The sample powder was pressed
under the pressure of 20 MPa to form a flake with a thickness
of about 1 mm. The surface of the flakes was ensured to
be smooth. The room temperature of the THz spectroscopy
acquisition laboratory was controlled at 25◦C. Nitrogen gas was
charged into the THz spectroscopy experimental equipment
before the start of the experiment. The relative humidity in the
experimental equipment was kept below 5% at all times. During
the experiment, the experimental samples were loaded into the
sample holder and their THz time-domain spectra were scanned.
Each experimental sample was scanned 256 times, and a total
of 6 sample points were scanned. The THz spectra of the six
sample points were averaged. The THz time-domain spectra
were converted to THz frequency-domain spectra by the device
software. The THz spectra were acquired by the software that
came with the THz spectroscopy experimental equipment.

The main research flow chart of this paper is shown in
Figure 1.

Theory
Principal Component Analysis
Principal Component Analysis (PCA) is a common way of data
analysis. In order to extract the main features and information of
the THz spectra of experimental samples, PCA is often performed
on the spectral data (Wang et al., 2022). The main purpose

of PCA is to reduce the dimensionality of THz spectral data
as a way to exclude the numerous chemical information that
overlaps each other. It mainly highlights the similarities and
differences of the data. This is because data identification is
difficult to achieve in high-dimensional data. It uses new variables
to represent the original variables. These new variables do not lose
useful information in the original variables as much as possible
(Rezazad Bari et al., 2021). The new variables are called Principal
Components (PC).

Pre-processing Methods
Experimentally acquired THz spectra often contain some
interferences from factors unrelated to the nature of the sample.
These interferences can cause baseline drift of the spectrum and
generate random noise, etc. At the same time, the absorption
peaks often appear to overlap. Therefore, it is essential for
the spectral data to be subjected to pre-processing methods.
The pre-processing method can amplify the original hidden
signal differences in the spectral data. Meanwhile, spectral pre-
processing techniques can achieve the purpose of improving the
resolution of THz spectral data, making the identification more
accurate and reliable (Ndlovu et al., 2021; Tafintseva et al., 2021).
In this paper, seven pre-processing methods were used, including:
mean-centering, auto scaling, standard normal variate (SNV),
minimum and maximum values to [0 1], multiplicative scatter
correction (MSC), first derivative, and second derivative (Lu,
2006; Chu, 2011).

Discriminant Partial Least Squares
Discriminant Partial Least Squares (DPLS) is a discriminant
analysis method based on PLSR (Lei et al., 2021). It is a widely
used method for supervised pattern discrimination. This method
considers the experimental sample characteristics data as the
independent variables X (whose rows are the sample ordinal
numbers and columns are the characteristic variable ordinal
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numbers). The category information of the experimental samples
is considered as the dependent variable Y. Y is a matrix composed
of 0, 1. The rows correspond to the sample numbers. The columns
correspond to the category serial numbers. When a sample
belongs to a category, the element value of the corresponding
column in Y is 1. Otherwise, it is 0. In order to decide the problem
of attribution of a substance in a mixture, the category matrix
must be able to describe a specific kind of sample (Xue et al.,
2021). DPLS is commonly applied in cases where the number of
variables is high and there are multiple commonalities.

Particles Swarm Optimization-Support Vector
Machine
SVM is a very widely used pattern recognition model proposed
based on statistical theory (Wang et al., 2021b). In this paper,
radial basis function was used as the kernel function of SVM. The
classification hyperplane established by SVM can guarantee the
classification accuracy (Wang et al., 2021a). For the optimization
problem of the parameters of the SVM (parameter c and
g), this paper used the particles swarm optimization (PSO)
algorithm (Huang et al., 2021) and the grey wolf optimizer
(GWO) algorithm (Deng et al., 2021). PSO is an optimization
algorithm for group intelligence. It is derived from the study
of predatory behavior of birds. The basic idea of the PSO
algorithm is to find the optimal solution through collaboration
and information sharing among individuals in a population
(Zhou et al., 2021b). Each particle in this algorithm represents
a potential solution to the problem. The velocity of the particle
is dynamically adjusted with the movement experience of itself
and other particles, thus achieving individual optimality search
in the solvable space.

