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Aboveground biomass (AGB) and leaf area index (LAI) are important indicators to
measure crop growth and development. Rapid estimation of AGB and LAI is of great
significance for monitoring crop growth and agricultural site-specific management
decision-making. As a fast and non-destructive detection method, unmanned aerial
vehicle (UAV)-based imaging technologies provide a new way for crop growth
monitoring. This study is aimed at exploring the feasibility of estimating AGB and LAI
of mung bean and red bean in tea plantations by using UAV multispectral image data.
The spectral parameters with high correlation with growth parameters were selected
using correlation analysis. It was found that the red and near-infrared bands were
sensitive bands for LAI and AGB. In addition, this study compared the performance
of five machine learning methods in estimating AGB and LAI. The results showed
that the support vector machine (SVM) and backpropagation neural network (BPNN)
models, which can simulate non-linear relationships, had higher accuracy in estimating
AGB and LAI compared with simple linear regression (LR), stepwise multiple linear
regression (SMLR), and partial least-squares regression (PLSR) models. Moreover,
the SVM models were better than other models in terms of fitting, consistency, and
estimation accuracy, which provides higher performance for AGB (red bean: R2 = 0.811,
root-mean-square error (RMSE) = 0.137 kg/m2, normalized RMSE (NRMSE) = 0.134;
mung bean: R2 = 0.751, RMSE = 0.078 kg/m2, NRMSE = 0.100) and LAI (red bean:
R2 = 0.649, RMSE = 0.36, NRMSE = 0.123; mung bean: R2 = 0.706, RMSE = 0.225,
NRMSE = 0.081) estimation. Therefore, the crop growth parameters can be estimated
quickly and accurately using the models established by combining the crop spectral
information obtained by the UAV multispectral system using the SVM method. The
results of this study provide valuable practical guidelines for site-specific tea plantations
and the improvement of their ecological and environmental benefits.
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INTRODUCTION

Intercropping, as the essence of traditional agriculture, has
the advantages of increasing yield and quality (Mao et al.,
2014; Egesa et al., 2016), promoting the utilization of nutrient
resources (Rivest et al., 2010; Crème et al., 2016; Davies
et al., 2016), increasing biodiversity (Bainard et al., 2011; Sanaa
et al., 2016), and reducing pests and weeds (Brooker et al.,
2015; Lopes et al., 2016). Tea plants [Camellia sinensis (L.)
O. Kuntze] are cultivated worldwide as an economical woody
plant, which grow in warm, humid, and light scattering regions.
The different intercropping patterns of tea plantations, such
as tea-fruit and tea-soybean intercropping, will be more in
line with the biological characteristics of tea plant growth by
improving microenvironment and resource utilization. Previous
studies have shown that diverse agroforestry-tea intercropping
systems, such as tree/tea and soybean/tea cannot only regulate
the ecological environment of tea plantation, improve the
soil nutrition, but also reduce the occurrence of diseases
and insect pests and grass, and achieve high yield and
quality (Sedaghathoor and Janatpoor, 2012; Li et al., 2019).
However, the intercropping density and the growth status of
intercropping crops have a great influence on the growth
of tea plants (Natarajan and Willey, 1980; Huang et al.,
2019). A better understanding of the growth and development
of intercropping crops is of great significance for guiding
young tea plantation intercropping techniques and improving
planting benefits.

Aboveground biomass (AGB) and leaf area index (LAI) are
two main parameters of crop growth, which can reflect the
growth status of legumes intercropped in young tea plantations,
thus contributing to production management in tea plantations
(Li et al., 2015; Liu B. et al., 2017). Rapid and accurate
estimation of these two parameters can provide a strong basis
for the timely formulation of management measures for young
tea plantations (Li B. et al., 2020). However, the traditional
crop growth assessment method is based on destructive sampling,
which is to manually collect data samples in the field, or use field
measuring instruments to evaluate crops (Freeman et al., 2007;
Yue et al., 2018; Afrasiabian et al., 2020). Although this method is
accurate, it is destructive, labor-intensive, time-consuming, and
not operationally feasible for large-scale spatial and temporal
measurements (Wang et al., 2017). Another relatively new
method is to use instruments for measurement, which is less
destructive to crops, but external factors have a certain impact on
experimental equipment, and it is also difficult to apply to rapid
monitoring of field crops.

