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Niğde Ömer Halisdemir University,
Turkey

Reviewed by:
Milind Ratnaparkhe,

ICAR Indian Institute of Soybean
Research, India
Shixiong Zhang,

Xidian University, China

*Correspondence:
Jingfang Shen

sjf_712@mail.hzau.edu.cn
Kebing Du

kebingdu@mail.hzau.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Sustainable and Intelligent
Phytoprotection,

a section of the journal
Frontiers in Plant Science

Received: 01 December 2021
Accepted: 20 January 2022

Published: 11 February 2022

Citation:
Xie X, Zhang X, Shen J and Du K

(2022) Poplar’s Waterlogging
Resistance Modeling and Evaluating:

Exploring and Perfecting
the Feasibility of Machine Learning

Methods in Plant Science.
Front. Plant Sci. 13:821365.

doi: 10.3389/fpls.2022.821365

Poplar’s Waterlogging Resistance
Modeling and Evaluating: Exploring
and Perfecting the Feasibility of
Machine Learning Methods in Plant
Science
Xuelin Xie1†, Xinye Zhang2†, Jingfang Shen1* and Kebing Du3*

1 College of Sciences, Huazhong Agricultural University, Wuhan, China, 2 Hubei Academy of Forestry, Wuhan, China,
3 College of Horticulture and Forestry Sciences, Hubei Engineering Technology Research Center for Forestry Information,
Huazhong Agricultural University, Wuhan, China

Floods, as one of the most common disasters in the natural environment, have
caused huge losses to human life and property. Predicting the flood resistance
of poplar can effectively help researchers select seedlings scientifically and resist
floods precisely. Using machine learning algorithms, models of poplar’s waterlogging
tolerance were established and evaluated. First of all, the evaluation indexes of poplar’s
waterlogging tolerance were analyzed and determined. Then, significance testing,
correlation analysis, and three feature selection algorithms (Hierarchical clustering,
Lasso, and Stepwise regression) were used to screen photosynthesis, chlorophyll
fluorescence, and environmental parameters. Based on this, four machine learning
methods, BP neural network regression (BPR), extreme learning machine regression
(ELMR), support vector regression (SVR), and random forest regression (RFR) were used
to predict the flood resistance of poplar. The results show that random forest regression
(RFR) and support vector regression (SVR) have high precision. On the test set, the
coefficient of determination (R2) is 0.8351 and 0.6864, the root mean square error
(RMSE) is 0.2016 and 0.2780, and the mean absolute error (MAE) is 0.1782 and 0.2031,
respectively. Therefore, random forest regression (RFR) and support vector regression
(SVR) can be given priority to predict poplar flood resistance.

Keywords: flood disaster, prediction of waterlogging tolerance, machine learning, feature selection, model
establishment and evaluation

INTRODUCTION

Natural disasters are inherently a phenomenon that has adverse consequences for society (Paprotny
et al., 2018). It damages the living environment and life of human beings. Flood disasters, as
one of the most common and expensive natural disasters, have caused huge losses to human
lives and property (Hu et al., 2018; Ao et al., 2020). With the development of social industry
and economy, the warming of the atmosphere caused by greenhouse gas emissions may increase
the risk of river flooding (Hallegatte et al., 2013; Hirabayashi et al., 2013; Willner et al., 2018;
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Bloeschl et al., 2019). Therefore, many studies want to build a
system for predicting flood risk (Alfieri et al., 2017; Shafizadeh-
Moghadam et al., 2018; Choubin et al., 2019; Khosravi et al.,
2019), and a variety of machine learning methods are used
in these studies. Choubin et al. (2019) used multivariate
discriminant analysis (MDA), classification and regression trees
(CART), and support vector machine (SVM) algorithms to
predict flood risk in Iran’s Khiyav Chai drainage basin. The results
show that the residential areas at the outlet of the drainage basin
are very susceptible to floods. Khosravi et al. (2019) adopted three
Multi-Criteria Decision-Making techniques (VIKOR, TOPSIS,
and SAW) and two Machine Learning methods (NBT and NB)
to test the flood sensitivity modeling of the Ningdu River Basin
in China. Finally, their research shows that the NBT model is a
powerful tool for evaluating flood-prone areas, and can properly
plan and manage flood disasters. Nevertheless, predicting flood
risk cannot substantially reduce the life and economic losses of
human society. Afforestation can strengthen the stability of water,
soil, and carbon sinks in the forest ecosystem, thereby effectively
coordinating the relationship between humans and the natural
environment. A considerable number of studies have shown
that afforestation can weaken the impact of global warming and
effectively reduce the risk of river flooding (Hong et al., 2018,
2020; Liu X. et al., 2018; Forster et al., 2021). Thus, afforestation
is widely used to resist flood disasters.

