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The present study demonstrates plant growth promotion and induction of systemic
resistance in pea (Pisum sativum) plant against Fusarium oxysporum f.sp. pisi by
two bacterial endophytes, Pseudomonas aeruginosa OS_12 and Aneurinibacillus
aneurinilyticus OS_25 isolated from leaves of Ocimum sanctum Linn. The endophytes
were evaluated for their antagonistic potential against three phytopathogens Rhizoctonia
solani, F. oxysporum f. sp. pisi, and Pythium aphanidermatum by dual culture assay.
Maximum inhibition of F. oxysporum f. sp. pisi was observed by strains OS_12 and
OS_25 among all root rot pathogens. Scanning electron microscopy of dual culture
indicated hyphal distortion and destruction in the case of F. oxysporum f. sp. pisi.
Further, volatile organic compounds (VOCs) were identified by gas chromatography–
mass spectrometry (GC-MS). The GC-MS detected eight bioactive compounds from
hexane extracts for instance, Dodecanoic acid, Tetra decanoic acid, L-ascorbic
acid, Trans-13-Octadecanoic acid, Octadecanoic acid. Both the endophytes exhibited
multifarious plant growth promoting traits such as indole acetic production (30–33 µg
IAA ml−1), phosphate solubilization, and siderophore and ammonia production. Pot trials
were conducted to assess the efficacy of endophytes in field conditions. A significant
reduction in disease mortality rate and enhancement of growth parameters was
observed in pea plants treated with consortium of endophytes OS_12 and OS_25
challenged with F. oxysporum f.sp. pisi infection. The endophytic strains elicited induced
systemic resistance (ISR) in pathogen challenged pea plants by enhancing activities
of Phenylalanine ammonia lyase (PAL), peroxidase (PO), polyphenol oxidase (PPO),
ascorbate oxidase (AO), catalase (CAT) and total phenolic content. The endophytes
reduced the oxidative stress as revealed by decrease in malondialdehyde (MDA) content
and subsequently, lipid peroxidation in host plant leaves. Robust root colonization of
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pea seedlings by endophytes was observed by scanning electron microscopy (SEM)
and fluorescence microscopy. Thus, plant growth promoting endophytic P. aeruginosa
and A. aneurinilyticus can be further exploited through bio-formulations for sustainable
protection of crops against root rot diseases as bio-control agents.

Keywords: endophytes, plant growth promotion, biological control, volatile compounds, induced systemic
resistance, Fusarium root rot

INTRODUCTION

The conventional agricultural practices heavily rely on bulk use
of chemical fertilizers and pesticides resulting in environmental
pollution and deterioration of soil and human health. Plant-
microbe interactions are one of the most widely studied
phenomena offering huge possibilities to design a tailormade
formulations of microbes as a substitute to chemical inputs in
enhancing plant growth and development.

In this regard, the use of plant-associated microbiota,
collectively known as endophytes, represents a reliable and
sustainable farming approach for plant growth as well as
phytopathogen growth suppression and disease control.
Endophytes are those microorganisms which invariably colonize
internal plant tissues without causing any apparent disease
symptoms in host plants (Hardoim et al., 2015). There are
numerous studies demonstrating the immense potential of
endophytes in plant growth promotion, stimulation of stress
tolerance, suppression of plant pathogenic diseases, and
alleviation of negative effects manifested upon biotic and
abiotic stressed conditions through various direct and indirect
mechanisms (Etminani and Harighi, 2018; Aeron et al., 2020;
Kushwaha et al., 2020).

These mechanisms include nitrogen fixation, plant growth
hormone (auxins, cytokinin, and gibberellins) production,
solubilization of phosphates and sequestration of iron by
production of siderophores, production of antimicrobial
bioactive metabolites, and competition for nutrients and
ecological niches (Latha et al., 2019).

Endophytic bacteria endowed with another prominent
role, i.e., elicitation of induced systemic resistance in plants
whereby the plant’s innate defensive system is reprogrammed
in a positive manner to counterattack pathogen challenges
(Jacob et al., 2020). The plant defensive system is linked
with the elicitation of phenylpropanoid pathway that may
result in enhancing the activities of various defense-related
enzymes such as Phenylalanine ammonia lyase (PAL), peroxidase
(PO), polyphenol oxidase (PPO), ascorbate oxidase (AO),
inducing antioxidants like catalase (CAT), and stimulating
the accumulation of phenolic compounds and thus, manage
pathogenicity and disease caused by pathogens in plants
(Kloepper and Ryu, 2006). The promising role of plant
growth-promoting bacterial endophytes in augmenting induced
host resistance for controlling further pathogen attack was
documented in previous reports (Rashid et al., 2017; Nandhini
et al., 2020).

Fusarium oxysporum, a species complex with different Formae
speciales is a soil-borne phytopathogen responsible for vascular

wilt, root, and crown rot diseases on a diverse array of
economically important crop plants such as tomato, banana,
sweet potato, cotton, pea, chickpea (Gordon, 2017; Edel-
Hermann and Lecomte, 2019). F. oxysporum Schl. f. sp. pisi
Snyd. and Hans. causing vascular wilt and root rot diseases are
a major threat that hampers agricultural productivity resulting in
enormous yield and economic losses in infected pea crops (Porter
et al., 2015; Bani et al., 2018). Endophytic biocontrol agents with
multifarious PGPR characteristics have been successfully isolated
from different plant parts such as Bacillus amyloliquefaciens
FBZ24 (Elanchezhiyan et al., 2018), Burkholderia gladioli E39CS3
(Ahmad et al., 2021), Burkholderia cenocepacia 869T2 (Ho
et al., 2015), Enterobacter cloacae SM10 (Tsuda et al., 2001)
Bacillus tequilensis (Bhattacharya et al., 2019), Bacillus subtilis
(Baysal et al., 2008), Bacillus velezensis B-36 (Wang et al., 2020),
Pseudomonas lini (Muñoz Torres et al., 2021), and proactively
used to ward-off the Fusarium wilt and root rot infection in
different crops.

