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The application of mobile robots is an important link in the development of intelligent

greenhouses. In view of the complex environment of a greenhouse, achieving precise

positioning and navigation by robots has become the primary problem to be solved.

Simultaneous localization and mapping (SLAM) technology is a hot spot in solving

the positioning and navigation in an unknown indoor environment in recent years.

Among them, the SLAM based on a two-dimensional (2D) Lidar can only collect

the environmental information at the level of Lidar, while the SLAM based on a 3D

Lidar demands a high computation cost; hence, it has higher requirements for the

industrial computers. In this study, the robot navigation control system initially filtered

the information of a 3D greenhouse environment collected by a 3D Lidar and fused

the information into 2D information, and then, based on the robot odometers and

inertial measurement unit information, the system has achieved a timely positioning

and construction of the greenhouse environment by a robot using a 2D Lidar SLAM

algorithm in Cartographer. This method not only ensures the accuracy of a greenhouse

environmental map but also reduces the performance requirements on the industrial

computer. In terms of path planning, the Dijkstra algorithm was used to plan the global

navigation path of the robot while the Dynamic Window Approach (DWA) algorithm was

used to plan the local navigation path of the robot. Through the positioning test, the

average position deviation of the robot from the target positioning point is less than 8 cm

with a standard deviation (SD) of less than 3 cm; the average course deviation is less

than 3◦ with an SD of less than 1◦ at the moving speed of 0.4 m/s. The robot moves at

the speed of 0.2, 0.4, and 0.6 m/s, respectively; the average lateral deviation between

the actual movement path and the target movement path is less than 10 cm, and the SD

is less than 6 cm; the average course deviation is <3◦, and the SD is <1.5◦. Both the

positioning accuracy and the navigation accuracy of the robot can meet the requirements

of mobile navigation and positioning in the greenhouse environment.
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INTRODUCTION

With the development of mechanization and automation,
agriculture has undergone an accelerated upgrading toward
information and intelligent agriculture in the world. Also, with
the development of high technology and with the incremental
labor cost, the application of robots in agriculture has become
more and more extensive. Compared with the complex field
environment, the greenhouse environment is relatively simple;
however, in greenhouses where plants are densely distributed
under high temperature and high humidity, and, sometimes,
even toxic gases are emitted, there are some potential safety
hazards in manual operation (Henten et al., 2013). Therefore,
robots enjoy a large application market in picking, plant
protection, inspection, and other aspects of greenhouses (Uyeh
et al., 2019).

In terms of the autonomous navigation of robots, the
navigation solutions based on Global Navigation Satellite
System (GNSS) have been fully applied in the field operations
environment (Pérez Ruiz and Upadhyaya, 2012). However, as
there are many obstructions in greenhouses to cause the loss of
satellite signals, the greenhouse environment is not suitable for
mobile robots. Path planning and movement, which are safe,
fast, and effective, have become the primary difficulties in the
application of greenhouse mobile robots.

The guide rail navigation is a common navigation solution
for greenhouse mobile robots. It realizes the mobile navigation
in greenhouses by laying rails on the ground (Chiu et al., 2013;
Hayashi et al., 2014; Lee et al., 2015). Considering the high cost of
the rail laying and the occupation of the ground in greenhouses,
some robots that use greenhouse pipes as motion guide rails have
been developed, and these robots can move along the pipes or
on the ground (Zhao et al., 2016; Arad et al., 2020). To further
improve the safety and practicability of the robots on guide rails,
Balaso et al. (2013) installed a distance sensor, a photoelectric
sensor, and an ultrasonic sensor to assist the navigation of
the designed multi-functional greenhouse robot. Although the
guide rail navigation is simple in operation, the fixed rails
greatly limit the movement path and the range of the robot.
Magnetic navigation and ribbon navigation through themagnetic
stripes and ribbons replace the rails in the guide rail navigation.
Magnetic navigation realizes path tracking by detecting the
electromagnetic signals installed on the ground (Pan et al., 2019),
and the color band navigation uses visual sensors to detect the
edge of the color band to achieve navigation (Min et al., 2014).
Compared with the guide rail navigation, the installation cost
of magnetic stripes and color bands is relatively low and does
not occupy the greenhouse space; moreover, their laying and
installation are simpler and more flexible. Nevertheless, they
could not get rid of the movement restrictions by fixed routes.