In recent years, high-throughput non-destructive plant
phenotyping techniques based on UAV are becoming a powerful
tool for crop monitoring, due to the advantages of convenient
operation, high spatial and temporal resolution, and reasonable
spatial coverage, such as crop plot detection (Liu H. et al.,
2017), crop growth status monitoring (Pölönen et al., 2013;
Harkel et al., 2019; Maimaitijiang et al., 2019), crop yield
prediction (Zhou et al., 2017; Gilliot et al., 2020; Li B. et al.,
2020), and plant water status assessment (Romero et al., 2018).
Machine learning, as an important data analysis method, has

been used to establish crop remote sensing estimation models
combined with spectral parameters of remote sensing images.
For example, Jin et al. (2015) used a vegetation index (VI)
and radar parameter to accurately estimate the LAI (R2 = 0.83)
and biomass (R2 = 0.90) of winter wheat using partial least-
squares regression (PLSR). Devia et al. (2019) used an unmanned
aerial vehicle (UAV)-based multispectral system for aerial crop
monitoring to combine seven VIs of rice growth in a multivariate
regression model to estimate rice biomass. Furthermore, it was
confirmed that this method could estimate crop biomass in
a large area with an average correlation coefficient of 0.76.
Han et al. (2019) pointed out that the random forest (RF)
model derived from the crop surface model using VIs and
crop height correlation indicators can predict corn biomass
(R2 = 0.699, root-mean-square error (RMSE) = 1.2), and its
accuracy is slightly higher than that of the backpropagation
artificial neural network (ANN) and stepwise multiple linear
regression (SMLR) models. Qi et al. (2020) developed a model for
the estimation of peanut LAI by using a backpropagation neural
network (BPNN) with UAV-based multispectral image data
(R2 = 0.968, RMSE = 0.165). Tatsumi et al. (2021) constructed
a tomato biomass estimation model using red-green-blue (RGB)
and multispectral image data acquired from UAV with feature
variable selection and machine learning and improved the
estimation accuracy (rRMSE = 8.8–28.1%). Similarly, Jiang et al.
(2019) established a model for the estimation of rice biomass
by using RGB and multispectral image data obtained from
UAV and further improved the estimation accuracy of the
model by combining meteorological data with RF (R2 = 0.92,
RMSE = 126.28 g/m2).

However, there were few reports on the use of UAV-based
multispectral image data combined with machine learning to
monitor crop growth of tea plantations, and it is difficult to
provide valuable data support and practical guidance for site-
specific management decisions and the construction of smart
tea plantations. Therefore, this study attempts to use UAV-
based multispectral imagery combined with ground-measured
sample data to explore the feasibility of estimating AGB
and LAI using the spectral parameters in intercropping tea
plantations. The spectral parameters sensitive to crop growth
response were selected according to the correlation analysis.
Then, the remote sensing monitoring models of intercropping
crop growth parameters suitable for young tea plantation
were constructed using machine learning, and the estimation
performance of five machine learning models was evaluated:
(1) Simple linear regression (LR), (2) SMLR, (3) PLSR models,
(4) support vector machine (SVM), and (5) BPNN. We
hypothesized that the SVM method can simulate both linear
and non-linear relationships between multiple independent
variables and one factor. Compared with other modeling
methods, the SVM model should have a higher degree of
explanation for AGB and LAI. It is hoped that the results of
this study can provide basic data and theoretical support for
the growth monitoring of crops in young tea plantations in
order to provide valuable practical guidelines for site-specific
tea plantations and the improvement of their ecological and
environmental benefits.
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MATERIALS AND METHODS

Study Area and Experimental Design
The field experiment was conducted at the tea research
demonstration base of Qingdao Agricultural University
(36◦26 N, 120◦34 E, average altitude 54.47 m a.s.l.). The
area has a warm temperate continental monsoon climate,
with precipitation mostly occurring during summer and
autumn and a large temperature difference between day and
night. The average annual temperature is 12.1◦ (the annual
maximum/minimum temperature is 38.6/−18.6◦), and the
annual average precipitation is 708.9 mm. The experimental
tea plantation covers an area of 100 m × 30 m, with a soil pH
of 6.5. The location diagram of the experiment area is shown
in Figure 1A.

The tea plants planted in the tea plantation are half-year
seedlings and the variety was Zhongcha 108, with a total of 11
rows. In early June 2020, mung bean and red bean were planted
in the tea plantation, and the varieties, namely, Zhonglv 4 and
Qidonghong were used. Red bean (Vigna angularis L.) and mung
bean (V. radiata (L.) Wilczek) were planted in rotation with 6
rows each. Each row was divided into 10 plots, with a total of 120
plots. The specific test design is shown in Figure 1B.

