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As an individual plant species can develop its own leaf stoichiometry to adapt to
environmental changes, this stoichiometry can provide critical information about a plant
species’ growth and its potential management in the ecosystem housing it. However,
leaf stoichiometry is largely undocumented in regions with large environmental changes
arising from differences in elevation. The leaf stoichiometry of Potentilla fruticosa L.,
a major alpine shrub playing an important role in supporting ecosystem functions
and services in China’s Qilian Mountains (Northeast Qinghai–Tibetan Plateau), was
investigated at different elevations (2,400, 2,600, 2,800, 3,000, 3,200, 3,500, and
3,800 m). At each elevation, leaf elemental (C, N, and P) concentrations were measured
in P. fruticosa leaves sampled from three plots (10 × 10 m), and edaphic properties
were assessed in nine quadrats (1 × 1 m, three quadrats per plot). Temperature and
precipitation were calculated using an empirical formula. Maximum and minimum leaf
carbon (C) concentrations ([C]leaf ) of 524± 5.88 and 403± 3.01 g kg−1 were measured
at 2,600 and 3,500 m, respectively. Leaf nitrogen (N) concentration ([N]leaf ) showed a
generally increasing trend with elevation and peaked at 3,500 m (27.33 ± 0.26 g kg−1).
Leaf phosphorus (P) concentration ([P]leaf ) varied slightly from 2,400 to 3,200 m and then
dropped to a minimum (0.60 ± 0.10 g kg−1) at 3800 m. The [C]leaf :[N]leaf , [C]leaf :[P]leaf ,
and [N]leaf :[P]leaf varied little from 2,400 to 3,000 m but fluctuated somewhat at higher
elevations. The main factors affecting P. fruticosa leaf stoichiometry were soil organic
C, pH, and soil total P, and the main limiting element for the growth of P. fruticosa in
the study area was P. In conclusion, changes in elevation affected leaf stoichiometry of
P. fruticosa mainly due to altered soil properties, and addressing phosphorus limitation,
especially at higher elevations mainly due to losses caused by high precipitation and
sparse vegetation, is a key measure to promote P. fruticosa growth in this region.
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INTRODUCTION

A vigorous, floriferous, deciduous shrub of high genetic diversity,
the widely distributed rosaceous shrub Potentilla fruticosa L.
(a.k.a. shrubby Potentilla or shrubby cinquefoil), supports many
ecosystem functions in the world’s colder habitats, which makes
it particularly sensitive to global warming (Elkington, 1969;
Miliauskas et al., 2010; Shimono et al., 2010; Yuichiro et al., 2010).
Its chemical composition (Ganenko et al., 1988; Zeng et al., 2019),
edibility and cosmetic properties (Nkiliza, 1999; Liu et al., 2016),
antioxidant content (Miliauskas et al., 2010; Luo et al., 2016),
and effects on the expression of key enzymes and hormones of
glucose and lipid metabolism in rats (Yan et al., 2019) have been
documented. P. fruticosa’s nutritive value has been shown to be
influenced by grazing (Yao et al., 2019). Its leaf morphology,
physiological and biochemical characteristics have been found to
be altered by atmospheric pollution and soil salinity (NaCl and
Na2SO4) (Liu et al., 2013; Lugovskaya et al., 2018).

However, the leaf stoichiometry of P. fruticosa at high
elevations on the Qinghai–Tibetan Plateau (QTP) remains
relatively undocumented. Leaf stoichiometry can reflect the
balance and limitations in the uptake of plant macronutrients
(C, N, P) that influence plants’ growth rate and life history
strategies (Baxter and Dilkes, 2012; Zhu et al., 2020) and global
C, N, P biogeochemical cycles (Moe et al., 2005; Liu et al.,
2018). Leaf stoichiometry information is critical developing
an understanding of nutrient cycling processes, in developing
biogeochemical models, and in predicting plant responses to
global climate change (Zhao et al., 2014, 2018). Previous studies
have shown that besides disturbances such as increased CO2, N,
and P availability (Esmeijer-Liu et al., 2009; Scott et al., 2013)
and grazing (Bai et al., 2012), topographic factors such as slope,
aspect, and elevation (e.g., Qin et al., 2019; Cao et al., 2020)
can also affect leaf stoichiometry. This occurs through their
influence on soil formation (Jenny, 1941), water distribution, and
microclimate. However, topographic factors are rarely considered
in leaf stoichiometry, especially for individual species.