Plants have evolved numerous resistance mechanisms to
resist flood disasters, including plant morphological Screening
of Candidate Genesristics, metabolic responses, and molecular
transcriptional regulation (Loreti et al., 2016; Du et al., 2017;
Yin et al., 2017; Zeng et al., 2019; Lukic et al., 2020; Lee
et al., 2021). Among the diverse plant populations, poplar has
become the main flood-resistant tree varieties in flood-prone
areas due to its rapid growth and flood resistance features.
Many studies have shown that the root system is the key organ
of poplar responding to Flooding stress (Coleman et al., 2000;
Major and Constabel, 2007; Berhongaray et al., 2013; Ye et al.,
2018; Gerjets et al., 2021). Flooding stress affects the diffusion
of oxygen in plant root tissues. At the same time, it limits
the mitochondrial respiration of root cells and accumulates
toxic substances, which seriously affects its normal physiological
activities (Arbona et al., 2008; Voesenek and Bailey-Serres, 2013;
Tian et al., 2019). In addition, flooding stress will destroy the
photosynthesis performance of plants, which will inhibit plant
growth and biomass accumulation (Du et al., 2012; Zhu et al.,
2016; Zheng et al., 2017; Xiong et al., 2019; Zhou et al., 2020).
Flooding stress not only reduces the chlorophyll content of
plants, but also reduces the carotenoid content (Zhou et al., 2017).
Kreuzwieser et al. (2009) found that the metabolite changes
occurred in leaves and roots of submerged poplar. Du et al. (2012)
compared the physiological and morphological adaptability of
two poplar clones (hypoxia-resistant and hypoxia-sensitive) to
flooding, and Peng et al. (2018) monitored the different response
mechanisms of these two clones of poplar to flooding stress.
These studies have greatly promoted people’s understanding of
the waterlogging resistance mechanism, and to a considerable
extent, strengthened people’s resistance to flood risks. Thus
far, there are still few studies on the influence of poplar on

the waterlogging resistance factors. These factors include the
intrinsic features of poplar trees (photosynthesis and chlorophyll
fluorescence, etc.) and external environmental features (ambient
temperature, humidity, etc.). As a popular research direction,
machine learning has recently been gradually introduced into the
field of plant science. For the research on the resistance of poplar
to waterlogging, Xie and Shen (2021) used poplar photosynthesis
features and external environmental factors to predict the
waterlogging tolerance of poplar. By using the SVR method
in machine learning, they confirmed the feasibility of applying
photosynthesis and other characteristic parameters to predict
poplar flood resistance. However, previous prediction studies
did not consider important parameters such as chlorophyll
fluorescence. Additionally, the related forecasting research is
not systematic enough, and the corresponding investigation and
research are still lacking.

Based on the above considerations, the main purpose of this
article is to consider more comprehensive feature parameters and
use a variety of machine learning methods to predict the flood
resistance of poplar. At the same time, it aims to supplement
and improve the key content and procedures of poplar flood
resistance prediction. First of all, the evaluation indicators
of waterlogging tolerance were well defined and explained.
Then, 26 internal characteristics and external environmental
factors of poplars were screened by using feature selection
algorithms such as significance test and stepwise regression.
Finally, four machine learning methods were used to establish
the flood resistance models of poplar, and the results were
comprehensively evaluated in detail. Compared with previous
studies, this study supplements the evaluation index and
prediction system of poplar waterlogging tolerance. The main
contribution is that the definition and analysis of evaluation
indicators for waterlogging tolerance have been improved,
and more comprehensive characteristic parameters have been
considered. Moreover, the feature selection, prediction methods,
and evaluation indicators were adjusted, and more machine
learning methods and results have been considered and analyzed.
This research has enriched the prediction of poplar’s flood
resistance, which is of great significance to poplar’s accurate flood
resistance, intelligent selection of seedlings, and cultivation of
high-quality saplings. Furthermore, to a considerable extent, it
promotes the research of flood resistance mechanisms, which
have great theoretical and practical value.

MATERIALS AND METHODS

Experimental Area and Materials
Research area: Huazhong Agricultural University, Wuhan, China
(114◦35′E, 30◦49′E), subtropical humid monsoon climate. This
area has four distinct seasons, with plenty of sunshine and
plenty of rainfall. The annual average temperature is 15.8–17.5◦C,
rainfall is 1,269 mm, and total sunshine hours are between
1,810 h to 2,100 h.

Experimental objects: There were 20 poplar varieties in total.
The scientific names corresponding to the 20 poplar varieties are
shown in Table 1.
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TABLE 1 | Scientific names of 20 poplar varieties.

Varieties Scientific names

LS68 Populus deltoides “Lux” × P. simonii (LS68)

LS81 P. deltoides “Lux” × P. simonii (LS81)

NL895 P. × euramericana “Nanlin 895”

I-63 P. deltoides “Harvard”

I-69 P. deltoides “Lux”

I-72 P. euramaricana “an Martino”

I-214 P. × euramericana “I-214”

I-45-51 P. × euramaricana “I-45/51”

Flevo P. euramericana “Flevo”

Juba P. deltoides “55/56” × P. deltoides “2KEN8”

LH04-13 P. deltoides “Lux” × P. deltoides “Harvard” (LH04-13)

LH04-17 P. deltoides “Lux” × P. deltoides “Harvard” (LH04-17)

Triplo P. euramericana “Triplo”

DD102-4 P. deltoides “DD102-4”

Raspalje P. deltoides “Raspalje”

Danhong P. deltoides “Danhong”

Canadensis P. canadensis Moench.