Unmanned Aerial Vehicle Imagery Data
Acquisition and Preprocessing
Multispectral cameras and accessories were mounted on a UAV
platform (DJI M200 V2, DJI, Shenzhen, China) during data
collection. The UAV has four propellers, is equipped with two
7,660 mAh (22.8 V) batteries with a battery life of 38 min, and
can maintain stability at low speed and low altitude; for the data
acquisition, the takeoff mass was 5.5 kg. Images were taken at 25
m above ground level (AGL) at a speed of 1.5 m/s. The collection
dates were July 24 and August 11, 2020.

Multispectral images were acquired using a multispectral
camera MS600 (Yusense, Qindao, Shandong, China), which

has a resolution (effective pixels) of 1,280 × 960 pixels. The
multispectral camera used in this experiment was equipped with
six spectral wavebands, namely blue, green, red, red edge, and
two near-infrared wavebands (Table 1). A downward light sensor
system was installed horizontally on the top of the UAV to
measure the environmental irradiance and the readings of post-
calibrate reflectance. As another source of radiometric calibration
data, the standard panel attached to the multispectral camera
was used for image calibration on the ground before each
flight. Images in this study were captured in sub-centimeter
pixel resolution, and the flight survey was configured with an
80% side and 80% forward overlap. The original multispectral
images obtained from each aerial photography operation were
processed using Yusense map V1.0 software (Yusense, Qindao,
Shandong, China) to generate a complete multispectral image.
Then, the average digital number (DN) values of the six
bands of each experimental cell are extracted using ENVI 5.2
software (Research Systems Inc., Boulder Co., United States) for
subsequent processing.

Ground Data Acquisition
Field measurements were conducted on the same days as the UAV
surveys to provide ground-truth data. To measure the LAI of
red bean and mung bean accurately, a place with uniform crop
growth (1 m × 1 m) in each plot was selected to measure the
LAI using CI-110 plant canopy digital image analyzer (CID Bio-
Science Inc., WA, United States). When measuring LAI, direct
sunlight was avoided. First, a blank value was measured above
the crop canopy, and then four values were randomly measured
below the crop canopy. The average LAI of mung bean and red
bean in the community was obtained by maintaining the lens
level throughout the measurement, and the results are shown
in Figure 2.

After the measurement of LAI, mung bean or red bean
were randomly selected from experimental plots, which were
intercepted from the height of 1 cm above the ground, and the

FIGURE 1 | Research area. (A) The location of the experiment area; (B) experimental design.
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TABLE 1 | Center wavelength and full width at half maximum (FWHM) bandwidth
of each spectral band of the multispectral camera.

Spectral band Color Sample Center
wavelength (nm)

Bandwidth FWHM
(nm)

Blue Blue 450 25

Green Green 555 25

Red Red 660 25

Red edge Pink 710 25

Near infrared Light purple 840 25

Near infrared Purple 940 25

total number of plants in the sampling area was measured. The
sample was placed in a paper bag, and the fresh biomass of the
sample was measured immediately. The paper bag was placed
in an oven at 80◦ for 24 h and maintained in a constant mass
state. Then the sample was weighed to determine the dry mass to
estimate the total biomass of the whole plot, and the results are
shown in Figure 2.

Selection of Spectral Parameters
A spectral parameter should combine the reflectance of different
bands with a VI in a certain way, which can reduce the influence
of background environmental information on the crop canopy
spectrum. According to previous studies, we selected 22 VIs
and combined them with the 6 spectral bands of the MS600
multispectral camera to estimate the AGB and LAI of red
bean and mung bean. Specific spectral parameters are shown
in Table 2.

Data Analysis
In this study, 120 datasets of red bean and mung bean were
collected. Each dataset was composed of ground measurement
data and UAV remote sensing data. In data analysis, three-fourth

