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Soybean has a recognized narrow genetic base that often makes it difficult to visualize available 
genetic and phenotypic variability and identify superior genotypes during the selection process. 
However, the phenotypic expression of soybean plants is highly affected by photoperiod and 
the cultivation of a given variety is performed in the latitude range that presents ideal conditions 
for its development based on its relative maturity group (RMG) for the optimization of the 
phenotypic expression of its genotype. Based on the above, this study aimed to evaluate the 
efficiency of artificial neural networks (ANNs) as a tool for the correct discrimination and 
classification of tropical soybean genotypes according to their relative maturity group during 
the population selection process with the aim of optimizing the phenotypic performance of 
these selected genotypes. For this purpose, three biparental populations were synthesized, 
one with a wide genetic variability for the RMG character obtained from the hybridization 
between genitors of maturity groups RMG 5 (Sub-tropical 23° LS) × RMG 9.4 (Tropical 0° LS) 
and two populations with a narrow variability obtained between genitors RMG 7.3 (Tropical 
20° LS) × RMG 9.4 and RMG 5.3 × RMG 6.7, respectively. Criteria for comparing the developed 
ANN architecture with Fisher’s linear and Anderson’s quadratic parametric discriminant 
methodologies were applied to the data for the discrimination and classification of the 
genotypes. ANN showed an apparent error rate of less than 8.16% as well as a low influence 
of environmental factors, correctly classifying the genotypes in the populations even in cases 
of reduced genetic variability such as in the RMG 5 × RMG 6 population. In contrast, the 
discriminant functions were inefficient in correctly classifying the genotypes in the populations 
with genealogical similarity (RMG 5 × RMG 6) and wide genetic variability, with an error rate of 
more than 50%. Based on the results of this study, ANN can be used for the discrimination 
of genotypes in the initial generations of selection in breeding programs for the development 
of high performance cultivars for wide and reduced photoperiod amplitudes, even with fewer 
selection environments, more efficiently, and with fewer time and resources applied. As a result 
of similarity between the parents, ANN can correctly classify genotypes from populations with 
a narrow genetic base, in addition to pure lines and genotypes with a high degree of inbreeding.
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INTRODUCTION

Soybean is the most important oilseed in the world and whose 
genetic improvement plays a significant role in the continuous 
growth of the crop. Soybean is highly sensitive to the photoperiod 
and considered a short-day species. The day length at the 
location of cultivation directly affects plant growth. In addition, 
the photoperiod influences the change from vegetative to 
reproductive stage, and consequently, the flowering, total cycle, 
and grain yield (Garner and Allard, 1930), consequently 
influencing the entire phenotypic performance in the field. 
Owing to this influence, the optimum photoperiod conditions 
for cultivars are restricted to a certain latitude range according 
to the environment in which the genotypes are cultivated (Lin 
et  al., 2021). In Brazil, cultivars are distributed among 13 
relative maturity groups (RMGs) classified geographically based 
on plant growth and development. Owing to the large territorial 
extent and latitude variation, Brazil comprises RMGs 5–9, 
respectively, from the south (latitude 30°) to the north of the 
country (latitude 0°) (Alliprandini et  al., 2009).

The cultivation of a variety in an RMG different from its 
suitable one may result in undesired cycle elongation or reduction, 
insufficient or exaggerated vegetative development, susceptibility 
to pests and diseases specific to a certain time of the year, 
and low productivity (Miladinović and Đorđević, 2011), impairing 
their phenotypic performance. Genetically, the time to reach 
flowering and maturity is controlled by genes E. Thus far, 11 
major loci (E1–E11 and J) involved in the control of these 
characteristics have been identified in soybean (Samanfar et al., 
2017). In general, except for E6, E9, E11, and J genes, the 
dominant allele of E genes leads to late flowering and maturity, 
whereas an increase in the number of recessive alleles entails 
precociousness of the variety (Lin et  al., 2021).