Machine vision navigation uses monocular vision or stereo
vision sensors to collect environmental information then extract
the navigation paths or crop lines based on the Hough Transform
(Hough, 1962), the least-Square Methods (Cui et al., 2015;
Mao et al., 2019), and the binocular stereo vision algorithms
(Zou et al., 2012). Wang et al. (2012) analyzed the distribution
characteristics of each component of the road image between the

tomato ridges in the Hue, Saturation and Intensity (HSI) color
space and then proposed a greenhouse tomato path detection
method between the ridges based on the least square method.
The experimental results showed that the proposed method
could accurately extract the edge information of the target
sensitive area; there was a 91.67% accuracy rate of extracting
the navigation path between the tomato ridges with different
coverage. In view of the problems of poor recognition of visual
navigation technology and vulnerability to illumination, Gao and
Ming (2014) selected the H component in the HIS color space
for subsequent image processing and introduced the K-means
algorithm to cluster and to segment the image for the unique
color characteristic information of greenhouse. Chen et al. (2021)
proposed a Hough transform algorithm for the prediction point
by using a new graying factor to segment cucumber plants and
soil, and this proposed algorithm is used for prediction points to
fit the navigation paths. This algorithm is 35.20ms faster than the
traditional Hough Transform. The robot uses the machine vision
sensor, which is carried by itself to autonomously navigate, thus
saving the cost of setting up the environment in the early stage.
However, the navigation path of the robot needs to be fitted after
extracting the greenhouse vegetation or the roadside information
each time, so the path of the robot is subject to environmental
constraints, which further limits the space for robot movements.

The positioning and navigation method, based on multi-
source data fusion, is the current hotspot in the research of
the navigation of greenhouse mobile robots. In this navigation
environment, the robot can move freely within a greenhouse.
In general, the navigation by fusing multi-source data can be
divided into two types: one is to achieve precise positioning and
navigation by arranging sensors in the environment with the
assistance of an inertial measurement unit (IMU), an odometer,
and other modules that are carried by the robot itself; the
other is to achieve the positioning and navigation directly by
the sensor that is carried by the robot itself. Widodo et al.
(2012) applied the acoustic positioning system in the greenhouse
for the first time. To reduce the time consumed in manual
deployment and calibration, Widodo et al. (2013) subsequently
designed a self-calibrating acoustic positioning system. Huang
et al. (2020a) proposed a spread spectrum sound-based local
positioning system for greenhouse robots, and Tsay et al. (2020)
added a temperature compensation on this basis. In addition to
a sound-based positioning system, Preter et al. (2018) designed
a strawberry harvesting robot, which uses an ultra-wideband
indoor positioning system, wheel encoders, and a gyroscope
to achieve positioning and navigation in the greenhouse.
The development of indoor navigation technologies, such as
radio frequency identification (Choi et al., 2011; Ming, 2018),
Bluetooth low energy (Spachos et al., 2021), and positioning by
signal strength (Huang et al., 2020b), provide more options for
greenhouse mobile robot navigation. However, for all the above
navigation solutions, it is necessary to arrange base stations,
tags, and other external sensors in advance in the greenhouse.
Although the installation procedures are much simpler than the
guide rail navigation, themagnetic navigation, and the color band
navigation, the technology of positioning and navigation through
the sensors, as carried by the robot itself, eliminates these extra
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FIGURE 1 | Hardware structure diagram of the robot navigation system.

steps. In an unknown environment, the robot uses the sensors it
carries to achieve navigation. The first and most important thing
is that the robot knows its location. The SLAM technology can
help the robot build an environmentmap and estimate its posture
well. According to the types of sensors, the SLAM technology
can be divided into visual SLAM technology and Lidar SLAM
technology. In comparison, since the visual sensor is susceptible
to the influence of light intensity, the visual SLAM technology has
poor mapping performance in the poor light environment; while
the Lidar SLAM technology is not affected by light, with higher
accuracy, less calculation, and more mature technology (Chan
et al., 2009). The SLAM technology, based on two-dimensional
(2D) Lidar, has achieved good results in the research of
greenhouse mobile robot navigation (Juan et al., 2016; Obregón
et al., 2019; Hou et al., 2020; Tiwari et al., 2020). However, the
environment detected by 2D Lidar is only on the same horizontal
plane as the installation position of the Lidar on the robot.
More stringent requirements are needed for the installation
of Lidar and the greenhouse environment. At the same time,
the Lidar cannot detect the environmental information above
and below itself. Therefore, it leaves a huge potential safety
hazard in robot navigation. The SLAM technology, based on
three-dimensional (3D) Lidar, can detect all the environmental
information of the greenhouse, which enhances the safety of the
robot when it moves, but it also increases the computational
burden of the robot and puts forward higher requirements on the
computational performance of the robot.