(90 datasets) and one-fourth (30 datasets) of the total data were
divided into training sets and test sets, respectively. In the training
sets, the LR method was used to establish growth parameter
estimation models based on a single spectral parameter, and
the SMLR method was used to establish growth parameter
estimation models based on multiple spectral parameters. These
two different established models were evaluated using the
test datasets. The feasibility of the models was evaluated by
the coefficient of determination (R2), root-mean-square error
(RMSE), and normalized RMSE (NRMSE). A larger R2 value
indicates a better model fit, while smaller RMSE and NRMSE
values indicate a higher model accuracy. Finally, the estimation
models of AGB and LAI were established by using three machine
learning methods: PLSR, SVM, and BPNN. In the process of
model building, the random 10-fold cross-validation method was
used to divide 120 sample data into 10 parts. Each time, 90% of
all samples was used to fit the model, and the remaining 10% was
used as a test set to estimate performance metrics. This process
was repeated ten times, and each model was run 100 times in
total. The mean values of R2, RMSE, and NRMSE were calculated
to evaluate the accuracy of AGB and LAI estimation models.
The values of R2, RMSE, and NRMSE were calculated using the
following formulas (1)–(3), respectively:

R2
= 1−

∑n
i = 1 (xi−yi)

2∑n
i = 1 (xi−x)2 (1)

RMSE =

√∑n
i = 1 (yi−xi)

2

n
(2)

NRMSE =
RMSE

X
(3)

where xi is the measured AGB or LAI for red bean and mung
bean, x is the average measured AGB or LAI, yi is the AGB or
LAI predicted by the model, and n is the number of data points.

FIGURE 2 | The ground-truth data for leaf area index (LAI) and aboveground biomass (AGB) of intercropping crops. (A) AGB of red bean and mung bean; (B) LAI of
red bean and mung bean.
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TABLE 2 | The spectral parameters used in this study.

Spectral parameters Calculation formula References

B.450 / /

G.555 / /

R.660 / /

RE.710 / /

NIR.840 / /

NIR.940 / /

DVI NIR.840-G.555 Naito et al., 2017

NDVI (NIR.840-
R.660)/(NIR.840+R.660)

Rouse et al., 1974

EVI 2.5*(NIR.940-
G.555)/(NIR.940+6*R.660-

7.5B.450+1)

Prabhakara et al.,
2015

GNDVI (NIR.940-
G.555)/(NIR.940+G.555)

Wang et al., 2007

PPR (G.555-B.450)/(G.555+B.450) Metternicht, 2003

SIPI (NIR.940-B.450)/(NIR.940-
R.660)

Penuelas et al.,
1995

RECI NIR.840/RE.710-1 Kanke et al., 2016

Red edge NDVI (NIR.940-
RE.710)/(NIR.940+RE.710)

Kanke et al., 2016

MERIS Terrestrial
Chlorophyll Index
(MTCI)

(NIR.840-RE.710)/(RE.710-
R.660)

Panigada et al.,
2010

Modified chlorophyll
absorption ratio index
(MCARI)

[RE.710-R.660-0.2(RE.710-
R.660)]

*(RE.710/R.660)

Wu et al., 2008

Triangular vegetation
index (TVI)

0.5*[120*(NIR.840-G.555)-
200*(R.660-G.555)]

Haboudane et al.,
2004

Modified triangular
vegetation index
(MTVI2)

1.5*[1.2*(NIR.840-G.555)-
2.5*(R.660-

G.555)]/[(12*NIR.880+1)2-
[6*NIR.880-5*(R.660)2]-0.5]1/2

Haboudane et al.,
2004

Transformed chlorophyll
absorption reflectance
index (TCARI)

3*[(RE710-R.660)-0.2*(RE.710-
G.555)

*(RE.710/G.555)]

Haboudane et al.,
2004

Optimization of
soil-adjusted vegetation
index (OSAVI)

1.16*(NIR.840-
R.660)/(NIR.840+R.660+0.16)

Rondeaux et al.,
1996

Ratio vegetation index
(RVI1)

NIR.840/R.660 Kanke et al., 2016

PPR/NDVI PPR/NDVI Jin et al., 2017

SIPI/RVI1 SIPI/RVI1 Jin et al., 2017

Modified non-linear
vegetation index (MNLI)

1.5*[(NIR.840)2-
R.660)]/(NIR.842)2+R.660+0.5

Yang Z. et al., 2008

Soil-adjusted
vegetation index (SAVI)

(NIR.840-
R.660)/(NIR.840+R.660+0.5)

Pinty and
Verstraete, 1992

Modified simple ratio
(MSR)

(NIR.840/R.660-
1)/[(NIR.840/R.660)1/2

+1]
Wu et al., 2008

Non-linear vegetation
index (NLI)

[(NIR.840)2-
R.660]/[(NIR.840)2+R.660]

Goel and Qin, 1994

Renormalized
difference vegetation
index (RDVI)