This study’s overall objective was to examine the effects of
elevation (from 2,400 to 3,800 m) on leaf stoichiometry of
P. fruticosa, a major alpine shrub. The study was conducted
in the Qilian Mountains of the Qinghai–Tibetan Plateau
(QTP), the world’s highest elevation plateau. Since mean annual
precipitation (MAP), mean annual temperature (MAT), and soil
properties vary with elevation (Table 1), our hypothesis was that
leaf stoichiometry of P. fruticosa would vary with elevation, and,
based on Cao et al. (2020), that P would be a limiting nutrient for
P. fruticosa growth.

MATERIALS AND METHODS

Study Area
With a mean elevation of 4,000 m (closer to 3,000 m in the
northeast), mean annual precipitation (MAP) of 400 mm, and
mean annual temperature (MAT) below −4◦C, the Qinghai–
Tibetan Plateau covers 2.5 × 106 km2. Ranging in elevation
from 2,200 to 5,500 m, and located in the northeastern portion

of the QTP, the Qilian Mountains present two main slope
aspects: south-facing and north-facing. On the south-facing slope
aspects, grasslands growing on sandy-textured Kastanozem are
the dominant vegetation type, whereas on the north-facing slope
aspects, Qinghai spruce (Picea crassifolia Kom.), growing on silty-
sand-textured Podzol, is the dominant species (Qin et al., 2016).

Field Sampling
In August and September 2018, when most plant species were at
the late flowering or fruiting stages, leaves from top and middle
of P. fruticosa plants were sampled from three random 10× 10 m
plots situated at each of seven elevations: 2,400, 2,600, 2,800,
3,000, 3,200, 3,500, and 3,800 m (Figure 1). In each plot, multiple
soil samples were collected from three quadrats (1 × 1 m) along
the diagonal transect. A 70-mm diameter soil drill was used to
sample from 3 depth profiles (0–10, 10–20, and 20–40 cm).

Laboratory Analyses
The leaves were dried and ground to determine leaf carbon (C)
concentration ([C]leaf ), leaf nitrogen (N) concentration ([N]leaf ),
and leaf phosphorus (P) concentration ([P]leaf ). Soil samples
were air-dried and ground to pass through a 100-mesh sieve
prior to the analysis of soil properties. A volumetric potassium
dichromate method was used to determine [C]leaf and soil
organic carbon (SOC) (Nelson and Sommers, 1982), and a
SmartChen 200 (AMS Rome, Italy) element analyzer was used
to measure [N]leaf , [P]leaf , soil total nitrogen (STN), and soil
total phosphorus (STP). A standard pH meter was used to
determine soil pH in a slurry of 2.5:1 water to air-dried soil ratio
(Cao et al., 2018).

Data Analysis
The MAT and MAP (Table 1) were based on Zhao et al. (2005,
2006). For the Qilian Mountain region, these were calculated as:

MAT = 20.96− 5.49× 10−3 ELEV − 0.17 LAT + 8.9× 10−3 LONG

R2
= 0.98 (1)

MAP = 1.68× 103
+ 0.12 ELEV + 12.41 LAT − 75.26 LONG R2

= 0.92 (2)

where MAT = mean annual temperature (◦C), MAP = mean
annual precipitation (mm), ELEV = elevation (m), LAT = latitude
(◦), and LONG = longitude (◦). R2 indicates the coefficient
of determination.

All data were expressed as mean and standard error (SE).
The fixed effect (elevation) and random effect (plot) on soil
properties and leaf ecological stoichiometry of P. fruticosa were
tested by fitting generalized linear mixed models (GLMMs).
The t-test was used to check the significant difference
(p < 0.05) of each measured parameter between different
elevations. Redundancy analysis (RDA) was performed to find the
dominant environmental variables influencing leaf stoichiometry
of P. fruticosa (Maccherini et al., 2011; Yang et al., 2018a).
The significance of the eigenvalues of the canonical axes was
tested by a reduced Monte Carlo model with 270 unrestricted
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TABLE 1 | Effects of elevation on soil properties and leaf stoichiometry of P. fruticose (n = 9).