2L2025 P. deltoides “Lux” × P. deltoides “Shanhaiguan”

Ningshanica P. ningshanica

Lushan P. × liaoningensis

Experimental Process and Parameter
Measurement
The 1-year-old branches of 20 poplar clones were cut into
about 15 cm cuttings with 3–4 buds. There were 4 experimental
groups and 4 control groups for each variety, with a total of
160 experimental materials. After being soaked in water for
24 h, the cuttings were planted in mixed soil. The container
was seedling pots (150 mm × 100 mm × 130 mm), and the
soil was 1:1 substrate soil and peat soil (The soil consisted of
2–5% N, P2O5 and K2O, pH = 6.2, total organic matter of
nutrient soil was ≥ 28%, and the total nutrient was ≥ 2%). The
morphological changes of the plants were observed every day,
including the chlorosis and shedding of leaves. We measured
the height, biomass, photosynthesis, and chlorophyll fluorescence
parameters of poplar seedlings on the 0th and 60th days.
The characteristic parameters were measured by the LI-6400
photosynthesis analyzer (LI-COR, Lincoln, NE, United States),
and the time was concentrated between 9:00 am and 11:30
am. In the experiment, a standard LI-COR leaf chamber and
red and blue light sources (6400-02 LED light sources) were
used. The light intensity was 1,000 µmol·m−2

·s−1, and the air
velocity was 500 µmol·s−1. 26 characteristic parameters of poplar
samples were measured, including photosynthesis, chlorophyll
fluorescence features, and environmental variables. The specific
information of these features is shown in Appendix Table A1,
and the treatment process of the experimental group and the
control group is as follows.

• Control group: Watered normally (CK). There were
drainage holes at the bottom of the flower pots in the
Control group. Watered the plants according to the
needs of normal plant growth, and the soil moisture was

maintained at about 75% of the maximum water holding
capacity in the field.
• Experimental group: Shallow flooded (FL). The

waterlogging test was started 5–6 weeks after cuttings,
and the water surface was 10 cm higher than the soil
surface. The experiment lasted for 60 days, of which, the
flooding time was 45 days, and the drainage recovery
time was 15 days.

Programming Environment
In this article, R 4.0.5 was used to perform data Processing and
Feature selection process, and MATLAB R2018a was used to
implement the Model building and evaluation.

METHODOLOGY

The methodology is divided into data processing, feature
selection, model establishment and evaluation. The main
procedures are shown in Figure 1, and the specific
implementation steps will be introduced one by one below.

Data Processing
Evaluation Index of Waterlogging Tolerance
The changes in biomass and seedling height can reflect the
waterlogging tolerance of plants. In previous studies, Xie and
Shen (2021) proposed the waterlogging tolerance evaluation
index Zscore. This article supplemented the definition of the
other two waterlogging tolerance evaluation indicators, and
used the three waterlogging tolerance evaluation indicators for
outlier analysis. Finally, the most suitable evaluation index for
waterlogging tolerance was selected. The definitions of the three
evaluation indicators are given below.

The first evaluation index for waterlogging tolerance is Zbio,
which is obtained based on changes in biomass. This indicator is
based on the change in biomass of the test group within 60 days
to judge the flood resistance of poplar, and it is dimensionless.
The stronger the waterlogging resistance performance, the larger
the corresponding Zbio. The calculation method is shown in
Formula (1):

Zbio =
bio(xi)− E(bio)

Std(bio)
(1)

The second waterlogging tolerance evaluation index is Zsap,
which is similar to the definition of Zbio. This index only
considers the change of poplar seedling height, and its calculation
method is shown in Formula (2):

Zsap =
sap(xi)− E(sap)

Std(sap)
(2)

The third evaluation index of waterlogging tolerance is Zscore.
This indicator takes into account the changes in biomass, as well
as changes in seedling height. Compared with Zbio and Zsap, this
index can more comprehensively reflect the flood resistance of
poplar, and its calculation formula is shown in Formula (3):

Zscore(xi) = ωbio × Zbio+ ωsap × Zsap (3)
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26 Features 6 Features

3 Features

> Q3+1.5xR1

5 Features

FIGURE 1 | Flow chart of Methodology.

where ωbio and ωsap are the weight coefficients, which satisfy the
condition ωbioωsap = 1. The calculation method of the weight
is shown in equation (4). Zbio and Zsap are the two evaluation
indicators mentioned in above.

ωbio =
A

A+ B
, ωsap =

B
A+ B

(4)

where A = FL(Sum(bio(xi))
CK(Sum(bio(xi))

, B = FL(Sum(sap(xi))
CK(Sum(sap(xi)) .

Treatment of Outliers
Extremely different from other observations, the outliers often
cause anomalies (Aggarwal and Yu, 2005). Outliers may affect
the accuracy of the final model (Domingues et al., 2018; Zhao
et al., 2020). Consequently, before feature selection and models
establishment, outliers in the data should be eliminated. The
outlier Ozscore is defined in formula (5):

Ozscore > Q3 + 1.5× R1 or Ozscore < Q1 − 1.5× R1 (5)

where Q3 and Q1 are the upper and lower quartiles, and the
quartile range R1 = Q3 − Q1.

Feature Selection
Feature selection is to effectively remove irrelevant and
redundant features (Arora and Anand, 2019; Sayed et al., 2019).
It can improve the performance of the model and reduce the
cost of calculation (Li et al., 2018; Angulo and Shin, 2019). The
26 characteristic parameters considered in this study meet the
conditions of multi-dimensional data. Therefore, these features
need to be selected.