In this context, the present study was designed to explore the
antifungal activity of bacterial endophytes from ethnomedicinal
plant O. sanctum Linn. against F. oxysporum f sp. pisi
underlining the beneficial therapeutic values of host plants
in traditional Unani and Ayurveda medicine. The possible
mechanism of endophytic bacterial strains involved in the in vitro
antagonism against F. oxysporum f sp. pisi in dual cultures
were determined such as phenotypic exhibition of multiple
plant growth-promoting and biocontrol traits, production of
antifungal volatile organic compounds. Secondly, in planta assay
on pea plants was carried out to examine the effect of tripartite
interaction (bacterial isolate-host plant–pathogen) on pea growth
and development. Finally, the morphological, physiological, and
biochemical parameters of pea plants grown under pathogen
F. oxysporum f sp. pisi stressed soil were assessed to explore
mechanistic insights on the mode of defensive action of selected
endophytic bacterial isolate.

MATERIALS AND METHODS

Sampling Site and Isolation of
Endophytic Bacteria
Five plants of Ocimum sanctum were collected from the Sanjay
Van forest area located in South-Central Ridge (28◦32′00′′N
77◦10′40′′E) in the National Capital Territory of Delhi in India
(Supplementary Figure 1). Healthy leaves without any visible
damage were detached and safely brought to the laboratory in zip
lock bags. The leaf segments were thoroughly washed in running
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tap water to remove adhering soil particles prior to surface
sterilization process as per Zinniel et al. (2002). In brief, the leaf
tissues were washed in 70% (v/v) ethanol for 1 min followed
by immersion in 1% (v/v) sodium hypochlorite for 1 min and
washed five to six times with sterile double autoclaved distilled
water to remove disinfectant agents. Surface sterilization was
confirmed by plating the aliquots of water from the final rinse
onto the nutrient agar media plate which served as a control and
was observed for growth after the incubation at 28◦C for 48 h
(Liaqat and Eltem, 2016). The surface sterilized plant tissues were
macerated in phosphate saline buffer using sterile mortar pestle
and serial dilution up to 10−5 and 10−6 were made. Aliquots
of appropriate dilutions were plated on nutrient agar media
and incubated at 28◦C for 48 h. The morphologically distinct
individual colonies were selected and purified by sub-culturing
for further use.

Source and Growth Maintenance of
Fungal Plant Pathogens
Three fungal phytopathogens viz. Rhizoctonia solani,
F. oxysporum f. sp. pisi and Pythium aphanidermatum were
obtained from Indian type culture collection (ITCC), Division of
Plant Pathology, ICAR-IARI, New Delhi, India. The pathogens
were maintained by subculturing them on potato dextrose
agar (PDA) slants and in potato dextrose broth (PDB) for
further investigations.

In vitro Screening of Isolates for
Bio-Efficacy Assays
The bacterial isolates were screened for antagonistic activity
against fungal phytopathogens through in vitro dual culture
assay. Briefly, a loopful of the overnight grown bacterial culture
was streaked symmetrically around the 5-mm diameter agar plug
of fungal mycelium placed in the center of potato dextrose agar
(PDA) medium. The plates were incubated for 7 days at 26◦C
and examined for inhibition zones against fungal pathogens.
Plates with only a mycelial plug of pathogen at the center
of the PDA plate served as controls. All experiments were
conducted in triplicates.

Scanning Electron Microscopy Analysis
of Antagonistic Effect of Bacterial
Endophytes on Fusarium oxysporum
The mycelial plugs of F. oxysporum f. sp. pisi, incubated in
bacterial suspension for 2 days at 200 rpm, were taken as
specimens for observations under SEM. The fungal mycelium
was placed on the glass cover slips and fixed in 1.5%
glutaraldehyde in 0.05 M phosphate buffer (pH 7.3) for 4 h at
4◦C. Followed by fixation, the specimen was washed three times
with phosphate buffer for 10 min., post fixation of the samples
was carried out using 1.0% OsO4 in 0.05 M phosphate buffer
(pH 7.2) at 4◦C for 4 h and then subsequently washed three
times with distilled water. Then, the samples were dehydrated
with increasing concentration of ethanol from 30 to 100% ethanol
(v/v) at 10 min interval. A similar procedure was done with
fungal mycelium taken from the petri plate grown without

bacterial inoculation (control). Followed by dehydration, the
dehydrated samples were critical-point dried, mounted on SEM
stubs using carbon tapes, and coated with gold: palladium (60:40)
for visualization under ZEISS EVO scanning electron microscope
and photomicrographs were recorded (Jang et al., 2011).

Antifungal Assay of Volatile Organic
Compounds
The in vitro production of inhibitory volatile compounds
by selected endophytes against F. oxysporum f. sp. pisi was
qualitatively assessed as per Yuan et al. (2012). Briefly, 0.1 mL
of the selected bacterial broth culture was plated on nutrient
agar medium while the mycelium of F. oxysporum f. sp. pisi
(7 mm diameter) from actively growing culture was cut and
placed on the center of the fresh PDA plate. The partitioned plates
containing only fungal mycelium, but no bacterium, was served
as control. The PDA plate containing mycelial plug was kept
inverted over the nutrient agar plate with bacterial culture and
sealed firmly with parafilm. The plates were incubated at 28◦C
for 7 days and inhibition of fungal growth were measured.

Gas Chromatography–Mass
Spectrometry Analysis of Volatile
Compounds in Bacterial Extract
The methanolic bacterial extracts were prepared with overnight
grown culture of the respective bacterial strains, centrifuged
at 10,000 rpm for 5 min and the resulting precipitate was
dissolved in HPLC grade methanol. The methanolic extract
was then subjected to vacuum evaporation on a rotatory
evaporator. The resulting residue was suspended in 10 mL
methanol and then fractionated with equal amounts of n-hexane.
The hexane faction was evaporated and the residue ∼1 g
was re-dissolved in 10 mL n-hexane. The final extracted
hexane solution was filtered through 0.2 µm sterilizing-
grade filters into HPLC vial and analyzed through Thermo
scientific TSQ 9000 gas chromatograph interfaced with a triple
quadrupole mass spectrometry to detect volatile biomolecules.
The volatile compounds were identified using National Institute
of Standards and Technology (NIST) library of mass spectra
(Slama et al., 2019).

Molecular Characterization of Bacterial
Endophytes
The genomic DNA from the selected antagonistic bacterial
endophytes was obtained according to the conventional
phenol/chloroform method described by Sambrook et al., 1989.
The 16S rRNA gene was amplified using two universal primers
16SF (5′-AGA GTT TGA TCC TGG CTC AG-3′) and 16SR
(5′-AAG GAG GTG ATC CAC CGC A-3′) by polymerase chain
reaction (PCR) with Bio-Rad thermo cycler (Bio-Rad, Hercules,
CA, United States) using an initial denaturation step at 94◦C for
5 min followed by 35 cycles of denaturation at 94◦C for 1 min,
annealing at 48◦C for 1 min, extension at 72◦C for 1 min and
final polymerization step at 72◦C for 10 min. The amplified
DNA fragments were sequenced by Sanger dideoxy sequencing
method and resultant sequence was subjected to web-based
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identification tool on EzBioCloud database1. The phylogenetic
tree was developed by Neighbor- joining method using MEGA
program, version 10.0.