Parameters Elevation (fixed effect) R2 [Fixed effect and random effect (plot)] df

F P R2

SOC 109.77 <0.001 0.94 0.95 6

STN 102.62 <0.001 0.94 0.96 6

STP 4.15 0.013 0.33 0.39 6

SOC:STN 5.20 0.005 0.44 0.60 6

SOC:STP 10.73 <0.001 0.51 0.51 6

STN:STP 10.70 <0.001 0.51 0.51 6

pH 328.46 <0.001 0.98 0.99 6

[C]leaf 39.33 <0.001 0.79 0.79 6

[N]leaf 358.35 <0.001 0.98 0.99 6

[P]leaf 1.94 0.143 0.16 0.16 6

[C]leaf :[N]leaf 110.969 <0.001 0.92 0.93 6

[C]leaf :[P]leaf 1.13 0.396 0.10 0.10 6

[N]leaf :[P]leaf 2.11 0.118 0.17 0.17 6

SOC, soil organic carbon; STN, soil total nitrogen; STP, soil total phosphorus; [C]leaf , leaf carbon (C) concentration; [N]leaf , leaf nitrogen (N) concentration; [P]leaf , leaf
phosphorus (P) concentration.
Significant p values (p < 0.05) are in bold.

permutations (Sun et al., 2017; Yuan, 2017). The Pearson’s
correlation coefficient was used to determine the correlation
between leaf stoichiometry and abiotic factors. SPSS 22.0 for
Windows (SPSS, Inc., Chicago, IL, United States) was used to
determine the Pearson’s correlation coefficient. Other analyses
were performed in R4.1.1 (vegan and nlme packages). The figures
were prepared using Origin 2021 (OriginLab Corp, Roundhouse
Plaza, Northampton, MA, United States) and R4.1.1 (ggplot2 and
ggrepel packages).

RESULTS

Effects of Elevation on Soil Properties
and Leaf Stoichiometry of Potentilla
fruticosa
The results from GLMMs showed that except [P]leaf ,
[C]leaf :[P]leaf , and [N]leaf :[P]leaf , soil properties and other
elemental stoichiometries of P. fruticosa were significantly
affected by elevation (Table 1). Compared to elevations below
3,000 m, SOC and STN significantly increased (3- to 4-fold)
at elevations of 3,200 m and above. However, STP did not
show this trend, as it peaked at 2,600 m (0.58 ± 0.02 g kg−1).
Variation in SOC:STN across elevations was minimal, with
the largest value (11.22 ± 0.10) occurring at 3,500 m and the
smallest (8.96 ± 0.46) at 2,600 m. For SOC:STP and STN:STP,
the largest and the smallest values were at 3,500 m (487 ± 133
and 42.74 ± 11.46, respectively) and 2,600 m (20.90 ± 0.67 and
2.43 ± 0.12, respectively), respectively. Soil pH values shifted
from 6.12 ± 0.03 at 3,500 m to 8.54 ± 0.02 at 2,600 m. The MAT
showed a decreasing trend from 2,400 to 3,800 m, whereas MAP
showed a converse trend (Table 2).

At 3,500 m, [C]leaf (403± 3.01g kg−1) was significantly lower
than that at any other elevation, whereas at 2,600 m [C]leaf

(524 ± 5.88 g kg−1) was significantly greater than at any other
elevations except 3,000 m (Figure 2A). The [N]leaf showed an
increasing trend with increasing elevation. At 3,500 m, [N]leaf
(27.33 ± 0.26 g kg−1) was significantly greater than at other
elevations, whereas [N]leaf at 2,800 m (18.15 ± 0.10 g kg−1) was
significantly lower than that at any other elevations (Figure 2B).
The [P]leaf changed slightly at elevations between 2,400 and
3,200 m and had a decreasing trend at elevations from 3,500
to 3,800 m, with the lowest value (0.60 ± 0.10 g kg−1)
recorded at 3,800 m, which was significantly lower than that at
2,600, 3,200, or 3,500 m (Figure 2C). From 2,400 to 3,000 m,
[C]leaf :[N]leaf varied little, but increased significantly at or above
3,200 m. However, from 3,200 to 3,800 m, [C]leaf :[N]leaf showed
a decreasing and then an increasing trend, with the value at
3,500 m (14.74 ± 0.19) being significantly lower than that
at other elevations (Figure 2D). Changes in [C]leaf :[P]leaf and
[N]leaf :[P]leaf along the elevation gradients were similar. Both
of them varied slightly between 2,400 and 3,000 m; however,
from 3,000 to 3,800 m, their values first decreased and then
increased and reached minimums and maximums at 3,200
(392 ± 35.28 and 19.43 ± 1.50, respectively) and 3,800 m
(1097 ± 349 and 62.79 ± 19.81, respectively), respectively
(Figures 2E,F).