The yield potential of cultivars at their appropriate production 
locations is maximized. Correct estimation of the phenological 
stages of the soybean plant allows improvement in the flexibility 
to modify its development as a whole and use the characteristics 
controlled by other genes that are affected by the durations 
of the vegetative and reproductive stages. The number of nodes 
and pods, growth habit, and characteristics related to the 
occurrence of higher temperatures at a certain stage of the 
plant such as oil and protein content and nitrogen and phosphor 
concentrations in grains, can be  explored well, depending on 
the objectives of the breeding program (Miladinović et al., 2018).

The effect of a phenotype is the sum of the genetic effects, 
environmental effects, and their interaction. The evolution of 
technology and the improvement of methodologies in breeding 
programs aim to isolate the environmental effects to the 
maximum extent to increase the efficiency of the selection of 
genotypes based on the genetic effects. Artificial neural networks 
(ANNs) have a high capacity in predicting, recognizing, 
discriminating, and classifying patterns. Moreover, different 
from parametric statistical approaches, they capture the complex 
characteristics of a dataset in addition to being slightly susceptible 
to noise and outliers and being suitable for nonlinearly separable 
problems common to agricultural experimentation (Kavzoglu 
and Mather, 2003; Sudheer et al., 2003; Haykin, 2008). Currently, 

at the experimental level, ANN models have been used in the 
prediction of genetic values (Soares et  al., 2015), adaptability 
and stability (do Carmo Oda et  al., 2019), phenotyping (Sá, 
2018), yield estimates (Lu et al., 2022), genetic diversity (Rahimi 
et  al., 2019; Taratuhin et  al., 2020), disease detection, and 
classification (Hang et al., 2019; Trivedi et al., 2021). Moreover, 
they have demonstrated that the efficiency in the breeding 
stages can be  increased, which can reduce the time and cost 
of obtaining high-performance cultivars.

Based on the above, the objective of the present study was 
to evaluate the efficiency of ANNs as a tool for the correct 
discrimination and classification of tropical soybean genotypes 
according to their relative maturity group during the population 
selection process, with the aim of optimization of the phenotypic 
performance of these selected genotypes. The possible application 
of this analysis is expected to obtain high performance cultivars 
for a wide range of photoperiods in soybean growing regions 
in Brazil.

MATERIALS AND METHODS

Plant Material
Three soybean populations with different ranges of genetic 
variability were synthesized and evaluated for their RMG 
characteristics. Hybridizations were performed at the Department 
of Agricultural Production Sciences, Faculty of Agricultural 
Sciences, São Paulo University - UNESP/FCAV located at 
latitude 21°14′58″S and longitude 48°17′08″W, in Jaboticabal, 
São Paulo, Brazil. The population with a wide genetic variability 
for the RMG character was obtained from the hybridization 
between the genitors BMX Veloz (RMG 5.0; sub-tropical 23° 
LS) × BRS 278 RR (RMG 9.4; tropical 0° LS), called the Brazil 
population. The Northern and Southern populations, 
characterized by the most restricted variability for the character 
group of relative maturity, were established from crosses between 
the cultivars BRS 245 RR (RMG 7.3; Tropical 20° LS) and 
BRS 278 RR (RMG 9.4) and between cultivars BMX Energia 
(RMG 5.3) and BMX Potência (RMG 6.7), respectively. The 
controls of each population were their respective genitors, in 
addition to the cultivars TMG 7262 RR (RMG 6.2), TMG 
1174 RR (RMG 7.4), and TMG 1179 RR (RMG 7.9).