In vitro Studies of Bacterial Endophytes
for Plant Growth Promoting Traits
The production of IAA of isolates was analyzed by mixing
cell free supernatant with Salkowski’s reagent (35% perchloric
acid + 0.5M FeCl3) and quantified spectrophotometrically at
530 nm with the help of standard curve of pure Indole acetic
acid (IAA, Hi-MEDIA) (Ahmad et al., 2008). The phosphate
solubilizing activity was qualitatively evaluated using Pikovaskya’s
agar plates supplemented with 2% (w/v) insoluble inorganic
Tricalcium phosphate [Ca3(PO4)2, Hi Media] (Nautiyal, 1999).
Furthermore, the solubilized phosphate (Soluble P mg/L) was
quantified in NBRIP medium using standard curve of KH2PO4
(HI MEDIA) as per Fiske and Subbarow (1925). The potential
ability of ammonia production was estimated by using Nesslar’s
reagent in accordance with Ahmad et al. (2008). Non-inoculated
medium was served as control. For HCN production, the
selected bacterial isolates were streaked on nutrient agar medium
supplemented with 0.4% glycine. A Whatman filter paper soaked
in picrate solution (2% Na2CO3 + 0.5% picric acid) was placed
on the upper lids of Petri plates and monitored for 4 days
for the development of orange to red color which indicated
cyanogenic activity of isolates (Lorck, 1948). The production of
siderophores was determined on the Chrome Azurol S (CAS)
agar medium as described by Schwyn and Neilands (1987).
Development of orange-yellow halo around the bacterial colonies
was considered as positive.

In planta Assay for Plant Growth
Promotion and Bio Efficacy Against
Fusarium oxysporum
Planting Materials and Sterilization Process
Pea seeds were obtained from Division of vegetable science,
Indian Agricultural Research Institute (IARI), Pusa, New Delhi,
India. Seeds were surface sterilized in 70% (v/v) ethanol for
1 min followed by 10 min submergence in 1% (v/v) sodium
hypochlorite solution (NaClO) and then washed six–seven times
with deionized water.

Preparation of Bacterial Inoculum and Seed
Bacterization
The bacterial cell suspensions were prepared by aseptically
inoculating pure bacterial cultures in LB growth medium and
incubated overnight at 28◦C. The bacterial cells were harvested
by centrifugation at 5,000 g for 5 min and the resultant pellet was
washed with sterile distilled water (two–three times). The pellets
were finally diluted with sterile 0.03 M MgSO4 and adjusted to
concentration 108 cfu ml−1 as measured with spectrophotometer
at 600 nm. For consortia development, compatibility test
between the strains was carried out on nutrient agar plates
(Supplementary Figure 2). The consortium of bacteria was

1http://www.ezbiocloud.net/eztaxon

prepared by inoculating overnight grown bacterial cultures of
OS_12 and OS_25 in fresh nutrient medium in the ratio of 1:1
and incubated for 24 h at 120 rpm at 28◦C. The seed bacterization
was carried out by immersing the sterilized pea seeds in bacterial
culture suspension prepared in sterile 0.03 M MgSO4 for 30 min
and then air dried in laminar air flow for 2 h.

Effect of Bacterial Endophytes on Pea
Germination
The germination test was carried out by aseptically placing 10
bacterized and uninoculated seeds on Whatman filter paper
in 10 cm Petri dishes (three replicates per treatment) as per
treatment conditions and incubated in the growth chamber with
optimum light and temperature conditions, i.e., 16:8 light: dark
photoperiod at 28◦C. The paper was moistened with normal
tap water (control). The Petri dishes with uninoculated seeds
served as control. Following 10 days incubation, germination
percentage was recorded.

Soil Preparation and Analysis
The soil was collected from the organically cultivated agricultural
field and sieved (2 mm pore size) to remove any debris and large
aggregates. The soil was mixed with farmyard manure in the ratio
of 4:1 (w/w) and two times autoclaved at 121◦C for 30 min at 24 h
intervals. The sterilized soil was stored in the Ziplock bags at 4◦C
in the laboratory and analyzed for its physicochemical properties
in triplicates for plant growth study. The soil with sandy loam
texture has electrical conductivity (0.0354 ds m−1), pH (4.5),
organic C (0.58 g kg−1), N (0.19 g kg−1), P (0.02 g kg−1), K
(0.23 g kg−1).

Preparation of Pathogenic Inoculum
The mycelial plugs of ∼5 mm from the F. oxysporum f. sp. pisi
PDA plate were inoculated into sterile 100 mL potato dextrose
broth (PDB) medium and incubated for 7 days at 25◦C without
shaking. Following incubation, the broth medium was filtrated
with sterile water to harvest the mycelial mats formed on the
upper surface of the culture medium. The mycelial mats so
collected was mixed and allowed to grow on the mixture of soil
and coco peat (4:1 w/w/) in the proportion of one piece of mat to
4 kg soil mixture for mass multiplication for 2 weeks at 25◦C.

Experimental Design and Pot Trials
The experimental design consisted of two sets of experiments
with four treatments each under normal and pathogenic
challenged conditions to evaluate plant growth and biocontrol
potential, respectively, of selected endophytes. The four
different treatments were applied to the sterilized seeds of
pea in the experiment were: (i) Control, (ii) Strain OS_12
inoculated, (iii) Strain OS_25 inoculated and (iv) Dual Consortia
(OS_12 + OS_25) inoculated. Untreated seeds inoculated with
pathogen, F. oxysporum f. sp. pisi served as positive control while
those without fungus inoculation served as negative control.
Three replications were maintained for each treatment and the
experiment was repeated thrice.
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The bio primed pea seeds were then sown in plastic pots
(20 cm × 20 cm) filled with sterile soil mixture (2.5 kg pot−1)
at a rate of 4 seeds per pot at a depth of 1.5–2.0 cm. In total, 36
seeds were sown for each treatment. After 4 weeks of seedling
emergence, seedlings were divided into two sets, one was allowed
to grow under normal conditions while the other one grew under
pathogen challenged conditions to determine the potential of
isolates to promote plant growth and resist biotic stress. The
inoculum of phytopathogen, F. oxysporum f. sp. pisi was added
in the potting mixture at the rate of 50 g per pot to produce
fungal infested soil. The pots were watered daily to maintain
favorable moisture level.