Based on the Robot Operating System (ROS), this study
proposed a new positioning and navigation solution for

greenhouse mobile robots by combining the SLAMs of both 3D
Lidar and 2D Lidar. First, the 3D point cloud data, collected
by multi-line Lidar, were filtered and were fused into 2D data.
The 2D information after the fusion contained the location
information of key points, within the motion range of the robot,
to the maximum extent. Then, the 2D Lidar SLAM algorithm,
based on the encoder information and IMU information, was
used to build the environment map, and the optimal navigation
path was further planned to achieve the positioning and
navigation of the greenhouse mobile robot, which not only
ensured the safety of the robot mapping navigation but also
reduced the energy consumption in data calculation by the robot.

MATERIALS AND METHODS

Hardware System Design
The designed hardware system of the greenhouse mobile robot
is mainly composed of the sensor module, the control module,
the driver module, and the power module. The hardware system
structure is shown in Figure 1.

Sensor Module
The sensor module of the robot was mainly composed of an
encoder, an IMU, and a Lidar. The encoder is composed of a
1,024-line photoelectric incremental code disc, which collected
the real-time speed information of the robot and sent feedback
to the bottom controller of the robot. The inertial measurement
unit has the 9-axis IMU (HFI-A9, HandsFree, Shenzhen, China),
which includes a 3-axis gyroscope, a 3-axis accelerometer, and
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a 3-axis magnetometer. The internal integrated posture solver,
with the assistance of the dynamic Kalman filter algorithm, can
accurately output the real-time posture of the robot in a dynamic
environment, thus providing accurate calculation data for the
determination of the position of the robot in the greenhouse,
such as Euler angles, quaternions, and the most commonly used
roll/pitch/yaw direction data. The Lidar contains 16 pairs of Lidar
transmitting and receiving modules (C16, Leishen Intelligent,
Shenzhen, China). By adopting the time of fight measurement
method, with a vertical resolution of 1.33◦, the internal motor can
be driven at a speed of 5Hz (or 10 or 20Hz) for 360◦ scanning.
The 100M Ethernet UDP/IP communication protocol is used for
data output and configuration.

Control Module
The STM32F103 embedded system board was adopted in the
bottom controller of the robot. The core of the system board
is a 32-bit high-performance ARM Cortex-M3 processor with a
maximum operating frequency of 72 MHz. It has built-in high-
speed memory, abundant enhanced I/O ports, and peripherals
connected to two advanced peripheral buses (APBs). The power
supply voltage is 2– to 3.6V, and a series of power-saving
modes can ensure the needs of the low-powered applications.
The bottom controller is connected to the motor driver, the
encoder, and the upper computer. According to the real-time
speed information provided by the encoder, the STM32 can use
the classic proportional-integral-derivative (PID) algorithm to
control the motor rotation through the motor driver, to realize
the precise movement of the robot. In addition, to enhance the
safety of the robot during the movement, the bottom controller
will limit the output of the driver and pull up the robot slowly
when the temperature of the motor driver is higher than the
protection temperature.

The top control of the robot was equipped with an industrial
computer as the upper computer (EPC-P3086, Dongtintech,
Shenzhen, China), and the Ubuntu18.04 operating System and
ROS were installed respectively. The bottom control and the top
control of the robot were connected through the control area
network (CAN) bus protocol. The communication baud rate is
500K and themessage format isMOTOROLA. Through the CAN
bus interface, the PC can realize the control of the linear velocity
and angular velocity of the mobile robot. Meanwhile, the PC will
also receive real-time feedback of the motion state information of
the robot.

Driver Module
A total of four 200-W DC brushless servo motors (SDGA-
02C11AB24, Tode, Jiaxing, China) were installed at the front
and rear of the robot, and a gearbox of 1:30 was equipped
to provide sufficient power for the robot (60TDF-147050-L2-
H, Tode, Jiaxing, China). The no-load maximum speed is 1.5
m/s. The driving form of the robot was four-wheel independent
driving, using a four-wheel differential steering, which could
realize a spot turn. In addition to the above functions, the
power module of the robot also adopted the composite design
of inflatable rubber wheels and independent suspension, which
equipped the robot with strong ground clearance and ground

adaptability. The robot climbing angle is up to 30◦, and the
minimum clearance from the ground is 135mm, which can meet
the flexible movement of the robot on different types of ground
in the greenhouse.

Power Module
The power module of the robot adopted a 24-V ternary lithium
battery (LS-DL24-30, Lishen Energy, Shenzhen, China). The
battery voltage is about 29.2V when it is fully charged with the
capacity of 30 Ah. It has a built-in voltage regulator module and
a power display module. Under normal circumstances, it can
supply power continuously for 3–5 h. When the battery voltage
is less than 22.5V, the robot chassis will automatically alarm with
a buzzer, and it will take about 3 h to fully recharge.