Dominant Factors Influencing Leaf
Stoichiometry of Potentilla fruticosa at
Different Elevations
The RDA results showed that the eigenvalues of the first and
second axes were 0.27 and 0.02, respectively (Figure 3), indicating
that the two axes could explain about 29.00% of the total variation
in leaf stoichiometry of P. fruticosa across elevations. Based on
the RDA result, SOC, STP, and pH had significant effects on
this variation, and they could explain 7.10, 6.80, and 6.00% of it,
respectively (Table 3).
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TABLE 2 | Changes of temperature, precipitation, and soil properties at different elevations (mean ± standard error, n = 9).

Parameter Elevation

2,400 m 2,600 m 2,800 m 3,000 m 3,200 m 3,500 m 3,800 m

SOC (g kg−1) 13.12 ± 0.73 e 12.05 ± 0.52 e 15.08 ± 0.63 d 12.28 ± 0.61 e 35.60 ± 3.19 c 58.64 ± 1.65 a 50.14 ± 1.65 b

STN (g kg−1) 1.46 ± 0.08 de 1.41 ± 0.08 de 1.62 ± 0.09 d 1.35 ± 0.10 e 3.48 ± 0.23 c 5.24 ± 0.13 a 4.72 ± 0.13 b

STP (g kg−1) 0.53 ± 0.02 a 0.58 ± 0.02 a 0.44 ± 0.02 ab 0.32 ± 0.03 b 0.53 ± 0.03 a 0.27 ± 0.05 b 0.54 ± 0.12 a

SOC:STN 9.01 ± 0.19 c 8.96 ± 0.46 c 9.40 ± 0.27 bc 9.24 ± 0.35 c 10.09 ± 0.32 ab 11.22 ± 0.10 a 10.61 ± 0.23 a

SOC:STP 26.03 ± 2.27 d 20.90 ± 0.67 d 35.48 ± 1.50 c 41.29 ± 4.03 c 67.50 ± 3.43 b 487 ± 133.00 a 183 ± 32.61 b

STN:STP 2.89 ± 0.24 d 2.43 ± 0.12 d 3.77 ± 0.14c 4.46 ± 0.36 c 6.69 ± 0.26 b 42.74 ± 11.46 a 17.32 ± 3.18 b

pH 8.43 ± 0.04 b 8.54 ± 0.02 a 8.36 ± 0.04 b 8.51 ± 0.03 a 8.08 ± 0.04 c 6.44 ± 0.05 d 6.12 ± 0.03 e

LONG 100◦21′55′′ 100◦17′3′′ 100◦14′28′′ 100◦14′26′′ 100◦22′35′′ 101◦21′0′′ 101◦22′12′′

LAT 38◦37′5′′ 38◦33′17′′ 38◦33′9′′ 38◦33′22′′ 38◦38′15′′ 37◦40′48′′ 37◦41′24′′

MAT (◦C) 2.26 1.17 0.08 −1.02 −2.13 −3.61 −5.26

MAP (mm) 304.71 331.32 355.7 379.22 398.58 518.42 553.62

SOC, soil organic carbon; STN, soil total nitrogen; STP, soil total phosphorus; LONG, longitude; LAT, latitude; MAT, mean annual temperature; MAP, mean
annual precipitation.
Row-wise non-matching letters indicate a significant difference among elevations (p < 0.05).

Soil pH was positively related to [C]leaf and [C]leaf :[N]leaf
and negatively with [N]leaf , [C]leaf :[P]leaf , and [N]leaf :[P]leaf
(Table 4). In contrast, the relationship between SOC and leaf
stoichiometry was the opposite of those of soil pH, except
that there was no significant relationship between SOC and
[C]leaf :[P]leaf . The STP was not related to any index of
leaf stoichiometry.