Assessment of Plant Growth Parameters
and Disease Severity
After 14 days, following pathogen challenge, the plants were
carefully harvested from the soil, washed with tap water and the
morphological parameters related to length and fresh weight of
roots and shoots of pea plants were measured. The plants were
rated for disease severity on a scale from 1 to 5 based on visual
damage to roots system, where 1- healthy or no symptoms to
root tissue; 2- 25% damage to root tissues 3- 50% damage to root
tissues, 4- 75% damage to root tissues and 5- complete damage to
tissues (Bahroun et al., 2018).

Photosynthetic Pigments Estimation:
Total Chlorophyll and Carotenoids
Content
The photosynthetic pigments, chlorophyll and carotenoids
content of pea leaves were determined by ethanol and acetone
extraction methods, respectively, as per standard procedure. The
absorbance of the collected supernatant was recorded at 663 and
645 nm for chlorophyll estimation and at 460 and 510 nm for
carotenoid analysis. Total chlorophyll content and carotenoid
content was calculated as mg g−1 of Fresh weight (FW) using the
following equations (Arnon, 1949; Sarker and Oba, 2018).

Analysis of Induced Systemic Resistance
in Plants
The leaf tissue sample (0.5 g) was macerated in 4 mL 0.2 M
borate buffer (pH 8.7) along with 1.4 mM β-mercaptoethanol.
The subsequent crude enzyme extract was taken and mixed with
500 µl borate buffer, 1 mL of 0.1 M L-phenylalanine and distilled
water and incubated at 30◦C for 30 min. The reaction was stopped
by adding 500 µl 1 M trichloroacetic acid. The PAL activity was
calculated as Units per gram of fresh weight where 1 unit of PAL
activity is defined as the 0.01 change in absorbance in unit time at
290 nm (Havir, 1987).

The activity of Peroxidase was measured in leaves extract
(100 µl) of all the studied treatments by adding 1.5 mL of 0.05 M
pyrogallol and 0.5 ml of 1% H2O2. The increase in absorbance of
reaction mixture was recorded due to oxidation of pyrogallol to
purpurogallin at 420 nm at regular intervals of 20 s for 3 min and
expressed as change in absorbance under the assay conditions per
min per gram of fresh weight (Hammerschmidt et al., 1982).

The polyphenol oxidase (PPO) activity of leaves enzyme
extract was measured at 495 nm at 30 s regular intervals for 3 min
using 0.01 M catechol as a substrate and expressed as change in
absorbance of 0.01 under the assay conditions per min per gram
of fresh weight.

Ascorbate oxidase (AO) enzyme activity was estimated as
per protocol of Drumm et al. (1972). The amount of ascorbate
oxidase was measured as change in absorbance of reaction
mixture (3 mL 10 mM ascorbic acid + 100 µl enzyme extract)
at 265 nm and expressed as units of µmole ascorbate degraded
min−1 mg−1 protein.

Catalase enzyme activity of leaves extract of all the studied
treatments was estimated in terms of degradation of H2O2 at
240 nm as per protocol of Beers and Sizer (1952). The reaction
mixture consisted of 50 mm potassium phosphate buffer (pH
7.0), 20 mm H2O2 and 100 µl crude enzyme extract. The amount
of catalase was calculated by using molar extinction coefficient
of H2O2 (36 M−1 cm−1) and expressed as µmole H2O2 min−1

g−1 fresh weight.

Measurement of Leaf Phenolic Content
and Lipid Peroxidation
The oxidative degradation of lipid biomolecules in pea
plants exposed to biotic stress was quantified using TBARS
(Thiobarbituric acid reactive substance) assay as per Hodges
et al. (1999) and calculated in terms of MDA (Malondialdehyde)
equivalents as nmol MDA g−1 fresh weight. The phenolic
content in pathogen challenged and non-stressed pea plants
was estimated quantitatively using Folin–Ciocalteu reagent
and calculated as mg gallic acid equivalent (mg GAE g−1 fresh
weight) by means of gallic acid standard calibration curve
(Siddiqui et al., 2017).

Microscopic Visualization of Endophytic
Bacteria
The pea seeds were surface sterilized and subsequently bacterized
with consortium of bacterial strains OS_12 and OS_25 as
described previously. The inoculated and non-inoculated
(control) seeds were sown in plastic cups filled with sterile soil
mixture at a rate of 2 seeds per cup. After 3-weeks, roots samples
were carefully harvested from control and inoculated plants.

Scanning Electron Microscopy
The collected tissue samples were washed twice under running
water and trimmed into tiny pieces (∼0.1–0.5 cm) with a
sterile razor blade. The root segments were fixed in 2.5% (v/v)
glutaraldehyde and 4% (v/v) paraformaldehyde in 0.1 M sodium
cacodylate buffer solution (pH 7.2) for 2 h at room temperature.
Followed by fixation, tissue samples were washed thrice with
phosphate buffered saline solution. The tissue segments were
post fixated with 2% (w/v) osmium tetroxide (OSO4) solution
in phosphate buffer overnight at 4◦C and dehydrated in ethanol
solutions of increasing concentration at 10 min intervals followed
by drying in desiccators. The samples were then mounted on to
SEM stubs using double coated carbon conductive tape followed
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by coating with gold: palladium (60:40). Photomicrographs were
recorded with ZEISS EVO Scanning Electron Microscope.

Fluorescence Microscopy
Fine root segments (∼2–3 mm) were prepared aseptically with a
sterile razor blade and fixed with formaldehyde-glutaraldehyde
fixative as described above. After fixation, the samples were
washed with phosphate buffered saline solution (pH 7.2). The
roots segments were aseptically transferred to a clean glass slide
and stained with acridine orange in phosphate buffer solution for
10 min at room temperature in the dark. Following treatment
with acridine orange, the samples were washed thrice with
phosphate buffer saline solution and then air dried (Batool et al.,
2015). The slides were then examined under 100× objective of
fluorescence microscope with green filter.