Software System Design
The overall software system of the greenhouse mobile robot
was designed based on Ubuntu 18.04, as shown in Figure 2.
It included an application layer, a control layer, and a driver
layer. The most important part was the control layer, which was
developed based on ROS. It was responsible for the collection,
fusion, and processing of information from robot sensors and
then for completing the map construction, path planning, and
autonomous positioning and navigation according to control
instructions. The ROS has a distributed architecture that allows
each functional module in the framework to be individually
designed, compiled, and loosely coupled together at run time.

Implementation Principles of Navigation
Function
The framework of robot navigation function realization in the
greenhouse is shown in Figure 3. First, the 3D point cloud data
collected by 3D Lidar were filtered and fused into 2D Lidar, and
then, the 2D Lidar SLAM algorithm was used to construct the
greenhouse environment map based on the data. The positioning
of the robot in an unknown environment was mainly realized
by the Adaptive Monte Carlo Localization (AMCL) algorithm.
Robot target point path planning was the focus of navigation
function realization. It was divided into two parts: global path
planning and local path planning, which were based on the global
cost map and the local cost map, respectively. Finally, the robot
integrated the above information in the ROS visualization (RVIZ)
tool provided by ROS and used the multi-target navigation
settings to realize the robot’s mobile navigation in the greenhouse.

Multi-Line Lidar Point Cloud Filtering and Fusion
The data transmission between different nodes in ROS is mainly
achieved through the communications of Topic, Service, and
Parameter Server. The ROS specifies different standard data
message types for different sensors, among which the Lidar
data is divided into two types: LaserScan.msg (2D Lidar) and
PointCloud2.msg (3D Lidar). In this article, both the acceptance
and the transmission of Lidar data involved in the robot used
the Topic communication based on TCP. Compared with single-
line Lidar, multi-line Lidar contains 3D coordinates and intensity
of each point cloud data for each frame. By setting the point
cloud conversion node, on the one hand, Lidar’s topic can be
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FIGURE 2 | Software structure diagram of the robot.

subscribed through the Topic communication and can constantly
accept the 3D point cloud data. The 3D point cloud data beyond
the height range of the robot’s movement height is filtered,
while the 3D point cloud data within the height range is fused
layer by layer, and the points with the shortest distance within
the same height range are selected as the last output data.
On the other hand, the point cloud conversion node releases
the Laser topic to the 2D Lidar SLAM node and outputs the
filtered and fused Lidar data, thus, greatly retaining the key
point environment information within the range of the robot
movement in the map.

The specific process of the multi-line Lidar point cloud
filtering and fusion algorithm used by the robot is shown in
Figure 4. Each frame of Lidar point cloud data is composed of
its corresponding three-dimensional coordinates. The position
information of the point cloud is clear after knowing its
coordinate information. Firstly, the 16 pairs of point cloud data,
whose height and range fall beyond the threshold range, were
sequentially filtered by setting the height threshold and the
range threshold, and the point cloud data within the threshold
are retained. Then, the point cloud data of the same height
were compared at certain size angles. Finally, the data with the
smallest range were saved as the final collected data. Through this
algorithm, the robot could quickly and effectively compress the
greenhouse 3D environment into 2D, which provided accurate
and stable environmental information for subsequent mapping
and navigation.

The higher the frequency and the greater the resolution of
Lidar, the more environmental information can be obtained at

the same time, but the huge amount of data also increases the
burden of data processing for the robot. Considering the amount
of Lidar data and the data processing capability of the computer,
the Lidar frequency was set to 10Hz, its horizontal resolution
was 0.18◦, and the number of points per second was 320,000.
To reduce the loss in the process of Lidar data transmission,
the angle increment of Lasersacn output by the point cloud
conversion node took the same value as the horizontal resolution
of Lidar; the scanning angle range was from and −3.14 to 3.14,
and the scan topic publishing frequency and Lidar point cloud
topic publishing frequency were the same to set to 5Hz. The
height of the robot was 0.3m, and the Lidar was installed at
0.25m above the robot. Since the converted Lidar data were a
LaserScan on the same plane as the Lidar, the height threshold
was set from −0.47 to 0.1m. The measurement range of the
Lidar was from 0.15 to 150m. Considering the actual size
of the greenhouse, the range threshold was finally from 0.15
to 50 m.