DISCUSSION

Reasons for Variation in Soil Properties
and Leaf Stoichiometry of Potentilla
fruticosa With Elevation
By mainly influencing solar radiation and condensation of
water vapor (Sevruk, 1997; Ohmura, 2012), elevation regulates
temperature and precipitation (Lozano-García et al., 2016; Zhu
et al., 2019), which in turn exerts effects on the distribution of
vegetation. For example, in the Qilian Mountains, temperature
decreases and precipitation increases with increasing elevation
(Chang et al., 2014), resulting in shifting vegetation types:
<2,400 m, steppe desert; 2,400–3,300 m, forest steppe; 3,300–
3,600 m, subalpine scrub and grassland; 3,600–3,900 m, alpine
scrubs and meadow; >3,900 m, ice and snow (Zhu et al.,
2019). Likewise, different elevations differ in vegetation types,
biomass, quantity and quality of litter, roots, and soil microbial
communities (Bargali et al., 2018; Yang et al., 2018b), which in
turn affect soil physical and chemical properties (Tables 1, 2;
Zhou et al., 2013; Qin et al., 2019). In addition, microlandforms
such as slope aspect, slope position, and slope gradient can also
influence soil properties by reshaping hydrothermal conditions
and patterns in the movement of the material and energy (Måren
et al., 2015; Nabiollahi et al., 2018; Zhang et al., 2020) as found in
this study (data unpublished).

With changes of biotic and abiotic environments with
elevation, leaf stoichiometry of P. fruticosa also varied with
elevation (Figure 2), concurring with other studies (e.g., Badano

et al., 2005; Zhang et al., 2019). However, only [C]leaf , [N]leaf ,
and [C]leaf :[N]leaf of P. fruticosa were significantly affected by
elevation (Table 1), partly supporting our hypothesis that the
leaf stoichiometry of P. fruticosa would vary with elevation. In
contrast, Cao et al. (2020) found that except for [N]leaf :[P]leaf ,
leaf stoichiometries ofOxytropis ochrocephalaBunge in the Qilian
Mountains were significantly affected by elevation. This suggests
that each species may have its unique strategies to adapt to local
environmental changes.

From 2,400 to 3,800 m, [C]leaf of P. fruticosa showed a
decreasing trend (Figure 2A), which was in contrast to Zhao
et al. (2014) and Rong et al. (2016), who found that [C]leaf
increased with decreasing temperature to balance the osmotic
pressure of cells and resist freezing. This result may reflect the
fact that low temperatures inhibit photosynthesis in P. fruticosa.
In contrast, [N]leaf of P. fruticosa showed an increasing trend
with a decrease in temperature (Figure 2B), as reported by
others (e.g., Oleksyn and Przybyl, 1987; Cao et al., 2020). This
may be because [N]leaf can enhance metabolic activity and the
growth rate of tissues in cold habitats and short growing seasons
(Ågren, 2008; Zhang et al., 2017). With a [C]leaf decrease and
[N]leaf increase, P. fruticosa [C]leaf :[N]leaf decreased with rising
elevation (Figure 2D). Similar observations were reported by Sun
et al. (2017). Generally, [C]leaf :[N]leaf reflects a plant’s ability to
simultaneously absorb C and N, and a low value can benefit plant
growth (He et al., 2008; Yan et al., 2015).

The Dominant Environmental Factors
Influencing Leaf Stoichiometry of
Potentilla fruticosa
Based on RDA (Figure 3 and Table 3), it is clear that SOC, STP,
and pH had a greater effect on leaf stoichiometry of P. fruticosa
than temperature or precipitation in the Qilian Mountains. This
is in slight contradiction with other studies (Sardans et al.,
2011; Zhang et al., 2012a; Cao et al., 2020). For example, Cao
et al. (2020) found that, across various elevations in the Qilian
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FIGURE 1 | Sampling sites at different elevations (2,400, 2,600, 2,800, 3,000, and 3,200, 3,500, and 3,800 m) in the study area.