The parent cultivar BRS 278 RR was approximately 73 cm 
tall, had an average cycle of 115–127 days, determined growth 
habit, brown pubescence, purple flower color, RMG of 9.4, 
and resistance to lodging, Xanthomonas axonopodis, Cercospora 
sojina, and Diaporthe phaseolorum, were susceptible to common 
soybean mosaic, cyst nematode, Meloidogyne incognita, and 
Meloidogyne javanica, and tolerant to stem necrosis virus 
(CpMMV). BMX Veloz was of medium size, had an average 
cycle of 120 days, indeterminate growth habit, light brown 
pubescence color, purple flower color, RMG of 5.0, was resistant 
to D. phaseolorum and Phytophthora sojae (RPS1k gene), and 
was moderately resistant to C. sojina and X. axonopodis. BMX 
Energia was of medium size, had an indeterminate growth 
habit, gray pubescence color, purple flower color, RMG of 5.3, 
resistance to D. phaseolorum, and moderately resistant to 
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C. sojina and X. axonopodis. BMX Potência had a height of 
90 to 100 cm, indeterminate growth habit, gray pubescence 
color, white flower color, RMG of 6.7, was susceptible to the 
nematode M. incognita and moderately resistant to the nematode 
Meloidogyne javanica, and resistant to lodging, D. phaseolorum, 
C. sojina, and Phytophthora sojae. BRS 245 RR had a height 
of 70 to 94 cm depending on the planting region, determined 
growth habit, brown pubescence color, white flower color, RMG 
of 7.3, was resistant to D. phaseolorum, C. sojina, and common 
soybean mosaic, tolerant to stem necrosis virus, moderately 
susceptible to powdery mildew, and susceptible to cyst nematodes, 
M. incognita, and M. javanica.

All genitor cultivars were transgenic, with resistance to the 
herbicide glyphosate.

To perform the analyses, the controls were considered as 
distinct populations and there were 11 populations in total 
(Table  1).

Experimentation
Jaboticabal is located at latitude 21°15′19″S, presenting ideal 
photoperiod conditions for RMG genotypes 6–8 originating 
from the long rainy period in the region from November 
(spring) to April (autumn), allowing the cultivation of soybean 
cultivars with a cycle of up to 150 days. Field evaluation data 
were obtained from years 2017/2018, 2018/2019, and 2019/2020, 
corresponding to the filial generations from F3 to F6 for the 
Brazil population and F4 to F7 for the Northern and Southern 
populations. The three populations were conducted in the three 
agricultural years with a variable number of progenies, in 
addition to four commercial cultivars as controls within each 
population. The Brazil population consisted of 220 progenies 
in 2017/2018, 252  in 2018/2019 and 252  in 2019/2020. The 
Southern population consisted of 120 progenies in 2017/2018, 
168 in 2018/2019 and 168 in 2019/2020. The Northern population 
consisted of 60 progenies in 2017/2018, 60  in 2018/2019 and 
104 in 2019/2020. The agronomic characteristics evaluated were: 
number of days to flowering (NDF), number of days to maturity 
(NDM), total crop cycle (CYCLE), first pod insertion height 
(AIV), plant height at maturity (APM), lodging (Ac), agronomic 
value (VA), and grain yield (PG). Ac was evaluated based on 
a visual rating scale ranging from 1 (all plants erect) to 5 (all 

plants lodged), and VA was evaluated with a visual grading 
scale ranging from 1 (plants with poor agronomic characteristics) 
to 5 (plants with excellent agronomic characteristics). All 
experiments (three populations in three crop years) were 
conducted in Federer’s augmented block design (Federer, 1956), 
with randomized controls in all experimental blocks. Each 
experimental plot of each evaluated genotype consisted of a 
5-m-long row, with a 0.5-m spacing between rows, and a 
sowing density of 15 seeds per linear meter. The agronomic 
characteristics were evaluated on five individual plants within 
each experimental plot, in all populations and in all agricultural 
years, making up a robust set of evaluated data.

Discriminant Analyses
Fisher and Anderson discriminant analyses are linear 
combinations of the observed characteristics that present the 
best discrimination power among all possible linear combinations 
of the same characteristics (Johnson and Wichern, 2002). In 
these methodologies, the total dataset is divided into a training 
set (80% of the data) responsible for obtaining the discriminant 
functions and a validation or test set (20% of the data) responsible 
for validating the functions. For the test set to be a representative 
sample of the training set, several data partitions were performed, 
where the mean and variance of each generated set pair were 
compared, and the pair in which the estimates were the closest 
possible was selected. Cross-validation of the data and Fisher’s 
linear and Anderson’s quadratic discriminant functions were 
performed in Genes Computer Application (Cruz, 2008) 
according to the methodology of Cruz et  al. (2014).