Environment Map Construction
The environment map construction is an important part of
the robot navigation and the control system. The quality of
map construction directly affects the accuracy of the robot in
the navigation and positioning process. The current popular
2D Lidar SLAM algorithms include Hector SLAM, G mapping,
Karto SLAM, etc. By comparing the algorithms in the simulation
environment, actual environment, and CPU consumption
(Santos et al., 2013; Hess et al., 2016), this study finally chose
to refer to the Cartographer SLAM algorithm developed by
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FIGURE 3 | The framework of navigation functions.

Google. The algorithm adopts the idea of constructing a global
map based on sub-maps; each frame of the laser scan data
obtained is inserted into the submap at the best-estimated
position using a scan match, and the generated submap performs
a local loop closure and a global loop by a branch-and-bound

approach and several precomputed grids. Cartographer is more
advantageous in terms of mapping effects, data processing,
and sensor requirements. After the algorithm processing, the
robot can finally generate a 2D grid map with a precision
of 5 cm.
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FIGURE 4 | Flowchart of point cloud filtering and fusion.

The Cartographer algorithm is mainly composed of two parts:
Local SLAM and Global SLAM. In the part of Local SLAM,
odometry and IMUdata are used to calculate the estimation value

of posture of the robot ξ , ξ = (ξx, ξy, ξϑ ), and this value is used
as the initial value to scan and to match the Lidar data, and the
scanned data is recorded as H =

{

hk
}

k=1,··· ,k
, hk ∈ R2. After
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the motion filtering, each frame of Lidar data is superimposed to
form a submap. The position of

{

hk
}

in submap is expressed as
Tξ , and its transformation formula is as follows:

Tξp=

(

cosξθ
−sinξθ

sinξθ
cosξθ

)

︸ ︷︷ ︸

Rξ

p+

(

ξx
ξy

)

︸ ︷︷ ︸

tξ

(1)

where p represents the coordinates of the robot before the
transform, Rξ represents the rotation matrix, and the tξ
represents the translation matrix.

The part of Global SLAM is responsible for the loopback
detection and back-end optimization, so that small submaps
form a whole Global map. The optimization problem of

loopback is a nonlinear least squares problem, which can be
described as

argminEm ,Es
1

2

∑

ij
ρ(E2(ξmi , ξ sj ;6ij,ξij)) (2)

where Em = {ξmi }i=1,··· ,m is the submap posture, Es =

{ξ sj }j=1,··· ,n is the scan posture, ρ is the loss function, E is

the residual function, and these postures are all in the world
coordinate system.

To obtain a more accurate map, the robot used the IMU
coordinate system as the ROS coordinate system tracked by
the SLAM algorithm and the odometer to publish the pose
coordinates. The robot controlled the node through a keyboard
to walk in the greenhouse at a speed of 0.4 m/s to build a map.
After the map was completed, the global environment map was

FIGURE 5 | The pseudo-code of the Dijkstra algorithm.
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saved in pgm format through the map server node. In the picture,
the probability of the existence of obstacles was represented by
different grayscale values and for subsequent navigation.

Path Planning
The path planning of the robot in the greenhouse is completed
based on the built map; however, the original map is static and
the obstacle information on the map cannot be updated in real
time. Therefore, a costmap is introduced in the robot’s path
planning. Costmap is mainly composed of Static Map Layer,
Obstacle Map Layer, and Inflation Layer. The Static Map Layer
usually includes the loaded original map data. The Obstacle Map
Layer includes the real-time obstacle information detected by
sensors. The Inflation Layer expands the obstacle according to the
expansion radius parameter to make the robot move more safely.

The path planning of the robot in the greenhouse was divided
into two parts: global path planning and local path planning.
The robot first used the global path planner to plan a rough
path in combination with the global costmap, then the local path
planner divided the planned path into many small paths on this

basis, and finally, the local path planner performed the local path
planning by referring to the local costmap. In this way, not only
the obstacles saved in the map could be avoided in the global
path planning, but also the new obstacles and dynamic obstacles
could be avoided in the local path planning. The robot navigation
target points setting was realized through the Publish Point
function in the RVIZ visualization interface. When the mouse
was clicked on the RVIZ map interface using the Publish Point
function, the Topic communication would be used to publish
the location information of the point in the map to the outside
world. By setting the node to subscribe to the topic and store the
set target points in sequence, the target point information was
further published to the navigation node in sequence, and the
path planning and multi-target point navigation were completed
one by one.

The global path planning of the robot adopts the Dijkstra
algorithm, and the algorithm is shown in Figure 5. First, the
starting point and the goal point of the robot navigation is
set; then, two arrays to store the points of the path to be
determined and the points of the determined path are set up,

FIGURE 6 | The pseudo-code of the DWA algorithm.
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respectively; and next, the distance between the center point and
the adjacent 8 points is calculated using the starting point as
the center point. Later, we stored the point with the smallest
distance, considered the point with the smallest distance as the
center point, and calculated the distance between the starting
point and the adjacent points from the center point again. For
the points that have been calculated, we selected the solution
with the smallest distance. In this way, the adjacent points are
continuously calculated until the target point is encountered,
and the shortest path planning route is output. In general,
the algorithm calculates and compares the weights of nodes
in the graph from the global perspective to obtain the global
shortest path.