Statistical Analysis
All data of morphological growth attributes obtained from
in planta assay on pea were analyzed by one-way ANOVA
followed by Tukey’s test with different treatment conditions
considered as independent variable under pathogen challenged
and non-pathogenic conditions. All the statistical analyses
were calculated at significance level p = 0.05 through IBM
SPSS Statistics software. The experiments were performed in
triplicates, the mean and standard deviation were calculated
using Microsoft Excel 2016. The principal-component analysis
(PCA) was carried out to represent morphological growth
parameters and enzymatic activity correlated to induced
systemic resistance as response variables in the present analysis
through SPSS software.

RESULTS

Isolation and in vitro Biocontrol Potential
of Bacterial Endophytes
A total of 25 morphologically distinct bacterial endophytes were
isolated from leaves of O. sanctum Linn. plants and purified
by subculturing the isolates. No bacterial growth was observed
in control plates which indicate the effectiveness of surface
sterilization protocol and thus, the selected bacterial isolates were
considered as leaves endophytes.

The in vitro suppression assay revealed eight bacterial
endophytes with varied levell of growth suppression of mycelium
of atleast one pathogenic fungus as presented in Table 1.

All endophytes indicated antagonistic potential against the
mycelial growth of F. oxysporum except isolate OS_07. Among
them, OS_12 and OS_25 significantly suppressed radial growth of
F. oxysporum by more than 70%. The highest suppressive percent
with respect to mycelial growth of R. solani was in the presence of
isolate OS_12 (64% inhibition). Six isolates exhibited antifungal
activity against P. aphanidermatum with isolate OS_25 displaying
the highest antagonistic activity with ∼68% inhibition of hyphal
growth in comparison to control. The in vitro antagonism assay
depicted that most of the leaf endophytic isolates (∼88%) were
able to limit the mycelial growth of F. oxysporum with mean
inhibition percentage of 41% as compared to that of R. solani

(24%) and P. aphanidermatum (30%). Therefore, in planta assay
for plant growth promotion and bio-efficacy through pot trials
were carried out against F. oxysporum. Isolates OS_12 and OS_25
were found to be most efficient antagonistic agents with respect
to inhibition of mycelial growth of F. oxysporum, R. solani and
P. aphanidermatum on PDA agar plates after 7 days of incubation
(Figure 1). Therefore, isolates OS_12 and OS_25 were selected for
further experimentation and characterization studies.

Visualization of Interaction Between
Antagonistic Bacterial and Fungal Plant
Pathogens
Scanning electron microscopic studies revealed hyphal
morphology of F. oxysporum in the presence and absence of
antagonistic endophytes strain OS_12 and OS_25 (Figure 2). The
control plate without antagonists indicated intact and regular
structure of hyphae of F. oxysporum with smooth surfaces.
However, micrographs clearly exhibited the irregular distortions
in fungal mycelia in the presence of antagonistic strains OS_12
and OS_25 either single treated or in consortium mode.

Antagonistic Assay of Volatile Organic
Compounds and Identification by Gas
Chromatography–Mass Spectrometry
VOCs produced by bacterial strains OS_12 and OS_25 have
significantly (P < 0.05) inhibited the mycelial growth of
F. oxysporum by 35 and 24%, respectively, in comparison to
control. Supplementary Table 1 has listed major peaks detected
by GC-MS in the volatile fractions of bacterial isolates OS_12
and OS_25 extracted in hexane (Figure 3). For isolate OS_12,
the highest percentage of peak area was observed for L-ascorbic
acid with retention time 19.11, whereas the lowest percentage
of the peak area (2.78) was observed for Dodecanoic acid
with retention time 10.68. While in case of isolate OS_25,
2,2,3,4-Tetramethylpentane and Octadecanoic acid represented

TABLE 1 | Inhibition of mycelial growth of the phytopathogens by endophytes of
Ocimum sanctum Linn.

S. no. Isolates Percent growth inhibition

Rhizoctonia
solani

F. oxysporum
f. sp. pisi

Pythium
aphanidermatum

(1) OS_01 20.39 ± 0.87a 55.37 ± 0.71a 18.07 ± 0.70a

(2) OS_02 0 45.25 ± 0.37b 0

(3) OS_05 0 29.68 ± 1.36c 32.00 ± 1.39b

(4) OS_07 42.36 ± 0.66b 0 33.35 ± 1.06b

(5) OS_12 64.17 ± 0.62c 70.24 ± 0.52d 61.39 ± 0.81c

(6) OS_16 0 19.35 ± 1.07e 44.28 ± 0.31d

(7) OS_21 12.06 ± 0.07d 34.69 ± 0.32f 0

(8) OS_25 59.32 ± 1.59e 73.59 ± 1.76g 67.56 ± 0.78e

Plants in dual plate assay under in vitro experimental conditions.
Data shown as percent of growth inhibition of mycelium of fungus by bacterial
strains. Values represent mean values ± standard deviation (n = 3). Different
minuscules indicate statistical difference (Turkey’s post test, P < 0.05) while same
letters superscript are not significantly different.
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FIGURE 1 | Dual culture assay for investigating in vitro antagonistic potential of bacterial endophytes inhibiting the mycelial growth of fungal pathogens on PDA
medium after 7 days of incubation. The endophytes antagonists OS_12 (D–F) and OS_25 (G–I) have limited the growth of hyphae of pathogens with respect to
control plates which showed dense hyphal growth of fungal pathogens. (A) Fusarium oxysporum f. sp. pisi, (B) Rhizoctonia solani, and (C). Pythium
aphanidermatum.

the highest (40.38) and lowest (4.49) peak area with retention
time 3.30 and 27.68, respectively.

Characterization for Multifarious Plant
Growth Promoting Attributes
Indole acetic acid as confirmed by Salkowski assay, through the
development of pink color of cell free supernatant. Between the
two isolates, strain OS_25 showed the highest IAA production
(33.8146 ± 0.38 µg ml−1) while the other isolate OS_12 showed
IAA production of 29.3689 ± 0.26 µg ml−1 after the 6th day of
incubation in the presence of 5 mM Tryptophan.

Both endophytes were able to solubilize inorganic tricalcium
phosphate (2% w/v) supplemented Pikovaskya’s agar medium as
visualized by clear hallow zones around the individual colonies
with the highest solubilization zone of 2.8 cm by isolate OS_25
(Figures 4A,B). In quantative analysis, strain OS_25 indicated
highest phosphate solubilization potential followed by strain
OS_12 in NBRIP broth medium. The phosphate solubilization
by strains has led to the reduction of pH of the spent medium
(4.2 ± 0.02 in case of OS_25, 5.0 ± 0.01 in case of OS_12) from
an initial neutral pH (7.0± 0.001).