Analysis by ANN
After several experiments on the best architecture for the 
multilayer perceptron network type, neural network architecture 
12–64–128-11 built in Python 3.6 using Keras as the frontend, 
TensorFlow 2.3.0 as the backend, and Scikit-learn 0.22.2 was 
adopted. It was necessary to convert the categorical variable 
(year) to one-hot representation. Thus, the number of input 
neurons was 12, corresponding to the POP, NDF, NDM, 
CYCLE, AIV, APM, Ac, VA, and PG populations and three 
agricultural years 2017/2018, 2018/2019, and 2019/2020. In 
the output layer, the number of neurons corresponded to 
the number of defined classes, that is, 11, and the hidden 
layers had 64 and 128 neurons, respectively. The dataset had 
7,287 examples. The algorithm used to train ANN was 
stochastic backpropagation (stochastic gradient descent). Adam 
optimizer was used. The number of training cycles was set 
as 600 epochs to prevent training from becoming excessive, 
which could lead to loss of generalization power. The ANN 
architecture evaluation was based on the evaluation metrics 
for classifiers that are mostly derived from the confusion 
matrix generated by the Scikit-learn package. The matrix 
was obtained from the test data and used to analyze the 
quality of predictions of the models. The other metrics used 
were accuracy (hit rates for positive and negative examples), 
precision (hit rate for positive examples), recall (coverage 
of correct positive examples), and F1-score (balance between 

TABLE 1 | Genealogy and relative maturity group (RMG) of 11 soybean 
populations used in study.

Population Genealogy RMG

Brazil BRS 278 RR × 5953 RSF RR 9.4/5.0
Southern BMX Potência RR × BMX Energia RR 6.7/5.3
Northern BRS 245 RR × BRS 278 RR 7.3/9.4
GBN1 BRS 278 RR 9.4
GB2 5953 RSF RR 5.0
GS1 BMX Potência RR 6.7
GS2 BMX Energia RR 5.3
GN2 BRS 245 RR 7.3
TGM7 TMG 1174 RR 7.4
TGM6 TMG 7262 RR 6.2
TGM8 TMG 1179 RR 7.9
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precision and recall metrics). Two procedures were 
implemented to validate the ANN architecture. The first was 
the hold-out procedure, which divided the dataset into two 
random bases: one for the training set with 80% of the 
data, and the other for testing with 20% of the data. The 
second procedure was the k-fold cross-validation, which 
divided the dataset into k partitions, where k−1 were the 
data for training and k was the set used for model testing. 
Thus, k-models were created, where the data for training 
and testing were changed for each iteration (Shalev-Shwartz 
and Ben-David, 2014). The final model evaluation was the 
average of the metrics of the k models. This procedure is 
frequently used to validate models with relatively small 
datasets. k was selected as 10. For the activation of neurons, 
after evaluating other options, the sigmoid–logistic function 
was used in the hidden layers and the softmax function was 
applied in the output layer. The best network architecture 
was established based on the average accuracy, considering 
the evaluated possibilities, calculated by multiplying the 
number of neurons in each layer and the possible activation 
functions. Thus, the most efficient network was chosen for 
each strategy, adopting the lowest apparent error rate (AER) 
as a criterion.