Grey Wolf Optimizer-Support Vector Machine
GWO is a meta-heuristic optimization algorithm. It has a
more reasonable global optimal solution search mechanism,
greater operational stability, and faster convergence than other
optimization algorithms (Liu et al., 2021). The GWO algorithm
is proposed based on imitating the hunting process of a wolf
pack. It is mainly divided into three steps, which are encirclement,
hunting, and attack. The highest rank in this algorithm is the
head wolf, with two of them, marked as α. The head wolf is
responsible for making decisions and leading the pack during the
hunting (finding the optimal parameters) process. The remaining
wolves are, respectively, labeled β, δ, and ω from top to bottom
according to rank. The behavior of the next rank follows the
leadership of the previous rank. Firstly, the wolves encircle the
target during the hunting process. After encircling the prey, the
wolves perform hunting behavior. The process is usually led by
α, β, and δ. Other search units (ω) should update their respective
positions according to the current position of the best search unit.
Finally, the wolves attack the prey and accomplish the goal of
capturing the prey (Zhou et al., 2021a).

DPLS, PSO-SVM, and GWO-SVM soybean variety
identification models were established and predicted done
in MATLAB R2018a. The computer operating system was
Windows 10.0. The CPU was i7 8750 H. The memory is 16 g
2,666. In this paper, the correct identification rate was calculated
in the same way as the accuracy.

RESULTS AND DISCUSSION

Terahertz Frequency-Domain Spectra
Figure 2 shows the THz frequency-domain spectral images of the
experimental samples in the interval of 0.1–1.5 THz and 0.1–2.5
THz. The effective range of THz spectra measured by the THz
spectroscopy equipment used in this experiment was from 0.1 to
2.5 THz. When the THz spectral frequency was between 1.5 and
2.5 THz, the signal-to-noise ratio of the spectrum was too low to
be selected. Hence, the 0.1–1.5 THz interval was selected as the
modeling spectral interval for the soybean variety identification
model in this experiment. It could not be seen from Figure 2
that there were significant differences in the THz spectra of the
different variety experiment samples. Therefore, the THz spectra
of the experimental samples should be analyzed and identified in
combination with chemometrics.

Principal Component Analysis
The THz frequency-domain spectra of the samples were
subjected to PCA. The cumulative variance contribution of
the first 3 PCs was 99.65%. Therefore, the information of the
distribution characteristics of the samples could be basically
characterized by the projected distribution of the first 3 PCs in
space. The PC score plot is shown in Figure 3. From Figure 3, it
could be found that the experimental samples of HD2 and LD1
were distributed more scattered in the three-dimensional space.
However, the remaining four varieties of experimental samples
showed obvious overlap in the distribution in three-dimensional
space. In the overlapping part, it was very difficult to distinguish
and identify the experimental sample varieties using the naked
eye. Therefore, good results could not be obtained by using
PCA alone to identify soybean varieties. Thus, THz spectroscopy
required the use of identification methods with supervised modes
for soybean variety identification.

Variety Identification Model
Establishment and Validation
Establishment and Validation of the Discriminant
Partial Least Squares Soybean Variety Identification
Model
The transmissibility and frequency of the spectral points in the
selected frequency interval were used as the input matrix. The
DPLS was used to establish the soybean variety identification
model. The 270 experimental samples were divided according to
the ratio of calibration set to test set of 3:1. Therefore, 67 samples
were randomly selected as the test set. The remaining 203 samples
were used as the calibration set. The 67 test set samples contained
10 HD2, 10 LD1, 7 NMH, 13 LD4, 16 HD12, and 11 QH34. The
203 calibration set samples contained 26 HD2, 26 LD1, 29 NMH,
41 LD4, 38 HD12, and 43 QH34. Firstly, the THz spectra were
separately subjected to seven pre-processing methods. Secondly,
the DPLS soybean variety identification model was established by
the calibration set. Finally, the effects of the variety identification
model were validated using the test set. The validation results are
shown in Table 1.