Hierarchical Clustering
Hierarchical clustering is a clustering method used to describe
the hierarchical structure of samples in a group (Wu et al.,
2009). The result of hierarchical clustering is usually represented
by a dendrogram. The tree diagram shows the organization
and relationship of the sample in the form of a tree, which is
convenient for people to divide intuitively (Granato et al., 2018).
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For related clustering research work, refer to Xu and Wunsch
(2005) and Murtagh and Contreras (2012). A hierarchical
clustering method was adopted to cluster the poplar varieties
and the five features selected by correlation analysis, and the
measurement method was Euclidean distance.

Lasso and Stepwise Regression
The Lasso method is proposed by Tibshirani (1996) by combining
the advantages of both ridge regression and subset selection meth.
It not only has the interpretability of subset selection, but also
has the stability of ridge regression. To achieve the purpose
of feature selection, this method compresses the coefficients
of insignificant variables to 0 (Zou and Hastie, 2005; Cui
and Gong, 2018). Stepwise regression uses collinearity and
variance contribution tests to gradually find all the significant
features, thereby obtaining the optimal model. The basic idea
of stepwise regression is to add new variables one by one, each
time a new variable is added, consider whether to eliminate
the selected variable until no more variables are introduced.
Stepwise regression is mainly used to solve the problem of
multicollinearity. For related research, refer to Guidolin and
Pedio (2021), Ou et al. (2016), and Yang et al. (2019).

Establishment and Evaluation of
Regression Model
Machine Learning Methods
BP Neural Network
BP neural network is a multi-layer network structure composed
of an input layer, an output layer, and one or more hidden layers
(Yang et al., 2018), which can effectively deal with linear and non-
linear relationships between data (Moghadassi et al., 2010). BP is
called the error back propagation algorithm. In essence, the BP
algorithm takes the error square as the objective function, and
uses the gradient descent method to calculate the minimum value
of the objective function. BP neural network can systematically
solve the hidden layer connection weight learning problem of
multilayer neural network, and it is one of the most widely used
neural networks at present.

Extreme Learning Machine
The extreme learning machine is a new single hidden layer
feedforward neural network (Ding et al., 2015). This algorithm
can produce good generalization performance in most cases, and
its learning speed is thousands of times faster than the traditional
feedforward neural network algorithm. Therefore, many studies
apply extreme learning machines for regression and prediction
(Miche et al., 2010; Huang et al., 2011; Yao and Ge, 2018; Yaseen
et al., 2018).

Support Vector Regression
Support vector machine (SVM) is a supervised machine learning
method proposed by Cortes and Vapnik (1995) in the mid-1990s,
which is used to deal with binary classification problems. The
core idea of SVM is to find a hyperplane or hypersurface to
segment the sample points to maximize the interval between
the segmentation points. Support vector regression (SVR)
is an application model of support vector machine (SVM)

on regression problems (Demir and Bruzzone, 2014). As a
classic regression algorithm in machine learning, support vector
regression has been widely used in many fields, such as plant
science, data mining, and biomedicine (Khosravi et al., 2018;
Moazenzadeh et al., 2018; Zhuo et al., 2018; Han et al., 2019;
Mishra and Padhy, 2019).

Random Forest Regression
Random forests produce reliable classifications by using
predictions from a set of decision trees (Breiman, 2001). It is
composed of multiple decision trees, and there is no correlation
between each decision tree. The final output of the model is
jointly determined by each decision tree in the forest. When
dealing with regression problems, random forest uses the mean
value of each decision tree as the final result. Due to the excellent
regression results and the relatively fast processing speed, the use
of random forest regression has also received extensive attention
(Du et al., 2015; Chen et al., 2018; Dou et al., 2019).

The relationship between variables is often non-linear. Thus,
compared with traditional linear regression, machine learning
algorithms may have higher accuracy. There may be a non-
linear relationship between poplar resistance to flooding and
features. Consequently, the four machine learning methods
mentioned above will be used to predict the waterlogging
resistance of poplar.

Model Parameters
Manual tuning is the traditional method of adjusting the
hyperparameters of machine learning models (Yang and Shami,
2020). With the improvement of automatic optimization
methods, grid search (GS), particle swarm optimization (PSO),
genetic algorithm (GA), and other optimization methods were
proposed to find the optimal hyperparameters. to find the optimal
hyperparameters. However, there are still problems such as
complex optimization processes and slow convergence speed.
Based on experience, we have selected the parameters of the
four machine learning methods. The parameter sensitivity and
parameter selection of each method will be analyzed below.

There are many kinds of training functions for the BPR
algorithm, and most of the data sets are very sensitive to
the training function. In the experiment, a variety of training
functions were selected. Compared with other training functions
such as trainlm function (based on Levenberg-Marquardt
algorithm), the trainbr function based on Bayes rule has better
network generalization ability and higher accuracy. Hence, the
trainbr function was finally used in the BPR method. In addition,
previous studies have shown that the number of hidden layer
nodes is a key factor affecting the accuracy of BPR and ELMR
models (Liu Z. T. et al., 2018; Zhang et al., 2018). For the number
of hidden layer nodes, 3, 5, 7, 9, and 11 hidden layer nodes
were used to train the BPR model, 2, 3, 4, 5, and 6 hidden
layer nodes were used to train the ELMR model. The root mean
square error (RMSE) of the training is shown in Table 2. When
the hidden layer nodes of the BPR and ELMR methods were 9
and 5, respectively, the RMSE was considered to be the smallest.
Therefore, the number of hidden layer nodes of BPR was set to 9,
and the number of hidden layer nodes of ELMR was set to 5.
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TABLE 2 | RMSE of models with different Nodes or Mtry.