RESULTS

AER and Model Evaluation Metrics
Table  2 presents the classifications of the evaluated soybean 
genotypes based on the 11 populations considered in the 
analyses conducted by the Fisher and Anderson discriminant 
analyses, in addition to the ANN hold-out and k-fold approaches. 
According to Fisher’s analysis, of the total of 1,517 classifications, 
a total of 889 were considered as erroneous classifications, 
which makes an AER of 58.6%. For Anderson’s methodology, 
in turn, for a total of 1,517 classifications, the number of 
erroneous classifications was 769, leading to an error rate of 
50.59%, which is lower than the AER observed in Fisher. 
Despite this, both methods presented AER above 50%. In 
turn, it was observed that the validations of the ANN analyses 
indicated that of the 1,458 classifications performed, only 119 
were considered erroneous for the hold-out approach, leading 
to an AER of only 8.16%, while, of the 729 classifications 
for the k-fold approach, only 41 were considered erroneous, 
constituting an even lower AER of only 5.62%.

The superiority of the k-fold cross-validation to the hold-out 
procedure can also be  observed from Table  3. This table 
presents the metrics that assess the quality of the model 
used in the classification of soybean genotypes belonging to 
the 11 populations using the k-fold and hold-out ANN 
approaches. k-Fold showed accuracy of 93.36%, precision of 
93.49%, recall of 93.23%, and F1-score of 93.36%, which was 
greater than the corresponding hold-out scores by at least 
1.30% for all metrics. In turn, the highest loss value was 
presented by the hold-out model (34.10%) when compared 
to the k-fold model (26.39%), in a difference of 7.71% between 
the two approaches.

Confusion Matrices
Considering the best parametric and nonparametric approaches, 
the confusion matrices generated from the validation dataset 
based on the classification by the Anderson’s discriminant 
analysis and the k-fold cross-validation, are presented in Tables 4 
and 5, respectively. To interpret a classification within a confusion 
matrix, the column population is that to which the genotype 
belongs and the row population is that allocated by the model. 
Therefore, the correct classifications are on the highlighted 
diagonal and the incorrect ones outside of it.

Table  4 shows that the allocation of the genotypes from the 
GS1 population in the Southern population has the largest error. 
The Brazil population was the only one to receive incorrect 
classifications from all other ten populations. Of the 23 incorrectly 
classified plants belonging to the Brazil population, 22 were from 
the Southern population. Approximately 34.5% of the plants from 
the Southern population and 32.6% from the population were 
classified as being from the Brazil population. There were no 
misclassifications between the Southern and northern populations.

From Table 5, a large reduction in the number of 
misclassifications can be  observed. The misclassifications that 
occurred from the genotypes belonging to the Southern 
population being allocated to the Brazil population contributed 
most of the 5.62% of errors in the k-fold cross-validation 
approach. The reciprocal case of the genotypes belonging to 
the Brazil population being allocated to the southern population 
was also highlighted by the presence of errors. In addition to 
these pairs of populations, classification errors occurred between 
the Brazil and southern; GS1 and southern; southern, TGM6 
and the reciprocal; and TGM6, Brazil and the reciprocal 
populations. The GBN1 population did not receive erroneous 
allocations from any other population and its genotypes were 
not classified as belonging to other populations.

In addition to the reduction in Anderson’s errors for the 
k-fold cross-validation, differences in the classifications by the 

TABLE 2 | Classification of soybean genotypes into 11 populations of different 
relative maturity groups and estimation of apparent error rate (AER) according to 
Fisher’s and Anderson’s discriminant analysis and hold-out and k-fold ANN 
approaches.

Approach Total ratings Misclassifications AER (%)

Fisher 1,517 889 58.60
Anderson 1,517 769 50.59
Hold-out 1,458 119 8.16
k-fold 729 41 5.62

TABLE 3 | Model prediction quality evaluation metrics for hold-out and k-fold 
approaches in classifying soybean genotypes in 11 populations from different 
relative maturity groups.

Approach Loss (%)
Accuracy 

(%)
Precision 

(%)
Recall (%)

f1-score 
(%)

Hold-out 34.10 91.84 92.14 91.70 91.94
k-fold 26.39 93.36 93.49 93.23 93.36
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two procedures were observed. In the latter, in addition to 
the GBN1 population, the GS2, GN2, and TGM8 populations 
did not receive any incorrect genotypes. Moreover, the genotypes 
of the Northern, GS2, TGM7, and TGM8 populations were 
correctly classified.