From Table 1, it could be found that the results of the DPLS
soybean variety identification model were not very satisfactory.
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FIGURE 2 | THz frequency-domain spectra of different variety experimental samples.

FIGURE 3 | The PC score plot.

The overall correct identification rate was in the range of
74–81%. The validation results of the DPLS soybean variety
identification model showed relatively obvious changes after the
THz frequency-domain spectra were subjected to different pre-
processing methods. In terms of the overall correct identification
rate, the overall correct identification rate of the DPLS soybean
variety identification model could be improved to 80.60% after
the second derivative pre-processing of the THz spectra. This
was a 4.48% improvement compared to the DPLS soybean
variety identification model without the pre-processing method,
and the identification time used was relatively shorter. At the
same time, the overall precision of this identification model
achieved the highest value. This might be because the second
derivative pre-processing method could effectively eliminate the
interference of baseline and other backgrounds. Judging from
the identification of different variety soybeans, the DPLS soybean

variety identification model was very effective in identifying
LD4 and QH34. The DPLS soybean variety identification model
was significantly improved for NMH by the second derivative
pre-processing. The DPLS soybean variety identification model
was not well for the identification of three soybean varieties
(HD2, LD1, and HD12). Compared to other varieties, the
identification results of these three varieties of soybean needed
to be further improved.

Establishment and Validation of the Particles Swarm
Optimization-Support Vector Machine and Grey Wolf
Optimizer-Support Vector Machine Soybean Variety
Identification Models
The experimental samples were divided into the calibration and
test set according to the same method as before. The calibration
set was formed by 203 experimental samples. The PSO-SVM
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and GWO-SVM soybean variety discrimination models were
established using the calibration set. The test set was composed
of 63 experimental samples. Validation of the soybean variety
discrimination models was performed using the test set. The
parameters c and g were, respectively, optimized by the PSO
algorithm and GWO algorithm. The validation results of the two
soybean variety identification models are shown in Tables 2, 3.

From Tables 2, 3, it could be found that after the first derivative
and the second derivative pre-processing methods, the overall
correct identification rate of the GWO-SVM soybean variety
identification model was very significantly improved compared
to the PSO-SVM variety identification model. The identification
time used was also significantly reduced. Meanwhile, the
overall precision of the GWO-SVM variety identification model
achieved the highest value. This might be because the parameter
optimization of the SVM by GWO imitated the wolf hunting
process so that it could obtain a more reasonable global optimal
solution search capability. Therefore, the GWO algorithm
showed superior soybean variety identification performance
compared to the PSO algorithm in finding the optimal
parameters of the SVM. This was of great practical importance for
soybean variety identification. The overall correct identification
rate of the GWO-SVM soybean variety identification model
(c = 7.77 × 109, g = 7.95 × 10−4) was improved to 97.01%
after the second derivative pre-processing method for the THz
frequency-domain spectra. The identification time used of the
variety identification model was 181.66 s. This indicated that THz
frequency-domain spectroscopy combined with chemometrics
could quickly and accurately identify soybean varieties. After THz
frequency-domain spectra were preprocessed with the second
derivative, the GWO-SVM variety identification model improved
the overall correct identification rate by 7.46% compared to
the GWO-SVM identification model without the pre-processing
method. This further indicated that the second derivative pre-
processing method played an important role in eliminating
background interference, resolving overlapping peaks, etc. for
the THz spectra. Thus, the second derivative pre-processing
method best improved the overall correct identification rate
of the GWO-SVM identification model. After the second
derivative pre-processing, the GWO-SVM identification model
could reach 100% for four varieties (HD2, LD1, LD4, and QH34)
of soybeans. The correct identification rate of the other two
varieties of soybeans also reached more than 85%. By observing
the validation results of the two variety identification models
combined with the seven pre-processing methods, it was easy to
see that the THz spectra combined with different pre-processing
methods had a great impact on the correct identification rate
of the identification model and the time used for identification.
Therefore, it was crucial to choose the appropriate pre-processing
method for different identification models.