BPR ELMR RFR

Nodes RMSE Nodes RMSE Mtry RMSE

3 0.5654 2 0.3836 1 0.1940

5 0.4221 3 0.3785 2 0.2654

7 0.3703 4 0.3591 3 0.3210

9 0.3680 5 0.3426 4 0.3558

11 0.3939 6 0.3438 5 0.3982

TABLE 3 | Machine learning model parameters.

Methods Model parameter

BPR Training function: trainbr

Number of input layers: 3

Number of hidden layers: 9

Number of output layers: 1

Transfer function: logsig, purelin (Input-Hidden, Hidden-Output)

net.trainparam.goal: 0.0001

net.trainparam.lr: 0.01

net.trainparam.epochs: 1000

ELMR Training function: elmtrain

Number of input layers: 3

Number of hidden layers: 5

Number of output layers: 1

Activation function: sigmoid

SVR Training function: svmtrain

Model: ε-SVR

Kernel function: RBF

Regularization parameter C: 65

Gamma: 0.001

p: 0.01

RFR Training function: TreeBagger

Number of decision trees: 200

Minimum number of leaves: 1

Fraction of in-bag observations (FBoot): 1

For the SVR method, two SVR models (nu-SVR and
epsilon-SVR) and four kernel functions (linear, polynomial,
sigmoid, and radial basis functions) of the LibSVM toolbox
were selected. Due to the higher precision of the model on
the training set, the epsilon-SVR model (ε-SVR, a model
that minimizes the RMSE) based on the RBF kernel function
was finally selected. The regularization parameter C and
the penalty coefficient gamma were determined by fivefold
cross validation. The minimum number of leaves (Mtry) is
the sensitive parameter of the RFR model, and the value
of Mtry is generally set to 2 (Probst et al., 2018). In the
experiment, we set the value of Mtry to 1, 2, 3, 4, and 5. The
RMSE of the training function is shown in Table 2. When
the value of Mtry was 1, RMSE was considered to be the
smallest. Therefore, the value of Mtry was set to 1. Other
parameters of the machine learning method were set as common
parameters. The specific values of the parameters are shown in
Table 3.

Evaluation of Model Performance
The three evaluation indexes of coefficient of determination
(R2), root mean square error (RMSE) and mean absolute error
(MAE) were used to evaluate the performance of the model. The
corresponding calculation formulas are shown in (6)-(8):

R2
= 1−

∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − yi)

2 (6)

RMSE =

√∑n
i=1 (yi − ŷi)

2

n
(7)

MAE =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣ (8)

where n is the number of varieties, yi is the actual value, ŷi is the
predicted value, and yi is the mean of the true yi.

RESULTS

Treatment of Outliers and Selection of
Evaluation Index
Three evaluation indicators are used to deal with outliers in the
data. The calculated descriptive statistics are shown in Table 4,
where Max and Min are the maximum and minimum values, and
Med is the median. The results of deleting outliers are shown in
Figure 2.

As shown in Figure 2, the points outside the red dotted
line in the figure are outliers. It can be observed that for all
samples, the defined Zscore roughly ranges from [−2, 2], while
the ranges of Zbio and Zsap are larger than Zscore, and only
Zscore has outliers. In addition, from the definition of the
waterlogging tolerance evaluation index, we know that Zscore not
only considers the biomass but also the change of seedling height,
which can more comprehensively reflect the flood resistance
of poplar. Thus, based on the above viewpoints, Zscore was
finally selected as the waterlogging tolerance evaluation index
in this article.

Screening of Features
Significance Test and Correlation Analysis
According to the significance level of the correlation between
the features and the poplar waterlogging tolerance score Zscores,
6 features were selected from 26 features, and these 6 features
were all established under the condition that the significance level
p = 0.05. We calculated the Pearson correlation coefficient, and

TABLE 4 | Descriptive statistics of the three evaluation indicators.

Methods Min Q1 Med Q3 Max

Zbio −2.409917 −0.748933 −0.095463 0.615642 2.614667

Zsap −1.984857 −0.799594 −0.033385 0.722554 2.419308

Zscore −2.076712 −0.554362 −0.039611 0.466923 2.257776
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FIGURE 2 | Distribution of three evaluation indexes.

the results are shown in Figure 3. Figure 3A is the heat map of
26 features, the blank part is the case of p = 0.05, that is, it is not
significant. Figure 3B is a heat map of the correlation coefficient
that satisfies the condition of p = 0.05, and Figure 3C is the exact
value of Pearson’s correlation coefficient between 6 significant
features. The specific meanings corresponding to the 6 significant
features are shown in Appendix Table A1.

From Figure 3C, it can be found that the correlation
between qN_Fo and H2OS is particularly strong. The correlation
coefficient between them exceeds 0.8. Thus, the feature with
the largest coefficient is selected from these related features,
and the highly related features are excluded. After this
operation, the retained features are Fv, qN_Fo, Fm, H2OS/H2OR,
and RH_S/RH_R.