(NIR.840-
R.660)/(NIR.840+R.660)1/2

Tucker, 1979

RESULTS

Correlation Analysis Between Spectral
Parameters With Growth Parameters
To select the spectral parameters that are highly correlated with
the growth parameters (AGB and LAI) of red bean and mung

bean, the correlation analysis between 28 spectral parameters and
the growth parameters of red bean and mung bean (Figure 3)
was carried out. For the AGB and LAI of red bean, the spectral
parameters with the strongest correlation were RVI1 and red-
edge chlorophyll index, and their correlation coefficients were
0.847 and 0.783, respectively. For the AGB and LAI of mung bean,
the spectral parameters with the strongest correlation were RVI1
and B.450, and their correlation coefficients were 0.801 and 0.774,
respectively. In general, most of the spectral parameters selected
in this study had a strong correlation with the growth parameters,
which can be used for the modeling and inversion of AGB and
LAI of red bean and mung bean.

Estimation of Aboveground Biomass and
Leaf Area Index Using Optimal Spectral
Parameters Combined With Simple
Linear Regression
To evaluate the direct relationship between spectral parameters
and crop growth parameters, the LR method was used to establish
AGB and LAI estimation models of red bean and mung bean in
the training set using the optimal spectral parameters screened
by correlation analysis (Table 3). Then, we verified the models
with a test set (Figure 4). The training results showed that RVI1
could explain 76.1% (RMSE = 0.168 kg/m2, NRMSE = 0.157)
and 62.6% (RMSE = 0.088 kg/m2, NRMSE = 0.113) of AGB
variation in red bean and mung bean, respectively. As for
LAI, the optimal spectral parameter red-edge chlorophyll index
(RECI) could explain 63.4% (RMSE = 0.376, NRMSE = 0.129)
of the LAI variation in red bean and B.450 could explain
59.1% (RMSE = 0.25, NRMSE = 0.09) of the LAI variation
in mung bean. In addition, for growth parameters of red
bean, these models deteriorated with the test dataset and the
explanatory degree for AGB and LAI variation decreased to
52.4% (RMSE = 0.194 kg/m2, NRMSE = 0.187) and 56.3%
(RMSE = 0.357, NRMSE = 0.119), respectively (Figures 4A,C).
In contrast, for growth parameters of mung bean, the models
performed better with the test dataset and the explanatory
degree for AGB and LAI variation increased to 66.3 and 62.1%,
respectively. At the same time, the values of RMSE increased to
0.113 and 0.271, and the values of NRMSE increased to 0.138 and
0.096, respectively (Figures 4B,D).

Estimation Aboveground Biomass and
Leaf Area Index Using Spectral
Parameters Combined With Stepwise
Multiple Linear Regression
To compare the growth parameter estimation models based on
the optimal spectral parameters, we screened out 2–4 spectral
parameters with a high correlation with the growth parameters
of red bean and mung bean. Then, the SMLR method was used
to establish AGB and LAI estimation models in the training
set (Table 4). SMLR analysis showed that the models explained
85.7% (RMSE = 0.133 kg/m2, NRMSE = 0.125) and 75.7%
(RMSE = 0.073 kg/m2, NRMSE = 0.093) of AGB variation in
red bean and mung bean. Similar results were obtained for LAI.
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FIGURE 3 | Correlation coefficients between spectral parameters and growth parameters (AGB and LAI) of intercropped crops. (A) AGB and LAI of red bean;
(B) AGB and LAI of mung bean.
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TABLE 3 | Performance indicators of the AGB and LAI estimation models established by the LR method using the optimal spectral parameters in the training set.

Growth parameters Intercropping crops Optimal spectral parameters Regression equation Modeling accuracy

R2 RMSE NRMSE

AGB (kg/m2) Red bean RVI1 AGB = 0.059*RVI1+0.313 0.761 0.168 0.157

Mung bean RVI1 AGB = 0.054*RVI1+1.55 0.626 0.088 0.113

LAI Red bean RECI LAI = 0.616*RECI+0.355 0.634 0.376 0.129

Mung bean B.450 LAI = –74.297*B.450+5.292 0.591 0.25 0.09

FIGURE 4 | Relationship between the predicted and measured AGB and LAI obtained by using linear regression (LR) methods using the optimal spectral parameters
in the test set. (A) AGB of red bean; (B) AGB of mung bean; (C) LAI of red bean; (D) LAI of mung bean. The red line is a 1:1 line.

TABLE 4 | Performance indicators of AGB and LAI estimation models established by the SMLR methods in the training set.