Annual Evaluation graphic
Figure  1 shows the values of incorrect classifications that 
occurred in the agricultural years of evaluation of the genotypes 
2017/2018, 2018/2019, and 2019/2020 using the k-fold approach. 
From the increase in the bars of the graph that indicate the 
number of incorrect classifications, an increase in classification 
errors can be  observed from the year 2018 to 2019 and 2019 
to 2020, reaching a total increase of approximately 40%, 
considering the interval between the first and last years 
of assessment.

DISCUSSION

The failure to discriminate between genotypes and classify them 
into their populations correctly is caused by four main factors. 
First, the populations can be  very similar in their origin and 

genealogy. Second, the number of evaluated variables may 
be  insufficient, in addition to having low discriminatory quality, 
as a third factor. The fourth cause is the use of an inadequate 
statistical approach (Cruz et  al., 2014). In quadratic discriminant 
functions such as Anderson’s, with an increase in the heterogeneity 
of variance and covariance matrices, the nonlinearity of the 
classification thresholds increases, enhancing the performance in 
modeling the structure of the function (Carvalho, 2019). The results 
observed in the present study corroborate with Carvalho (2019), 
considering that Anderson’s methodology was 8.01% more accurate 
than Fisher’s methodology. However, both discriminant functions 
consider parameters and assumptions that are frequently insufficient 
for explaining a dataset. The occurrence of the AER above 50% 
of the examples suggests the limitation of these methodologies in 
discriminating the genotypes in this study, particularly when 
considering the population genetic structure and their inefficiency 
in classifying the genotypes. In contrast, ANNs learn with experience 
by exploring the features contained in the data, which is capable 
of increasing the accuracy of the information obtained in a more 
detailed manner (Silva, 2019). This study proves that k-fold cross-
validation is considered an accurate and suitable approach for 
small datasets (Shalev-Shwartz and Ben-David, 2014). The evaluation 
metrics of the models’ accuracy, precision, recall, and F1-score 
point to the higher quality of the models as their values are closer 

TABLE 4 | Classification of soybean genotypes in 11 populations from different relative maturity groups according to Anderson’s discriminant analysis.

POP Brazil Southern Northern GBN1 GB2 GS1 GS2 GN2 TGM7 TGM6 TGM8

Brazil 270 96 84 2 10 70 7 15 27 28 25
Southern 22 160 0 0 19 197 3 0 0 40 12
Northern 0 0 174 3 0 0 0 15 1 0 0
GBN1 0 0 0 27 0 0 0 0 0 0 0
GB2 0 2 0 0 19 0 12 0 0 2 0
GS1 0 1 0 0 0 16 0 0 0 2 1
GS2 0 1 0 0 1 0 17 0 0 0 0
GN2 0 0 1 0 0 0 0 10 0 0 1
TGM7 0 0 1 0 0 0 0 3 20 0 7
TGM6 1 23 0 0 1 18 1 0 0 14 1
TGM8 0 0 0 0 0 1 0 0 8 4 21

The column population is that to which the genotype belongs and the row population is that allocated by the model. Therefore, the correct classifications are on the highlighted 
diagonal and the incorrect ones outside of it.

TABLE 5 | Classification of soybean genotypes in 11 populations of different relative maturity groups by k-fold approach.