Comparing Tables 1–3, it was found that the overall
correct identification rate of the GWO-SVM soybean variety
identification model was better than that of the DPLS and PSO-
SVM variety identification models after the first derivative and
second derivative preprocessing methods. However, the DPLS
soybean variety identification model took significantly shorter
time to identify than the other two variety identification models.
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TABLE 2 | PSO-SVM soybean variety identification validation results.

Spectral pre-processing methods Correct identification rate% Overall
precision%

Overall F1
score%

Identification
time used s

HD2 LD1 NMH LD4 HD12 QH34 Overall

None 100 90 100 92.31 75 100 91.04 93.35 91.29 196.04

(b). Mean-centering 100 90 100 92.31 75 100 91.04 93.35 91.29 230.47

(c). Auto scaling 100 90 100 100 75 100 92.54 94.84 92.77 331.03

(d). SNV 90 90 85.71 100 75 100 89.55 91.11 89.81 239.65

(e). Minimum and maximum values to [0 1] 100 80 100 100 75 100 91.04 93.71 91.25 278.69

(f). MSC 90 90 85.71 100 75 100 89.55 91.11 89.81 152.84

(g). First derivative 90 80 100 92.31 81.25 100 89.55 90.90 89.72 211.92

(h). Second derivative 100 80 71.43 100 87.5 100 91.04 91.44 90.99 248.08

The row with the highest value of overall correct identification rate% and precision% is highlighted in bold.

TABLE 3 | GWO-SVM soybean variety identification validation results.

Spectral pre-processing methods Correct identification rate% Overall
precision%

Overall F1
score%

Identification
time used s

HD2 LD1 NMH LD4 HD12 QH34 Overall

(a). None 100 90 100 84.62 75 100 89.55 92.13 89.81 162.33

(b). Mean-centering 100 90 100 84.62 75 100 89.55 92.13 89.81 147.19

(c). Auto scaling 100 90 100 100 75 100 92.54 94.84 92.77 330.74

(d). SNV 90 100 85.71 92.31 75 100 89.55 91.50 89.89 218.83

(e). Minimum and maximum values to [0 1] 100 80 100 100 75 100 91.04 93.71 91.25 322.81

(f). MSC 90 100 85.71 92.31 75 100 89.55 91.50 89.89 182.52

(g). First derivative 100 100 100 92.31 81.25 100 94.03 95.51 94.20 160.37

(h). Second derivative 100 100 85.71 100 93.75 100 97.01 97.01 97.01 181.66

The row with the highest value of overall correct identification rate% and precision% is highlighted in bold.

When comparing the validation results of the DPLS, PSO-SVM,
and GWO-SVM identification models, it was found that the
THz spectra combined with the second derivative pre-processing
method resulted in the best identification results and relatively
short identification time for the GWO-SVM variety identification
model. The overall correct identification rate was 97.01% (85.71%
for NMH, 93.75% for HD12, and 100% for others), and the
identification time used was 181.66 s. However, there were some
limitations of this variety identification model. The identification
model needed to be continuously optimized for different THz
spectral data. For soybean varieties for which THz spectral data
characteristics had been not collected, the identification model
identified relatively poor results.

CONCLUSION

The experimental results showed that it was feasible to identify
soybean varieties by THz frequency-domain spectroscopy
combined with chemometrics. The GWO-SVM soybean variety
identification model achieved the best results and relatively
short identification time used after the second derivative
pre-processing method for THz spectra. The overall correct
identification rate was 97.01% and the identification time used
was 181.66 s. This indicated that this method was an accurate
means of identifying soybean varieties. The identification time
used was relatively short, and the identification speed was
relatively fast. In addition, the DPLS and PSO-SVM variety

identification models combined with suitable pre-processing
methods could also be used for soybean variety identification.
The novelty of the paper was that the feasibility of THz frequency-
domain spectroscopy combined with chemometrics for soybean
variety identification was analyzed and investigated. At the same
time, a soybean variety identification model based on the GWO-
SVM was proposed. The study has some reference value for the
rapid and accurate identification of agricultural products and
food varieties based on THz spectroscopy.
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