Growth parameters Intercropping crops Regression equation Modeling accuracy

R2 RMSE NRMSE

AGB (kg/m2) Red bean AGB = 0.155*RVI1–27.913*B.450–0.964*MSR–5.09*G.555 + 2.748 0.857 0.133 0.125

Mung bean AGB = 0.231703*RVI1–1.1639*MSR–15.0778*B.450–3.64563*R.660 + 1.7216 0.757 0.073 0.093

LAI Red bean LAI = 0.478338*RECI–53.7192*B.450 + 0.123683*RVI1–1.12239*MSR+ 4.65337 0.698 0.351 0.121

Mung bean LAI = –49.2931*B.450–3.39808*SIPI/RVI1 + 4.98799 0.672 0.227 0.081

These models explained 69.8% (RMSE = 0.351, NRMSE = 0.121)
and 67.2% of LAI (RMSE = 0.227, NRMSE = 0.081) variation in
red bean and mung bean, respectively.

To evaluate the performance of the AGB and LAI estimation
models constructed using SMLR, we plotted the relationship

between the measured values and predicted values of AGB
and LAI in the test dataset (Figure 5). Compared with the
training set, the SMLR model showed a greater decrease in
the explanatory degree of AGB variation, indicating that the
estimation accuracy of the model decreased significantly. The

Frontiers in Plant Science | www.frontiersin.org 7 February 2022 | Volume 13 | Article 820585

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-820585 February 21, 2022 Time: 13:42 # 8

Shi et al. Monitoring Growth Using UAV Images

FIGURE 5 | Relationship between the predicted and measured AGB and LAI obtained by using the SMLR models within the test dataset. (A) AGB of red bean;
(B) AGB of mung bean; (C) LAI of red bean; (D) LAI of mung bean. The red line is a 1:1 line.

NRMSE value increased to 0.129, indicating that the AGB
estimation model of red bean was not stable. Compared with
the training set, the SMLR model had lower explanatory power
for AGB variation and higher NRMSE value, indicating that
the accuracy of the estimation models of AGB of red bean
decreased significantly and its stability was not good (Figure 5A).
The accuracy of other models was basically consistent with
the results of the training set, indicating that the stability of
models was better. Compared with evaluation indexes of the
LR models based on optimal spectral parameters, the R2 values
of SMLR models based on multispectral parameters increased,
while the RMSE and NRMSE values decreased. These results
indicated that the performance of SMLR models was better
than LR models in estimating the growth parameters of red
bean and mung bean.

Estimation of Aboveground Biomass and
Leaf Area Index Using Spectral
Parameters Combined With SVMs,
Partial Least-Squares Regression, and
Backpropagation Neural Network
In addition, to evaluate the performance of SVMs, PLSR,
and BPNN) in the estimation of crop growth parameters,
we established AGB and LAI estimation models of red bean
and mung bean by combining SVM, PLSR, and BPNN with

spectral parameters. To prevent overfitting caused by using
too many independent variables when establishing models, we
selected five spectral parameters with high correlation for each
growth parameter for modeling and analyzing according to
the results of correlation analysis (Supplementary Figure 1).
The training results given in Figure 6 indicated that the SVM
method showed better performance than other methods in the
estimation of the AGB and LAI of red bean and mung bean.
Compared with PLSR and BPNN models, SVM models had
the highest R2 values and relatively low RMSE and NRMSE
values, indicating that SVM models had the highest accuracy
in the estimation of the growth parameters of red bean and
mung bean. Although BPNN also provided higher R2 values
in the estimation of the growth parameters of red bean and
mung bean, the obtained RMSE and NRMS values were higher
with high variability. In addition, the accuracy of estimating the
AGB of the red bean by three methods was better than that
of mung bean, but the performance was the opposite in LAI
estimation. The SVM models obtained the highest values of R2

and the lowest values of RMSE and NRMSE when estimating
the growth parameters of red bean and mung bean in the test
set (Figure 7). These results prove the excellent performance of
the SVM models in estimating the growth parameters of red
bean and mung bean. Similarly, the PLSR models were still the
least applicable model for estimating the LAI and AGB of red
bean and mung bean.