Both the isolates were able to form clear orange halo zones on
blue CAS agar solid medium, suggesting that strains OS_12 and
OS_25 could secrete siderophores (Figures 4C,D). The selected
antagonistic isolates were positive for production of ammonia
as produced brown color on addition of Nessler’s reagent while
failed to produce HCN.

Molecular Characterization and
Phylogenetic Analysis
The 16S rRNA gene sequence analysis revealed that two
antagonistic endophytic isolates indicated ≥90% similarity
with putative strains as Pseudomonas aeruginosa (OS_12)
and Aneurinibacillus aneurinilyticus (OS_25) in EzBioCloud
server2. The 16S rRNA gene sequences of isolates OS_12
and OS_25 was submitted to NCBI GenBank database with
accession numbers MZ436647 and MZ436963, respectively.
The Phylogenetic analysis using MEGA X software revealed
relatedness of endophytes with other strains of respective
species (Figure 5).

In planta Studies on Pea for Seed
Germination, Plant Growth Promotion,
and Bio-Efficacy
Pea seeds primed with a consortium of Pseudomonas aeruginosa
OS_12 and A. aneurinilyticus OS_25 indicated maximum
germination percentage in comparison to other studied
treatments (Supplementary Figure 3). Further, pot trial
experiments were carried out to investigate the effect of
selected antagonistic bacterial bioinoculants either single or
in dual combination on the growth and related attributes
of pea plants after 14 days of F. oxysporum inoculation
(Supplementary Figure 4).

2https://www.ezbiocloud.net
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FIGURE 2 | Scanning electron micrographs of mycelia of F. oxysporum f. sp. pisi: in the absence of antagonistic endophytes (A). In the presence of strain OS_12
only showing dense proliferation of bacteria over the mycelial surface and hyphal destruction (B). In the presence of strain OS_25 only showing adhesion of bacteria
to fungus mycelial structure (C). SEM micrograph of consortium (OS_12 + OS_25) treated mycelia of F. oxysporum f. sp. pisi exhibiting disaggregated hyphal
structures with bacterial adhesion and proliferation on mycelial surface (D). Scale bar equals 10 µm (A,B,D) and 5 µm (C).

Analysis of Growth Parameters and
Disease Incidence
Inoculation of bacterial endophytes in pea plants has significantly
reduced the disease incidence under pathogen challenged
conditions as evident from representative figures shown in
Figure 6.

The highest disease incidence (∼91%) was observed in
pathogen challenged control plants while lowest was recorded in
plants inoculated with dual consortium. The single inoculation of
OS_12 and OS_25 have also significantly reduced the symptoms
of root rot disease severity by more than 70%, respectively, as
compared to plants treated with F. oxysporum alone. However,
in case of inoculated or uninoculated pea plants grown under
normal (non-pathogenic) conditions, no disease symptoms were
recorded (Table 2). The consortium of P. aeruginosa OS_12 and
A. aneurinilyticus OS_25 was found to be capable of lowering the
disease incidence as compared to other studied treatments of pea
plants grown under biotic stress conditions.

In comparison to control plants, OS_12 and OS_25 pre-
treated plants indicated significant enhancement in root length
(0.21- to 0.36-fold), shoot length (0.15- to 0.47-fold), root

fresh weight (0.5- to 1.2-fold), and shoot fresh weight (0.23-
to 0.34-fold) under normal conditions. F. oxysporum infection
significantly reduced the plant growth parameters in comparison
to that of non-infected plants. Overall, the plants treated with
dual inoculation of endophytes OS_12 and OS_25 showed
maximum increase in shoot length (1.54-fold) and root length
(0.43-fold) in comparison to pathogen control plants (Figure 7).
A similar trend of improvement was also observed in the case of
fresh weight of root and shoot biomass of pea plants challenged
with F. oxysporum. Among the treatments, consortium of
endophytes has significantly improved the fresh biomass of roots
(2.33-fold) and shoots (3.80-fold) in comparison to pathogen
control plants (Figure 8).

Analysis of Pigment: Chlorophyll and
Carotenoids Content
The infection of F. oxysporum caused a significant reduction of
41% in chlorophyll and 25% in carotenoid content as compared
to control non-infected plants. The pea plants inoculated with
individual or dual consortium of endophytes OS_12 and OS_25
has enhanced chlorophyll content in the range of 0.31–0.83-
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FIGURE 3 | Gas chromatography–mass spectrometry (GC-MS) ion chromatogram of bioactive volatile compounds identified from hexane extract sample of bacterial
isolate OS_12 (A) and OS_25 (B) with evidenced peaks (shown with blue dot) of compounds presented in Supplementary Table 1.

fold and that carotenoid in the range 0.27- to 0.60-fold in
comparison to infected control plants. A similar enhancement in
photosynthetic pigment parameters was observed in endophytes
primed non-infected plants (Figure 9).

Assessment of Defense Related
Antioxidative Enzymes
Inoculation with OS_12 and OS_25 has significantly increased
the antioxidative (PAL, PPO, AO, and CAT) response of pea
plant challenged with pathogen (Figure 10). In the presence
of pathogen, phenylalanine ammonia lyase (PAL) was found
highest (4.13 U g−1 Fresh weight) in plants inoculated with
dual inoculum of OS_25 and OS_12 followed by strain (3.36 U
g−1 Fresh weight) OS_25 and (2.76 U g−1 Fresh weight) OS_12

while lowest was found in uninoculated infected plants. There is
no significant difference between treatments comprising single
bacterial inoculation under normal conditions in comparison
to control plants. Likewise, the highest level of AO enzyme
(3.49 µmole ascorbate degraded min−1 mg−1 Fresh weight)
and PO enzyme (2.04 change in absorbance min−1 g−1

of Fresh weight) was observed in combination treated pea
plants. The polyphenol oxidase (PPO) was the significantly
highest recorded by 2.72-fold in plants inoculated with strain
OS_25 in comparison to pathogen control plants. The CAT
activity was maximum (10.21 µmoles H2O2 min−1 g−1 fresh
weight) in plants treated with consortia inoculum followed
by strain OS_12 inoculated (7.5 µmoles H2O2 min−1 g−1

fresh weight) and strain OS_25 (6.68 µmoles H2O2 min−1

g−1 fresh weight). The untreated plants under pathogenic
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FIGURE 4 | Assessment of multiple plant growth promoting traits of endophytic strains OS_12 and OS_25. (A,B) Zone of phosphate solubilization on NBRIP
medium amended with Tricalcium phosphate. (C,D) Production of siderophore on CAS agar medium.

stress conditions showed the lowest enzymatic activities among
all the treatments.