FIGURE 2 | Potentilla fruticosa [C]leaf (A), [N]leaf (B), and [P]leaf (C) and [C]leaf :[N]leaf (D), [C]leaf :[P]leaf (E), and [N]leaf :[P]leaf (F) ratios from 2,400 to 3,800 m (n = 9).
[C]leaf , leaf carbon (C) concentration; [N]leaf , leaf nitrogen (N) concentration; [P]leaf , leaf phosphorus (P) concentration. Data are described by their mean and standard
error (SE). Different lowercase letters indicate a significant difference among elevations at p < 0.05.

Mountains, temperature significantly affected leaf stoichiometry
of O. ochrocephala, as it could dictate or control nutrient
availability in soils, root absorption, and the plant nutrient
budget (Reich and Oleksyn, 2004; Isles et al., 2017; Liu et al.,
2019). Likewise, Zhang et al. (2012a) found that temperature
and precipitation directly affected the spatial patterns of leaf

elemental stoichiometry across China, as precipitation regulates
the mobilization of soil nutrients (Müller et al., 2017).

Although SOC, STP, and pH were the main contributors to
differences in leaf stoichiometry of P. fruticosa, STP was not
related to any index of leaf stoichiometry (Table 4), suggesting
that it had a synthetic effect on leaf stoichiometry of P. fruticosa
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FIGURE 3 | Redundancy analysis (RDA) ordination for the leaf stoichiometric indices of P. fruticosa and environmental characteristics. SOC, soil organic carbon;
STN, soil total nitrogen; STP, soil total phosphorus; [C]leaf , leaf carbon (C) concentration; [N]leaf , leaf nitrogen (N) concentration; [P]leaf , leaf phosphorus (P)
concentration; MAT, mean annual temperature; MAP, mean annual precipitation.

TABLE 3 | Relationships between environmental factors and the two RDA axes, and also environmental factors that are significant contributors to leaf stoichiometry of
P. fruticosa across elevations.

Environmental factors RDA1 RDA2 R2 P* Explains (%) F P**

SOC −0.362 −0.932 0.85 0.001 6.00 4.20 0.034

STN −0.350 −0.937 0.84 0.001 3.30 2.20 0.130

STP 0.514 0.858 0.07 0.097 6.80 5.40 0.018

SOC:STN −0.408 −0.913 0.47 0.001 2.60 1.80 0.176

SOC:STP −0.275 −0.962 0.48 0.001 3.30 2.40 0.100

STN:STP −0.277 −0.961 0.49 0.001 <0.10 <0.10 0.800

pH 0.419 0.908 0.80 0.001 7.10 4.60 0.024

MAT (◦C) 0.382 0.924 0.68 0.001 0.50 0.40 0.532

MAP (mm) −0.401 −0.916 0.79 0.001 0.50 0.40 0.506

SOC, soil organic carbon; STN, soil total nitrogen; STP, soil total phosphorus; [C]leaf , leaf carbon (C) concentration; [N]leaf , leaf nitrogen (N) concentration; [P]leaf , leaf
phosphorus (P) concentration; MAT, mean annual temperature; MAP, mean annual precipitation.
Significant p-values (p < 0.05) are in bold.
“*” indicates the environmental factor was significantly related to the two axes from the RDA.
“**” indicates the variance of each environmental factor significantly contributed to the total variance.
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TABLE 4 | Relationships between leaf stoichiometry of P. fruticosa and the
dominant factors from the RDA.

Leaf stoichiometry SOC STP pH

[C]leaf −.639** 0.175 .562**

[N]leaf .869** −0.216 −.867**

[P]leaf −0.055 0.045 0.167

[C]leaf :[N]leaf −.929** 0.206 .882**

[C]leaf :[P]leaf 0.199 −0.192 −.263*

[N]leaf :[P]leaf .367** −0.216 −.416**

SOC, soil organic carbon; STN, soil total nitrogen; STP, soil total phosphorus;
[C]leaf , leaf carbon (C) concentration; [N]leaf , leaf nitrogen (N) concentration; [P]leaf ,
leaf phosphorus (P) concentration.
“*” p < 0.05, and “**”p < 0.01.