The Dynamic Window Approach (DWA) algorithm is
adopted for the robot’s local path planning, and the algorithm
is shown in Figure 6. The main process includes four parts:
initialization, sampling speed samples, sample scoring, and
release plan. First, we load the instance of the subclass in
BaseLocalPlanner through the class loading module and call its
initialization function to obtain the initial state information of

the robot and further obtain the trajectory motion model of
the robot. Based on the trajectory motion model, the robot can
calculate its motion trajectory according to its motion speed.
In order to obtain a sample of the robot motion speed, it is
necessary to collect the linear speed and the angular speed of
each dimension of the robot through sensors within a certain
time interval and store them in the corresponding container in
the form of a structure. After obtaining the robot speed sample,
the corresponding motion trajectory is deduced according to
the robot sampling speed simulation, and each trajectory is
evaluated through the trajectory evaluation function, as shown
in formula (3).

G (v,ω) =max(ϕhead (v,ω) + βdist(v,ω)+ δvelo(v,ω)) (3)

where head(v,ω) and velo(v,ω) are given by the formula

head (v,ω) = 1− |θ | /π (4)

velo (v,ω) = v/π (5)

FIGURE 7 | Test environment and robot.
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where head (v,ω) represents the proximity between the velocity
trajectory and the target point, and θ represents the included
angle between the motion direction and the destination point.

The dist(v,ω) represents the distance from themotion estimation
to the nearest obstacle at this sampling speed. If there is no
obstacle, the value is a constant. The velo(v,ω) represents the

FIGURE 8 | Schematic diagram of the positioning accuracy test.

Frontiers in Plant Science | www.frontiersin.org 11 March 2022 | Volume 13 | Article 815218

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Jiang et al. Autonomous Navigation System of Robot

forward efficiency of the robot under this speed group. The three
constant term factors, ϕ, β , and δ, represent the proportion
of the three sub-items in the evaluation function, respectively.
Adjusting the three constant factors will affect the actions of the
robot in local obstacle avoidance. Finally, all speed groups are
evaluated by the above formula, and the speed with the highest
score is selected as the current speed command for themovement
of the robot.

EXPERIMENTAL RESULTS AND
DISCUSSION

The test site is in the Institute of Agricultural Facilities and
Equipment, Jiangsu Academy of Agricultural Sciences, Jiangsu
province, China, as shown in Figure 7. The experimental
greenhouse is a glass greenhouse, in which tomatoes are grown in

the cultivation tanks, and the row spacing between the cultivation
tanks is 1 m.

Robot Positioning Accuracy Test
The robot positioning accuracy test is an effective way to verify
the precision and the reliability of the robot navigation system.
To accurately measure the position and the posture of the robot
at the target points, four target points in the robot greenhouse
navigation path were randomly selected, and the positioning
coordinate tags were pasted on these four target points. The
schematic diagram of the robot positioning accuracy test is
shown in Figure 8. The four points, such as the front, rear,
left, and right, of the robot were randomly selected as the
relative reference positions, and a cross laser (Qy-620, Huimei,
Dongguan, China) on each of the four points was installed. After
the robot reaches the target point and stops, the coordinate
position of the laser shot by the laser was recorded accurately on

FIGURE 9 | Positioning deviation of the robot at each target point. (A) Target 1, (B) target 2, (C) target 3, (D) target 4.
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the coordinate tags. The robot completed 10 complete navigation
and positioning tests in sequence at a speed of 0.4 m/s. After each
test, the robot needed to be repositioned to its initial position to
avoid the accumulation of errors during the test and to ensure the
independence of the test.

Quantitative analysis is made on the navigation accuracy of
the robot. The position deviation and absolute heading deviation
of the four relative reference positions on the robot at the four
target points are shown in Figures 9, 10.