POP Brazil Southern Northern GBN1 GB2 GS1 GS2 GN2 TGM7 TGM6 TGM8

Brazil 314 11 0 0 0 0 0 0 0 3 0
Southern 4 205 0 0 1 4 0 0 0 3 0
Northern 1 0 72 0 0 0 0 1 0 0 0
GBN1 0 0 0 12 0 0 0 0 0 0 0
GB2 0 2 0 0 18 0 0 0 0 0 0
GS1 0 2 0 0 0 11 0 0 0 1 0
GS2 0 0 0 0 0 0 9 0 0 0 0
GN2 0 0 0 0 0 0 0 2 0 0 0
TGM7 1 0 0 0 0 0 0 0 13 0 0
TGM6 3 4 0 0 0 0 0 0 0 25 0
TGM8 0 0 0 0 0 0 0 0 0 0 7

The column population is that to which the genotype belongs and the row population is that allocated by the model. Therefore, the correct classifications are on the highlighted 
diagonal and the incorrect ones outside of it.
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to 100%. In turn, the loss points to a higher quality depending 
on how low is their presented value. The efficiency of the k-fold 
approach in correctly classifying more than 94% of the examples 
shows its superiority to the hold-out procedure. Moreover, the 
former has higher accuracy (93.36%), precision (93.49%), recall 
(93.23%), and f1-score (93.36%) than the latter. The higher loss 
presented by the hold-out approach (34.10%) compared to k-fold 
(26.39%) confirms the latter’s higher classification efficiency. In 
terms of percentage, the less efficient ANN validation approach 
correctly classified 40% more genotypes than the more efficient 
discriminant function.

The proximity of the origin and genealogy of genotypes 
belonging to different populations largely contributes to the 
inefficiency of their discrimination, as also observed by Sant’anna 
(2014) in the study on ANN and backcross populations with 
different degrees of similarity. Anderson’s discriminant function 
was inefficient in discriminating genitors from their descendants 
because most of the incorrect classifications that occurred with 
GS1 genotypes, represented by the BMX Potência RR cultivar, 
were allocated to the southern population, which is its descendant.

The Brazil population presents a high level of genetic variability 
in the relative maturity, resulting in the presence of many allelic 
combinations of genes that control the timing of flowering and 
maturity (Lin et  al., 2021). This was also a limiting factor for 
the good performance of the parametric methodology, causing 
it to classify genotypes from all other populations as belonging 
to the Brazil population, equivalent to 24% of the total errors. 
This capitalizes all variations in populations with narrow genetic 
basis and cultivars of pure lineages. Despite this, in the Brazil 
population, only 23 plants were misclassified, that is, 7.8%, and 
22 of these were allocated to the Southern population. This shows 
that it is broadly representative phenotypically of all other 
populations, even with little similarity to the Southern population, 
characterizing the wide genetic variability in the Brazil population. 
In contrast, 34.5% of the plants in the Southern population were 
classified as being from the Brazil population, which does not 
present a relationship or known biological explanation. Thus, the 
applied statistical technique is the probable cause of the incorrect 
classifications (Cruz et  al., 2014). In the Northern population, 

32.6% of the individuals were classified into the Brazil population. 
In this case, the two populations have a common genitor, which 
may also be  a biological cause of the misclassification. Between 
the Northern and Southern populations, there were no 
misclassifications, and there were also no relationships between 
the genitors.

When considering the genitors of the populations and the 
other three witnesses, it was noted that in the Northern population, 
fewer misclassifications occurred compared with that in the other 
populations; however, the errors of classification, in general, were 
always large, both in absolute values and percentages. There was 
a tendency for no differentiation of the genitor with the derived 
population, as in the case of GS1, Brazil and Southern populations 
and GN2, Brazil and Northern populations. Witnesses, even being 
pure lines, were erroneously classified as belonging to different 
populations, mainly for plants of the Southern population in the 
TGM6 witness. Thus, the statistical technique is inefficient in 
classifying pure lineage genotypes or those with a narrow genetic 
base and is partially effective even in populations with a broad 
genetic base, such as the Brazil population.

The only case in which no error occurred using Anderson’s 
methodology was the GBN1 population, corresponding to the 
BRS 278 RR cultivar with RMG 9.4, which did not receive 
incorrect genotypes from any other population. The RMG of 
this population, considered late for the evaluation region, 
induces elongation of the vegetative stage, resulting in extremely 
tall plants with low grain production, contributing to an atypical 
phenotype of this cultivar in Jaboticabal, the ideal RMGs for 
which are between 6 and 8.