in the Qilian Mountains, but this needs further study. Except
[P]leaf , leaf nutrient concentrations and their ratios were all
significantly related to SOC or pH or both (Table 4). The
SOC was negatively related to [C]leaf , which was not consistent
with Niu et al. (2016) who found that these were positively
correlated because the C in leaves can enter the soil through
litter. In this study, elevations ≥3,200 m had greater SOC
but lower temperatures (Table 1), which limited photosynthesis
and thus resulted in lower [C]leaf (Figure 2A). This suggests
that the relationship between [C]leaf of P. fruticosa and SOC
in the Qilian Mountains may not represent a true causality.
This may also suggest that the C in soil is the structural
basis for plants (Schade et al., 2003; Liu et al., 2011) as less
C is captured from the atmosphere by leaves subjected to
low temperatures. The SOC was positively related to [N]leaf
of P. fruticosa, because SOC from amino acid metabolism
contains N and it can be transferred from soil to plants by
the process of nutrient cycling (Delgado-Baquerizo et al., 2015;
Zhang et al., 2019). Given the positive relationship between SOC
and [N]leaf , there exists a negative or positive relationship with
[C]leaf :[N]leaf , or [N]leaf :[P]leaf (Table 4). Generally, SOC and
pH are negatively correlated, as acidic soil is beneficial to the
adsorption of organic C (Zhang et al., 2012b; Hobara et al., 2016).
Therefore, the relationships between pH and leaf stoichiometry
of P. fruticosa were converse to relationships between SOC and
leaf stoichiometry (Table 4).

In this study, the measured parameters can only explain
about 30.00% of the total variation of leaf stoichiometry of
P. fruticosa (Figure 3), indicating that other factors, such as
plant community composition (Wang and Moore, 2014; Zhang
et al., 2019), may also control the variations. As the plant
community in the study area changed with elevation, effects
of intra- and interspecies competitions on leaf stoichiometry
of P. fruticosa should also be considered to achieve a
comprehensive understanding.

Limiting Nutrients for Potentilla fruticosa
Across Elevations
It is well known that [N]leaf :[P]leaf rather than [N]leaf or
[P]leaf individually can provide a better assessment of a plant’s
nutrient limitations (Li et al., 2018) although this assessment
is still debated. According to Soudzilovskaia et al. (2005), the

growth of alpine vascular plants is limited first by N, then
by P, with a mean foliar N:P mass ratio of 29 in their study
area. In this study, the [N]leaf :[P]leaf of P. fruticosa at 3,000,
3,500, and 3,800 m were all >29 (Figure 2F). Following the
criteria provided by Soudzilovskaia et al. (2005), our results
suggest that P limited the growth of P. fruticosa at higher
elevations. Soil P deficiency is common across China (Han
et al., 2005; Zhao et al., 2016), including across the entire QTP
(Niu et al., 2016) and the Qilian Mountains (Xu et al., 2018,
2019; Zhang et al., 2019; Cao et al., 2020). Furthermore, at
elevations ≥3,500 m, the [N]leaf :[P]leaf was >50 (Figure 2F),
suggesting that P. fruticosa growth was greatly restricted by
available P. It is well known that in the Qilian Mountains, soil
surface coverage by vegetation decreases as elevation increases. In
combination with P leaching through the soil profile (Chardon
and Schoumans, 2007), the lack of vegetative cover at high
elevations can easily increase P losses through erosion and
surface run-off (Nest et al., 2014) and can make P scarcer.
However, Reich and Oleksyn (2004) concluded that plant growth
in high elevations was more limited by N. This suggests
that limitation of nutrient elements for plants is dependent
on region.

CONCLUSION

In the Qilian Mountains of the northeast QTP, soil properties
were more sensitive to elevations (ranging from 2,400 to 3,800 m)
than leaf stoichiometry of P. fruticosa. From low to high elevation,
[C]leaf and [P]leaf decreased, whereas [N]leaf of P. fruticosa
increased, as an adaptation for maintaining metabolic activity
in cold habitats.

Elevation only affected P. fruticosa [C]leaf , [N]leaf , and
[C]leaf :[N]leaf , mainly through its effects on SOC, STP, and pH.
Although [N]leaf :[P]leaf of P. fruticosa was not influenced by
elevation, its value across all elevations was relatively large. This
suggests that in the study area, P. fruticosa growth was commonly
limited by soil P, especially regarding its growth at higher
elevations. As P. fruticosa is a major alpine shrub, reducing P
losses and improving its growth conditions will play an important
role in maintaining the ecologically integrated functions and
services of the whole QTP.
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