It can be seen from Figures 9, 10 that at a speed of 0.4 m/s,
the average absolute position deviation of the robot is less than
8 cm, and the SD is less than 3 cm. The average heading deviation
of the robot is less than 3◦, and the SD is less than 1◦. The
precision can meet the requirements of the robot positioning
in a greenhouse environment. Although the average positioning
accuracy of the robot at the four points is not very different,
it is still found that target point 2 and point 3 have abnormal
points in the test after comparison. By analyzing the position
of the target points, the target point 1 and point 4 are close
to the two ends of the cultivation tanks, the target point 2 and
point 3 are close to the middle of the cultivation tanks, and the
structured feature information of target point 1 and point 4 are
more than the target point 2 and point 3, such as greenhouse

walls and air conditioners, and the environmental information
around target point 2 and point 3 are mostly from cultivation
tanks and plant leaf walls, with high similarity. So, we think
that adding some different objects with structural features in
different positions in the greenhouse can improve the positioning
accuracy of the robot. The localization system of the robot was
implemented based on AMCL, which used particle filters to track
the robot’s pose against a known map. In general, the more
particles there are, the more accurate the positioning is, but
the higher the CPU consumption is as well. To achieve a more
accurate positioning of the robot under the existing computing
power of the robot, we set the maximum number of particles
allowed by the positioning algorithm to 4,000 and the minimum
number of particles to 1,000. Through continuous testing, the
robot had a good performance under this parameter.

Robot Navigation Accuracy Test
The robot navigation accuracy test is the most direct and effective
method to test the robot navigation system. The two most
important parameters are the lateral deviation and the heading
deviation between the robot and the planned path during the
movement process. To obtain the lateral deviation and the
heading deviation of the robot, initially, obstacles on the road

FIGURE 10 | Absolute heading deviation of the robot at each target point.
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FIGURE 11 | The navigation accuracy test scenario.

between the greenhouse rows were moved away, and then, the
robot navigation target points are set. According to the principle
of global path and local path planning algorithms, the optimal
navigation path of the robot is the straight line between two target
points. Hence, as shown in Figure 11, a posture sampling point
was set every 2m on the planned paths. To accurately collect
the position information of the robot, two cross lasers (Qy-620,
Huimei, Dongguan, China) were installed in the front and the
rear of the longitudinal center line of the robot. When the robot
reached each posture sampling point, it stayed there for 5 s in
that position for each sampling point, and the positions of the
laser on the coordinate tags were recorded accurately. The robot
completed the navigation task at the speed of 0.2, 0.4, and 0.6
m/s, respectively. The experiment was repeated three times at
each speed.

As shown in Figure 12, the cartesian coordinate system is
established on the coordinate paper with the sampling point
(x0, y0) as the origin, and the target heading of the robot is set
to the positive direction of the Y-axis, while the right direction
perpendicular to the target heading is the positive direction of
the X axis; thus, the coordinate of the sampling point is (0, 0).
Suppose the front laser coordinate is (x1, y1), the rear laser

coordinate is (x2, y2), the robot center coordinate is (x, y), then
the robot center coordinate is ( x1+x2

2 ,
y1+y2

2 ), the lateral deviation

is |x|, and the heading deviation is arccos(
y1−y2
x1− x2

).
The robot global path planning step size was set to 0.05m as

the grid length in the grid map, and the global path planning
frequency was 1Hz. After numerous tests, when the robot
reached the target point, the distance error from the target point
in the x-y plane was set to 0.15m, and the yaw angle error
was set to.1 radians, the robot has the best navigation. When
these two errors are set smaller, the robot will always hover
near the target point. The simulation time of the robot’s local
path planning was set to 3 s. If the simulation time is too large,
it will easily cause the robot to deviate from the global path,
especially when the turning radius is large at startup. On the
contrary, when the simulation time is too small, it is easy to
cause frequent path planning and consume resources, and even
oscillation occurs. The step size of the robot’s local path planning
was set to 0.025m. After many tests, the three influencing factors
in the speed evaluation function were finally set as: ϕ = 64,
β = 24, and δ = 0.5, respectively.

It can be seen from Table 1, with the increase in the moving
speed of the robot, both the mean value and SD of the lateral
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FIGURE 12 | Schematic diagram of the navigation accuracy test.

deviation of the robot and the mean value and SD of the heading
deviation of the robot gradually increase, and the change rate of
each deviation when the speed is greater than 0.4 m/s is greater
than the transformation rate when the speed is less than 0.4 m/s.
At a speed of 0.6m, the average lateral deviation of the robot

is 4.4 cm higher than the average at 0.4 m/s, and the maximum
lateral deviation even reaches 16.8 cm. We guess this is related
to the part that we set and the parameters related to local path
planning. We have not yet found the specific reason for the
increase of the deviation, which will be one of the problems that
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TABLE 1 | Robot navigation deviation.