Before establishing the regression model, univariate regression
prediction was carried out on the features of significance test and
correlation screening, and the result is shown in Figure 4. It can
be observed that the five variables all meet the significance level
of p = 0.05, and there is a considerable proportional relationship
between them. Nevertheless, the results of univariate regression
were general, and the highest coefficient of determination (R2)
is 0.57. For this reason, other methods should be chosen
for regression analysis, such as multiple linear regression and
machine learning regression methods.

It is undeniable that the 5 features of significance testing
and correlation screening may still have multicollinearity. To
implement machine learning modeling more reasonably and
accurately, three methods of hierarchical clustering, Lasso,
and Stepwise regression were adopted for further feature
selection. Before predicting the waterlogging tolerance of
different poplar varieties and further feature screening, the
characteristic parameters and Zscore of each sample were
averaged according to the variety.

Clustering Results
The results of hierarchical clustering are shown in Figure 5.
Figure 5A is the total clustering heat map, Figure 5B is the poplar
varieties clustering, and Figure 5C is the poplar characteristic
clustering.According to the clustering results in Figure 5, we
can divide poplar varieties and features into 3 groups. The
classification of poplar varieties is marked as A, B, and C,
and the classification of characteristic parameters is marked
as F1, F2, and F3.

Results of Lasso and Stepwise Regression
Lasso regression and backward stepwise regression are used
to screen the 5 features (Fv, qN_Fo, Fm, H2OS/H2OR, and
RH_S/RH_R) obtained by significance and correlation. The
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results of the Lasso method are Fv, qN_Fo, and RH_S/RH_R.
However, the screening result of stepwise regression only has
the variable Fv. From the univariate regression analysis results
in Figure 4, we know that the coefficient of determination (R2)

of Fv is 0.57. A single feature used for regression may lack
interpretability and may affect the accuracy of the final model.
In addition, according to the results of hierarchical clustering in
Figure 5, a feature with the largest correlation coefficient was
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selected from each of the three groups (F1, F2, and F3), and the
results obtained are consistent with the Lasso method. Therefore,
combining the results of hierarchical clustering and univariate
analysis, in the final machine learning modeling, we used the
three characteristic parameters of Fv, qN_Fo and RH_S/RH_R.

Regression Results of Machine Learning
Models
The Division of Test Set and Training Set
Before establishing the machine learning regression model, the
poplar varieties were divided into training set and test set
according to the ratio of 4:1 (the training set had 16 varieties, and
the test set was 4 varieties). The four poplar varieties in the test
set were selected from the three groups of A, B, C by stratified
sampling based on the poplar hierarchical clustering results. The
poplar varieties used and their corresponding Zscore and Vtype
are shown in Table 5.

Training Set
Four machine learning regression methods were used to perform
regression prediction on the three screened features (Fv, qN_Fo
and RH_S/RH_R). The results obtained on the training set, and
the corresponding R2, RMSE, and MAE are shown in Figure 6
and Table 6.Figure 6D is a histogram of model evaluation indexes
(R2, RMSE, and MAE) of four machine learning methods on the
training set. The colored columns correspond to the four machine
learning methods of BPR, ELMR, SVR, and RFR, respectively.
From the first subplot of Figure 6D, it can be noticed that on
the training set, the highest R2 of the four machine learning
methods is random forest regression (RFR). Specifically, from
Figure 6B and Table 6, we can observe that the coefficient of
determination (R2) of RFR is 0.8847. Then, the second one is
support vector regression (SVR), the R2 is 0.7027. In contrast, the
performance of BP neural network regression (BPR) and Extreme
learning machine regression (ELMR) methods are relatively poor,
and their R2 are 0.5847 and 0.6401, respectively. In addition,
from Figure 6D, we can get similar results from the performance
of RMSE and MAE. Similarly, from Table 6, we can find that
the RMSE of the RFR method is the smallest with a value of
0.1940, and at the same time, the MAE of RFR is also the smallest,
with a value of 0.1591. Therefore, for the four machine learning
methods, the RFR method has the best regression effect. Then,
the second is the SVR method. Correspondingly, the prediction
effects of ELMR and BPR on the training set are relatively trivial.

Test Set
Similarly, the results of the four machine learning regression
methods on the test set, and the corresponding R2, RMSE and
MAE are shown in Figure 7 and Table 7.

Figure 7D is a histogram of model evaluation indexes (R2,
RMSE, and MAE) of four machine learning methods on the
test set. The colored columns correspond to the four machine
learning methods of BPR, ELMR, SVR, and RFR, respectively.
As shown in Figure 7D, random forest regression (RFR) has the
highest R2 for the four machine learning methods on the test set.
In addition, from Figure 7B and Table 7, we can observe that the
R2 of RFR is 0.8351. Then, the second one is SVR, the R2 is 0.6864.

TABLE 5 | Main information of poplar varieties.