Total Phenolics and Malondialdehyde
Content
The total phenolics content was higher in plants treated
with a combination of endophytes (0.78 mg GAE g−1 Fresh
weight) under pathogenic stress conditions. However, no marked
significant difference was observed among the treatments under
normal conditions. The lowest production of malonaldehyde
(MDA), measure of lipid peroxidation was observed in the plants
pretreated with combination of bacterial strains (2.36 nmol g−1

Fresh weight) in comparison to the control plants grown without
bacterial inoculation under normal (0.34 nmol g−1 Fresh weight)
and pathogenic stress (3.47 nmol g−1 Fresh weight) (Figure 11).

Microscopic Visualization of Bacterial
Colonization of Pea Root
The observations of root section from consortium treated
plantlets using a scanning electron microscope revealed that the
endophytic strains have colonized the roots intracellularly. The
plants inoculated with consortium of P. aeruginosa OS_12 and
A. aneurinilyticus OS_25 showed the presence of rod-shaped
bacteria on the root surface (rhizoplane) as well as internal
root tissues, and remarkably, in the intercellular spaces between
the epidermal layer and the outer cortex (Figures 12B,C).
Similar observations were yielded with fluorescence microscopy
of root sections after acridine orange treatment which indicated
small green fluorescent bacterial cells found inside the root
epidermal cells (Figure 12E). The roots of uninoculated seedlings
were observed undamaged with smooth epidermal root surface
using scanning electron microscope (Figure 12A). Likewise, no

bacteria or no auto-fluorescence was observed under green filter
with root tissues of untreated control plantlets (Figure 12D).

Principal component analysis showed two principal
components PC1 (64.49%) and PC2 (30.35%) elucidating 94.84%
variance within the data set. It allowed overall distribution of
treatments conditions studied in this work into six clusters
as shown in PCA plot (Figure 13), with first group consist of
normal control pea plants, the second with pathogen challenged
control. The single bacterial treatment (P. aeruginosa OS_12 or
Aneurinibacillus aneurinilyticus OS_25) formed a single cluster
each under normal and F. oxysporum challenged conditions.
A substantial difference and clustering of healthy and infected
plants treated with combination of bacterial isolates was observed
by PCA where morphological growth parameters, defense related
enzyme activity, as well as total phenolic content were increased.

DISCUSSION

Endophytes are those microorganisms that spend all or at
least parts of their life cycle within plant organs in mutual
or some other plant-microbe relationship without causing any
visible symptomatic effect on the host plant. They have been
widely reported as potential antagonists against plant pathogens.
Their ability to colonize internal tissues of plant and promote
their growth and suppress the diseases have made endophytes
an emerging tool in crop growth promotion and protection
(Kandel et al., 2017).

In the present study two bacterial endophytes P. aeruginosa
OS_12 and A. aneurinilyticus OS_25 from O. sanctum Linn. were
found to suppress the growth of F. oxysporum. This finding was
in co-relation with various published literature which reported
that endophytes are involved in controlling plant pathogens

Frontiers in Plant Science | www.frontiersin.org 10 February 2022 | Volume 13 | Article 813686

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-813686 February 8, 2022 Time: 16:35 # 11

Gupta et al. PGP and Antagonistic Potential of Bacterial Endophytes

 NR 112062.1 Pseudomonas resinovorans strain ATCC 14235

 KX470420.1 Pseudomonas aeruginosa strain TCA1

 NR 133023.1 Pseudomonas oryzae strain WM-3
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 NR 115922.1 Pseudomonas indoloxydans strain IPL-1

 NR 043174.1 Pseudomonas segetis strain FR1439
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 NR 036799.1 Aneurinibacillus migulanus strain B0270
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 NR 133963.1 Aneurinibacillus soli strain CB4
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FIGURE 5 | Phylogenetic tree based on a partial 16S rRNA nucleotide sequences showing the position of strains OS_12 and OS_25 with respect to other related
taxa constructed with Neighbor joining method using version 10.1 of MEGA software (https://www.megasoftware.net/). The 16S rRNA gene sequences of closely
related species were retrieved from NCBI GenBank databases. Evolutionary distance was computed using Maximum Composite Likelihood method. Bootstrap
values (percentage of 1,000 replicates) higher than 40% are shown at node points. Bar, 0.020 substitutions per nucleotide position.

(Alenezi et al., 2016; Balan et al., 2017; Kurata et al., 2017; Biessy
et al., 2021; Kipgen et al., 2021).

We observed the clear distortion and abnormality in hyphal
structure of F. oxysporum in the presence of P. aeruginosa OS_12
and A. aneurinilyticus OS_25 with scanning electron microscopy.
Furthermore, as reported by Agarwal et al. (2017), Bazie et al.
(2019) and Xu et al. (2020), these outcomes suggest that antibiosis
tends to be the biocontrol mechanism, employed by certain
species of Pseudomonas and Bacillus. In this study, the antibiosis
activity has been linked to the production of antifungal volatile
organic compounds, siderophore and ammonia by P. aeruginosa
OS_12 and A. aneurinilyticus OS_25.

The GC-MS profiling showed eight structurally distinct
compounds with some of them having previously documented
plant growth promoting antimicrobial/antifungal and stress
tolerance activities. Dodecanoic acid, commonly called lauric
acid, is a saturated fatty acid reported to have antagonistic
activity against plant fungal pathogens, Pythium ultimum
and Rhizoctonia solani (Walters et al., 2003), Aspergillus
niger (Řiháková et al., 2001), and Fusarium spp. (Al-Rashdi
et al., 2020). Tetra decanoic acid, another saturated fatty acid
commonly known as myristic acid was previously described
for inhibitory activity on mycelial growth of Alternaria solani,
F. oxysporum f. sp. Lycopersici as well as for imparting osmotic
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FIGURE 6 | Effect of antagonistic bacterial endophytes strains OS_01 and OS_03 inoculation, single and dual combination on the root rot disease incidence after
7 days in F. oxysporum challenged pea plants. Severity disease symptoms in the roots system of pea plants (A) grown in soil infested with F. oxysporum only, (B)
grown in sterile soil without infestation with F. oxysporum, (C) primed with strain OS_12 and grown in infected soil, (D) primed with strain OS_25 and grown in
infected soil, (E) primed with bacterial consortia of OS_12 and OS_25 grown in infected soil.