Based on the confusion matrix obtained by the k-fold cross-
validation, the wide variability of the Brazil population also 
led to misclassifications of the genotypes from the Southern 
population. However, the number of errors by this method 
was 11 compared to 96 errors by Anderson’s discriminant 
analysis for the above pair of populations. The other k-fold 
misclassifications comprising the 5.62% errors occurred between 
Brazil and southern; GS1 and Southern; southern, TGM6 and 
the reciprocal; and TGM6, Brazil and the reciprocal populations. 
However, the number of errors was always equal to or less 
than 4. The non-occurrence of misclassification errors in the 
GBN1, GS2, GN2, and TGM8 populations as well as the absence 
of incorrect allocations in the Northern, GBN1, GS2, TGM7, 
and TGM8 populations demonstrate that, even with a relationship 
between the genitor and its derived population, ANN is very 
efficient for broad-based populations. Furthermore, the ANN 
correctly classifies the narrow-based populations and pure lines, 
learning to differentiate genotypes. Although the classification 
scheme of the ANN was affected by the genotype, it was to 
a lesser extent than Anderson’s discriminant method.

The mechanical evaluations based on the traditional 
characteristics in the three considered years at the same location 
did not impair the performance of the ANN; however, it shows 
the poor influence of noise and data loss on the quality of 
the information obtained (Silva, 2019). Furthermore, the correct 
identification of the genitors and witnesses shows that the 
genetic proximity between the genotypes and the existing genetic 
variability, whether wide or restricted, does not limit to the 

FIGURE 1 | Incorrect classifications of soybean genotypes from 11 populations 
by k-fold methodology in agricultural years of evaluation 2017/2018, 2018/2019, 
and 2019/2020.
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result accuracy. This demonstrates the usefulness of the technique 
in breeding programs even in the F6 and F7 generations.

The built ANN identified the genotypes that were incorrectly 
classified by their corresponding numbers in the data table. From 
this information, it was possible to identify the generation of self-
fertilization of each of these genotypes based on the year of 
evaluation. As the generations advance in homozygosity and selections 
are made within the populations, mainly based on productivity, 
they become uniform and similar to each other because they are 
generally intended for cultivation where they are located, as also 
identified by Sant’anna (2014) using simulated data. Genotypes 
grown outside their ideal photoperiod conditions present reduced 
productive potential (Lin et  al., 2021) and are eliminated in the 
selection process. The increase in incorrect classifications from 2018 
to 2020 reached approximately 40%, which shows the importance 
of classifying and assigning genotypes to their appropriate evaluation 
regions. At this stage of the local breeding program, it would 
be  ideal if the advanced lines in F5 or F6 were evaluated in the 
target region according to their photoperiod. The dataset also leads 
to the conclusion that lineage development in an intermediate 
region (RMG 7) is suitable for advancing the lineages for extreme 
photoperiods, as for RMGs 5 and 9.

In a conventional soybean breeding program, many resources 
are used to obtain a successful cultivar. Time and money are 
invested in researching, testing, selecting, and developing promising 
genotypes. After the selection stage, it takes at least 5 years for 
the implementation of tests in the intended cultivation regions 
for the commercialization of the cultivar and it can be  extended 
up to 10 years until the launch of the final product (commercial 
cultivar) (Seednews, 2019). This study demonstrated that neural 
networks are able to classify genotypes and discriminate them 
for their ideal ranges of cultivation even in early generations, 
which would lead to a reduction of resources spent between the 
selection and testing steps in the existing edaphoclimatic 
macroregions. In addition, the high efficiency of ANNs in 
discriminating populations with wide and narrow genetic variability 
allows their application to obtain genotypes to be tested throughout 
Brazil, from the same base population of wide genetic diversity, 
even in early and intermediate generations of inbreeding, for the 
development of new cultivars, enabling the exploration of greater 
genetic variability from wider crosses and contributing once again 
to the reduction of time and resources invested in genetic 
improvement programs.
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