Samples Z score V type

Canadensis −0.31136376 A

DD102-4 −0.659417544 A

Flevo −0.149084082 A

I-214 −1.018704692 A

I-63 0.244020869 A

LH04-17 0.348729466 A

Ningshanica −0.843303666 A

Danhong 0.714574083 B

Juba 0.528127585 B

LH04-13 0.845992953 B

I-69 0.356889463 C

I-72 −0.12622992 C

LS68 −0.662543236 C

LS81 0.717527146 C

Lushan 0.282405203 C

NL895 −0.227444975 C

I-45-51 −0.702652584 A

Triplo −0.561219766 A

2L2025 0.570264018 B

Raspalje −0.103562886 C

The third and fourth are ELMR and BPR, their performance is
relatively poor, and the corresponding R2 are 0.6207 and 0.5703,
respectively. Besides, from Figure 7D and Table 7, on the test
set, the smallest root mean square error (RMSE) is RFR, followed
by SVR and other methods. Similar results appear on the mean
absolute error (MAE). Consequently, our results show that not all
machine learning algorithms can show high accuracy. The best
performance on the test set is RFR, followed by SVR. Then, the
third and fourth are ELMR and BPR. This result is consistent with
the training set.

In summary, according to the results of the training set
and the test set, for the flood resistance of poplar, the best
prediction effect of the four machine learning methods is random
forest regression (RFR), and the second one is support vector
regression (SVR). By contrast, the performance effects of BP
neural network regression (BPR) and Extreme learning machine
regression (ELMR) methods are poor. The prediction accuracy
from high to low is RFR > SVR > ELMR > BPR. Hence,
when predicting the flood resistance of poplar, random forest
regression (RFR) and support vector regression (SVR) can be
used first, and RFR can be given more consideration.

DISCUSSION

Machine learning is a field of artificial intelligence (AI).
Compared with traditional statistical models, machine learning
has higher performance, and at the same time, its complexity is
relatively lower (Mekanik et al., 2013). In fact, before establishing
the regression model of machine learning, we performed multiple
linear regression (MLR) on the five variables (Fv, qN_Fo, Fm,
H2OS/H2OR, and RH_S/RH_R) selected by the significance
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TABLE 6 | The R2, RMSE and MAE of the training set.

Methods BPR ELMR SVR RFR

R2 0.5847 0.6401 0.7027 0.8847

RMSE 0.3680 0.3426 0.3113 0.1940

MAE 0.3019 0.2741 0.1920 0.1591

testing and correlation analysis. However, the results show that
the coefficients of determination (R2) of MLR on the training set

and test set are 0.5616 and 0.5172, respectively. The regression
results are shown in Appendix Figure A1. Many studies have
compared machine learning models with traditional statistical
models (Aertsen et al., 2010; Rezaeianzadeh et al., 2014; Idowu
et al., 2016; Johnson et al., 2016; Wang and Srinivasan, 2017). In
most cases, machine learning models are better than traditional
statistical models, such as linear regression. The model and the
variables are not linearly related in most situations, and the
variables involved are also multivariate. Therefore, more and
more fields have begun to use machine learning algorithms. Even
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so, while machine learning has many advantages, it also has
limitations. For example, many machine learning models lack
interpretability and are prone to overfitting. For this reason, these
problems still need to be considered in practical applications.

The risk of resisting flood disasters can be mainly divided into
two aspects. One is to directly predict flood disasters in the risk
areas, and take preventive measures before the disaster occurs,

such as transferring personnel and valuable finances. Generally
speaking, the key variables that need to be considered in flood
forecasting include 25 factors such as water level, river flood,
soil moisture, and rainfall (Maier et al., 2010). Among these
key variables affecting flood forecasting, rainfall and the spatial
examination of the hydrologic cycle have the most significant
effects (Nourani and Komasi, 2013). Although many studies
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TABLE 7 | The R2, RMSE and MAE of the test set.

Methods BPR ELMR SVR RFR

R2 0.5703 0.6207 0.6864 0.8351

RMSE 0.3254 0.3057 0.2780 0.2016

MAE 0.2806 0.2456 0.2032 0.1782

have predicted the risk of flooded areas (Sampson et al., 2015;
Tehrany et al., 2015; Wang et al., 2015; Darabi et al., 2019),
this method still cannot essentially eliminate the impact of flood
disasters. At the same time, it is relatively difficult to predict
flood disasters. Thus, people have to consider another method to
resist flood disasters. Another way to resist the impact of flood
disasters is mainly through building dams and afforestation. The
key to afforestation is to understand the waterlogging resistance
mechanism of plants. The research on the waterlogging resistance
mechanism of plants mainly focuses on exploring the ways for
plants to resist flood stress (Wang et al., 2013, 2021; Najeeb
et al., 2015; Duy et al., 2016). These studies have analyzed the
waterlogging resistance mechanism from the molecular level
of proteins and metal ions. However, there are few studies on
waterlogging resistance prediction, and a complete system is
still lacking. Xie and Shen (2021) used the SVR method in
machine learning to predict the waterlogging resistance of poplar.
However, there are still some limitations in their studies, such as
chlorophyll fluorescence features that have not been considered.
Compared with the previous research, we considered more
accurate feature parameters and more kinds of machine learning
methods. Additionally, we improved the prediction system of
poplar resistance to waterlogging and added two quantitative
definitions of waterlogging resistance evaluation indexes, which
has made considerable improvements.