Frontiers in Plant Science | www.frontiersin.org 8 February 2022 | Volume 13 | Article 820585

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-820585 February 21, 2022 Time: 13:42 # 9

Shi et al. Monitoring Growth Using UAV Images

FIGURE 6 | Boxplots for the coefficient of determination (R2), root-mean-square error (RMSE), and normalized RMSE (NRMSE) of the training results of SVM, PLSR,
and BPNN models. (A) AGB of red bean and mung bean; (B) LAI of red bean and mung bean. The point plots indicate outliers encountered during the phase of the
100 different verifications repetitions and the black multiplication sign indicates the mean value.

To further compare the differences between the performance
indicators calculated by using the training dataset and the test
dataset in the three methods, we had drawn comparison charts
of line segment connection (Figures 8, 9). For AGB of red bean,
the SVM model showed high performance (Figure 8A). In the
training set, the SVM model could explain 88.2% of the AGB
variation in red bean, and the RMSE and NRMSE values were
0.113 and 0.116, respectively. In the test set, the explanatory
degree of the SVM model for AGB variation decreased to 81.1%,
RMSE and NRMSE increased to 0.137 and 0.134, respectively.
Although the explanatory degree of AGB variation and RMSE
value of the SVM models changed greatly, the prediction accuracy
and stability of the models were better than that of PLSR and
BPNN models. For AGB of mung bean, the SVM model showed
better stability (Figure 8B). In both the training set and the test
set, the SVM model had the highest explanatory degree (80.5
and 75.1%) of AGB variation and the lowest RMSE (0.070 and
0.078) and NRMSE (0.116 and 0.134). The difference between
training results and test results was small, which is more stable
than other models.

Similarly, the SVM model also showed high performance for
LAI estimation of red bean and mung bean (Figure 9). In the
training set and test set, the explanatory degrees of the SVM
model for LAI variation were 70.5 and 64.9%, for RMSE were
0.326 and 0.360, and NRMSE were 0.116 and 0.134, respectively.
The explanatory degrees of LAI for mung bean were 74.1 and

70.6%, RMSE were 0.208 and 0.225, NRMSE were 0.11 and
0.123, respectively. In terms of overall performance indicators,
the SVM models had better accuracy than the PLSR model and
BPNN model and had lower RMSE and NRMSE as well as small
test differences.

DISCUSSION

The Spectral Data Obtained From
Unmanned Aerial Vehicle Multispectral
Image Can Reliably Reflect the Growth
Status of Crops Intercropped in Tea
Plantation
Monitoring the growth of intercropping crops in tea plantations
and guiding the formulation of tea plantation management
measures using UAV-based multispectral imagery are very
attractive. The results indicated that a single spectral parameter
can be used to estimate the AGB and LAI of crops. However,
the optimal spectral parameters for estimating growth parameters
of red bean and mung bean were different, among which RVII
could accurately estimate AGB, while RECI and B.450 were
more suitable for estimating LAI. The difference between optimal
spectral parameters for estimating AGB and LAI indicated
that different VIs showed different sensitivities to AGB and
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FIGURE 7 | Box plots of coefficient of determination (R2), RMSE, and NRMSE of test results of SVM, PLSR, and BPNN. (A) AGB of red bean and mung bean;
(B) LAI of red bean and mung bean. The point plots indicate outliers encountered during the phase of the 100 different test repetitions and the black multiplication
sign indicates the mean value.

FIGURE 8 | The difference between the performance indicators for AGB estimation of red bean and mung bean using three machine learning methods within
training and test datasets. (A) Red bean; (B) mung bean.
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FIGURE 9 | The difference between the performance indicators for LAI estimation of red bean and mung bean using three machine learning methods within training
and test datasets. (A) Red bean; (B) mung bean.

LAI changes in different crops. Similarly, Li W. et al. (2020)
found that RVI had a strong correlation with wheat biomass
and LAI in the process of using meteorological factors and
spectral information to study the disease measurement model of
winter wheat, and Liu et al. (2019) also proved that RVI is an
important VI for estimating biomass of winter oilseed rape. These
conclusions were consistent with our results.