Speed/(m/s) Lateral deviation/cm Course deviation/ (◦)

Minimum Maximum Average Standard deviation Minimum Maximum Average Standard deviation

0.2 0.8 7.1 2.8 1.7 0 3.5 1.5 1.2

0.4 0.6 9.5 4.8 3.0 0.3 3.8 1.7 1.1

0.6 0.8 16.8 9.2 5.8 0.7 4.9 2.8 1.1

we need to focus on in the next stages. In general, the average
lateral deviation of the robot is less than 9.2 cm, and the SD is
less than 5.8 cm. The mean course deviation shall not exceed
2.8◦, and the SD shall not exceed 1.2◦. As is shown, the precision
can meet the requirements of navigation precision of robot in a
greenhouse environment.

At present, the greenhouse is moving from informatization
to intelligence. To meet the good application of intelligent
equipment in greenhouses, most of the greenhouse floors have
undergone a ground leveling treatment. Therefore, the robot
positioning and navigation test experiment designed was selected
to be carried out in a greenhouse with flat ground. After the
positioning accuracy test and the navigation accuracy test, the
mobile robot navigation control system designed had a good
performance, which had an inseparable relationship with the
greenhouse standard planting mode and flat ground. Since the
Lidar was fixed on the robot, the Lidar was always level with the
ground. At the same time, we used the 3D Lidar information to
convert the 2D information and integrate the IMU information,
so the slope of the greenhouse floor had no effect on the robot’s
navigation. To expand the application of the robot in different
types of greenhouses, the next step is to test the robot on an
uneven ground. When the robot was mapping in the greenhouse,
we found that there were often some water pipes and other
equipment on the ground, but these obstacles did not affect the
movement of the robot. To ignore the influence of these obstacles
on the mapping, we chose to filter the point cloud. During the
fusion process, filtering was selected for the point cloud below
8 cm from the ground. In addition, for the odometry information
required for robot mapping, we took the average value of the four
encoders of the robot as the odometer data of the robot, which
could effectively reduce the data error caused by the slippage of
individual wheels of the robot.

The path planning of the robot was realized based on the
costmap after the inflation of the obstacle. To ensure that the
robot did not collide with the obstacle, the inflation radius
should be larger than the radius of the robot’s circumcircle.
The robot we designed was 0.8m long and 0.6m wide. When
the expansion radius of the costmap is larger than the robot’s
circumscribed circle, the robot will not be able to realize the
inter-row path planning. To solve this problem, we set the
inflation radius of the costmap to 0.4m, so that we could
ensure that when the robot navigated between rows in the
greenhouse, the path planning trajectory was within 0.1m to
the left and right of the center of the row. Even if the robot
moved along the inflated obstacles between rows, it would not
collide with the cultivation tank. However, this setting method

was very dangerous when the robot turns between rows. At
the same time, due to the limitation of the row spacing in the
greenhouse, the yaw angle of the robot in the row cannot be
greater than 53◦. To ensure the safety of the robot when turning,
we inserted a safety target point at the turning point of the
robot’s navigation route, divided the robot’s navigation plan into
multiple parts, and performed a global path planning and a local
path planning for each segment to ensure that the robot would
not interact when cultivation tanks collide. When the robot got
into a local dilemma between the rows, we chose to let the
robot terminate the navigation. Although this processing strategy
avoided robot collision, it was not intelligent enough. In the
future, we will further develop a more intelligent and effective
local path processing strategy.

CONCLUSION

The proposed autonomous navigation system for the greenhouse
mobile robot was designed based on 3D Lidar and 2D Lidar
SLAM. The hardware part was mainly composed of 3D Lidar, an
IMU, an odometer, and an encoder. The software core control
layer was developed based on ROS, and information interaction
was realized through a distributed node communication. In
order to enhance the safety of the robot during the movement
and to reduce the computational power consumption of the
computer, 3D environmental information collected by multi-
line Lidar was filtered and fused into 2D laser information, and
then, localization and map construction were completed using
the Cartographer algorithm. After the greenhouse navigation
test, the average deviation does not exceed 10 cm, and the
average heading deviation does not exceed 3◦, which meets the
movement requirements of the greenhouse mobile robot. In
the process of the robot positioning and navigation, we found
that appropriately adding some objects with structured features
in the greenhouse environment could effectively improve the
positioning accuracy of the robot, and the navigation speed of the
robot was closely related to the navigation accuracy. For different
navigation speeds, the robot navigation parameters should be
reset. At present, this research only solves the simple positioning
and navigation of robots in the greenhouse. In the future, we can
apply this system to different types of greenhouse mobile robots,
and combine the different operating conditions of the robots to
develop appropriate navigation strategies based on the existing
navigation path planning algorithms. In addition, we can also use
5G, the CloudComputing Platform, and othermodules to further
realize the remote control and monitoring of robots.
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