This study used machine learning methods to predict the flood
resistance of poplar. First, three indicators of flood resistance
were defined and evaluated. Then, the data was processed, and
feature selection and modeling evaluation were implemented.
The whole process is intuitive and specific, which has perfected
the research system of waterlogging tolerance prediction to a
considerable extent, and at the same time, it has also promoted
the research on the mechanism of waterlogging tolerance. This
study helps researchers to screen out poplar varieties with
strong waterlogging tolerance during the poplar sapling period.
It can further cultivate high-quality poplar saplings to achieve
the purpose of precise flood resistance. The results of the
experiment show that the machine learning algorithm shows
high accuracy in predicting the flood resistance of poplar,
especially the random forest regression (RFR) and support vector
regression (SVR) methods. The final result has certain practical
value. In practical applications, these two algorithms can be
used first. However, it must be mentioned that although 160
poplar samples were used throughout the experiment, only 20
poplar varieties were actually used for regression analysis. In
addition, in the regression analysis, 80 poplar samples from
the experimental group were used and averaged according to
varieties. Since the waterlogging tolerance of different individuals
may be quite different, the final result may deviate from the

actual situation. But within the allowable range of error, our
research mainly provides a way of predicting waterlogging
tolerance and improving the system for predicting waterlogging
tolerance. Future research can consider more poplar varieties
to improve the universality and stability of the method. In
addition, the quantitative relationship of poplar varieties’ impact
on flood disasters can be considered. In a word, this research
has great theoretical value and practical significance, and the
proposed method can meet the actual engineering needs in a
considerable range.

CONCLUSION

To predict the flood resistance of poplar, the author first analyzed
the differences between the three evaluation indexes of flood
resistance. Then, the final evaluation index of waterlogging
tolerance was determined, and outliers were eliminated. For the
selection of feature parameters, the first screening was carried
out according to the significance test and correlation analysis,
and then the three methods of hierarchical clustering, Lasso,
and stepwise regression were adopted to screen the features
for the second time. The selected features are interpretable and
promote the understanding of poplar’s waterlogging resistance
mechanism. Finally, four machine learning methods were used
to predict and evaluate the flood resistance of poplar. The
results show that the random forest regression and support
vector regression methods are more precise. Nevertheless, it
must be pointed out that there are only four groups of
experiments and controls for each variety. Due to sample
differences and randomness, the final result may deviate
from the actual situation. Future research can consider more
poplar species and sample sizes to improve the versatility and
stability of the method.

This research has perfected the prediction system of plant
resistance to waterlogging, and has important value for accurate
flood resistance and scientific seedling selection. Meanwhile, it
has also made a great contribution to a better understanding of
the mechanism of waterlogging tolerance. The analysis process of
this paper is clear and repeatable. When considering the features
related to the flood resistance of poplar, the photosynthesis
features, chlorophyll fluorescence features, and environmental
features are comprehensively considered. After data processing,
feature selection, and other operations, the machine learning
models were used to predict the flood resistance of poplar. Finally,
the regression results show that the random forest regression
(RFR) and support vector regression (SVR) methods have high
accuracy. On the test set, the coefficients of determination (R2)
of the two methods are 0.8351 and 0.6864, respectively, the
root mean square errors (RMSE) are 0.2016 and 0.2780, and
the mean absolute errors (MAE) are 0.1782 and 0.2031. Based
on the above conclusions, our research shows that combining
photosynthesis, chlorophyll fluorescence, and environmental
variables before flooding experiments, modeling and prediction
of machine learning methods against waterlogging can achieve
high accuracy, which is suitable for actual engineering problems.
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APPENDIX A
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FIGURE A1 | Results of multiple linear regression.
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TABLE A1 | The specific meanings and correlation coefficients of 26 features.

Features Specific meaning Unit

AHs/Cs Ball-Berry parameter Dimensionless

Cond Conductance to H2O mol H2O m−2 s−1

CndCO2 Total conductance to CO2 mol CO2 m−2 s−1

CO2S CO2 concentration on Sample cell µmol CO2 mol−1

CO2S/CO2R CO2 concentration on Sample cell/CO2 concentration on Reference cell Dimensionless

C2sfc CO2 concentration on Leaf Surface µmol CO2 mol−1

Ci_Pa Intercellular CO2 partial pressure Pa

Ci/Ca Intercellular CO2/Ambient CO2 Dimensionless

CndTotal Total conductance to water vapor mol H2O m−2 s−1

CTleaf Computed leaf temperature ◦C

Fo Minimal fluorescence (dark) bit

Fm Maximal fluorescence (dark) bit

Fv Variable fluorescence bit

H2OS H2O concentration on Sample cell mmol H2O mol−1

H2OS/H2OR H2O concentration on Sample cell/H2O concentration on Reference cell Dimensionless

H2O_i Intercellular H2O concentration mmol H2O mol−1

H2Odiff Difference between Intercellular H2O and Sample cell H2O mmol H2O mol−1

Photo Photosynthetic rate µmol CO2 m−2 s−1

PARabs Absorbed Photosynthetically active radiation µmol m−2 s−1

PhiCO2 Quantum yield corresponding to CO2 assimilation rate Dimensionless

qN_Fo Non-photochemical quenching (Calculated by Fo) Dimensionless

RH_S Relative humidity in the sample cell %

RH_S/RH_R Relative humidity on Sample cell/Relative humidity on Reference cell Dimensionless

SVTleaf Saturated vapor pressure calculated by leaf temperature Pa

Trans Transpiration rate mol H2O m−2 s−1

VpdL Vapor pressure deficit based on Leaf temperature kPa
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