In addition, it was reported that LAI and AGB could exert
a certain influence on the spectral reflectance of crop canopy
in near infrared (NIR) and visible spectrum (Anthony et al.,
2012; Liu et al., 2012; Jin et al., 2015). Qi et al. (2020) found
that red and near-infrared bands were sensitive bands for LAI
in the process of estimating the LAI of peanuts by using UVA
multispectral images. According to the calculation formula of
spectral parameters in Table 4, RVI1 is composed of red band
and near-infrared band, and the red-edge chlorophyll index is
composed of the red-edge band and near-infrared band. Jin
et al. (2015) found that enhanced VI (EVI) with the blue band
could estimate LAI and biomass more accurately than other
spectral parameters when estimating LAI and biomass of wheat
using multitemporal optical and radar parameters. In this study,
the optimal spectral parameter B.450 used to estimate the LAI
of mung bean represents the blue band, which is consistent
with this result. In contrast, in the remote sensing monitoring
of sorghum growth and development based on UAV system,
Li et al. (2018) found that NDVI and RDVI showed a good
exponential correlation with biomass; Shafian (2018) also proved
that there was a high correlation between NDVI and LAI.
Although the calculation of these two spectral parameters has a

red band and near-infrared band, in our study, the correlation
between these two spectral parameters and AGB and LAI of
mung bean and red bean is not the highest, which may be due
to some interference of shadow soil pixels in the process of
extracting spectral parameters. Some studies also pointed out that
the saturation problem of NDVI would reduce its function of
predicting LAI under very high LAI values (Feng et al., 2020).
However, the growth period of red bean and mung bean was
relatively short and the growth rate was very fast, resulting in
higher LAI data values collected later, which further leads to the
low correlation between NDVI and the LAI of mung bean and
red bean in this study.

Different Machine Learning Algorithms
Combined With Spectral Data Can
Effectively Estimate the Growth
Parameters of Intercropping Crops in
Tea Plantation
In addition to single spectral parameters, SMLR, PLSR, SVM, and
BPNN algorithms were used to monitor the growth parameters
of intercropping crops in tea plantations. The results showed that
the SMLR and PLSR models performed significantly better than
the LR models, which is consistent with LAI estimation of peanut
(Qi et al., 2020) and LAI and AGB estimation of winter wheat
(Tao et al., 2020). The reason is that SMLR models and PLSR
models use more spectral information related to the variables of
interest than single spectral parameter models (Qin et al., 2017;
Wei et al., 2018).
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In addition, compared with the LR models based on a single
spectral parameter or SMLR and PLSR models based on multiple
parameters, the SVM and BPNN models can realize non-linear
mapping between input and output variables. Therefore, the
performance of the SVM and BPNN models in the estimation
of growth parameters was better than other models. When the
two models were compared, the SVM models still maintained
excellent performance. Both the training results and test results
of models maintained a high explanatory degree for AGB and
LAI variations of red bean and mung bean. Because the SVM
method is suitable for small samples, the BPNN method is usually
used for a large number of sampled data (Zhu et al., 2019).
However, the sample size used to construct models in this study
is small, which highlights the superiority of the SVM method. In
conclusion, the SVM model can effectively estimate the growth
parameters of intercropping crops in tea plantations, and the
fitting, stability, and accuracy of this model are better than other
models. The superior performance of the SVM method observed
in this study is consistent with previous results. For example,
Yang X. et al. (2008) found that the SVM method had good
learning ability and robustness in estimating the LAI of rice, while
Yue et al. (2017) also proved that SVM had strong adaptability
in estimating AGB of grassland. However, other studies have
shown that PLSR provides better results than SVM in estimating
crop growth parameters (Marabel and Alvarez-Taboada, 2013).
This difference might depend on the degree of non-linearity in
the relationships, the degree of multilinearity and noise in the
independent variables, and how accurately the SVM parameters
can be tuned (Christoffer et al., 2013). However, our crop growth
data precisely fit the advantages of SVM in simulating non-linear
relationships, thus highlighting the superiority of the SVM model
in estimating growth parameters.

CONCLUSION

Reasonable and reliable estimation of AGB and LAI is of
great significance for monitoring crop growth and agricultural
site-specific management decision-making. In this study, five
machine learning algorithms (LR, SMLR, PLSR, SVM, and
BPNN) were used to estimate AGB and LAI of red bean
and mung bean in tea plantations based on the extracted
multispectral image features collected by UAV remote sensing
system. The results showed that the SVM and BPNN models,
which can simulate non-linear relationships, were more accurate
in estimating AGB and LAI of red bean and mung bean compared
with simple LR, SMLR, and PLSR models. In particular, the SVM
model provides higher performance in the estimation of AGB and

LAI of red bean and mung bean. Both RMSE and NRMSE of the
training set and test set were smaller, and the explanatory degree
for AGB and LAI variation was higher. It is proved that the use of
UAV multispectral image data combined with machine learning
methods can effectively monitor the growth status of crops in
tea plantations and provide valuable practical guidelines for site-
specific tea plantations and the improvement of their ecological
and environmental benefits.
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