TABLE 2 | Effect of studied treatments on the incidence of root rot disease severity
after 7 days of pathogen, F. oxysporum inoculation in pot experiments trials.

Treatments Disease incidence percentage (%)

Positive control 0.00a

Negative control 91.06 ± 0.23b

Strain OS_12 inoculated 74.24 ± 0.59c

Strain OS_25 inoculated 72.35 ± 0.80c

Consortia (OS_12 + OS_25) inoculated 54.28 ± 0.65d

Columns represent mean values ± standard deviation (n = 3). Different letters (a,
b, c, d) denote statistical difference between treatments in conferring resistance to
root severity disease by F. oxysporum.

stress tolerance in plants grown in saline conditions (de
Jonge et al., 2000; Liu et al., 2008). L-ascorbic acid (Vitamin
C) water soluble antioxidant molecule has been reported to
exhibit antifungal activity and modulate the plant defense

system against pathogenic stress (Boubakri, 2017). Trans-13-
Octadecanoic acid was also found to have pharmacological
activity and anti-inflammatory activity against fungal and
bacterial pathogens (Gupta and Kumar, 2017; Hussein et al.,
2017). Stearic acid (Octadecanoic acid) reported to confer
antagonism and enhance plant defense against microbial
pathogens (Blechert et al., 1995; Henry et al., 2002; Shah et al.,
2021).

Furthermore, we found out that both P. aeruginosa OS_12 and
A. aneurinilyticus OS_25 possessed the ability for siderophore
and ammonia production which implies their role in pathogen
growth suppression and nutrient acquisition in plants (Bashan
et al., 1980; Sumei et al., 2017; Bhattacharyya et al., 2020).

The bacterization of pea seeds with selected endophytic
bacterial strains and consortia indicated better seedling
emergence rate than the control. However, application
of consortia gave better results than individual bacterial
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FIGURE 7 | Effect of seed biopriming with endophytic biostimulant strains OS_12 and OS_25 plants on length parameter of root and shoot biomass of pea plants
sown in plastic pots under normal (dark blue and dark yellow bars) and pathogenic F. oxysporum stress (red and gray bars) conditions. Columns represent Mean
values ± standard deviation (n = 3 replicates per treatment). Different letters indicate statistical difference between treatments (Turkey’s posttest, P < 0.05) in root
length and shoot length under normal and biotic stress conditions.
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inoculation. These findings are in agreement with previously
reported literature (Mishra et al., 2018; Agarwal et al., 2020).

Furthermore, they significantly increased plant fitness
parameters such as shoot and root length, fresh biomass of shoot
and root of pea plants in comparison to non-inoculated plants.
A possible major mechanism behind the growth promoting effect
by endophytic bacteria could be production of plant growth
regulators such as indole acetic acid production and inorganic
phosphate solubilization. The production of bacterial IAA

modulates the intrinsic reserve of IAA in plants which in turn
increase surface area of roots for better colonization, secretion of
root exudates, and improvement of nutrient and water uptake
efficiency (Shahzad et al., 2017; Gupta and Pandey, 2020).
Similarly, the phosphate solubilization potential of biocontrol
endophytic Pseudomonas and Aneurinibacillus strains proved
to be beneficial for sustainable agriculture (Otieno et al., 2015;
Chauhan et al., 2017).

The biocontrol of F. oxysporum root rot disease in pot
trials indicated individual bacterial strains and consortium has
significantly reduced the disease incidence in comparison to
control. Similarly, endophytic bacteria from genera Bacillus,
Streptomyces and Burkholderia suppressed the infectivity of
F. oxysporum by 40 percent (Nwokolo et al., 2021).

The chlorophyll content was reduced drastically in control
plants in comparison to endophytes primed plants under
pathogen stress conditions. The pathogenic infection negatively
influences photosynthetic process via decreasing electron
transfer process during reaction, reducing chlorophyll content,
minimizing the activity of carbon-fixation Ribulose-1,5-
bisphosphate carboxylase-oxygenase (RuBisCo) enzyme as well
as destructing thylakoids membrane proteins and lowering
stomatal conductance during transpiration process in plants
(Mishra et al., 2018). The chlorophyll content, however, in tested
endophyte-pretreated pea plants was remarkably increased
contrary to untreated pea plants in the presence of pathogen
infection. The findings of the study are in accordance with the
previous report of Mukherjee et al. (2020) which demonstrated
enhanced chlorophyll content in chickpea plants inoculated with
seed endophytes under F. oxysporum f.sp. ciceris induced biotic
stress conditions. Similarly, the consortium treated pea plants
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FIGURE 12 | Scanning electron microscopic analysis of pea plant roots inoculated by consortia of Pseudomonas aeruginosa OS_12 and Aneurinibacillus
aneurinilyticus OS_25 (A–C). (A) Roots of non-inoculated pea plants, (B) bacterial cells (arrows) swarming in the vicinity of rhizoplane, (C) bacterial cells (arrows) in
the intercellular space between epidermis and cortex of root system. Scale bar equals 3 µm (A), 1 µm (B), and 2 µm (C). Fluorescent microscopy images of root
sections stained with acridine orange (D,E). (D) Control pea root sample without any inoculation, (E) root section of consortium inoculated pea plant with arrows
pointing bacterial cells inside the epidermis (bar equals 10 µm).

showed increase carotenoid content suggesting the efficacy of
endophytes in mitigation of toxic effects of pathogen inoculation
on photosynthesis mechanism in plants as per Pandey et al.
(2018).

Results suggested that prior presence of P. aeruginosa OS_12
and A. aneurinilyticus OS_25 confer tolerance to Fusarium
root rot by meditating host resistance through defense related
enzymes including PAL, polyphenol oxidase (PPO), PO), AO,
CAT, and phenols. These pathogenesis related enzymes play
a promising role in suppressing the pathogenic growth and
development of associated symptoms in crop plants. Pre-
treatment of plants with endophytes prompted the host plant to

mediate rapid and more potent resistance upon encounter with
phytopathogens (Sahu et al., 2019).

We observed that Fusarium challenged pea plants pre-
treated either with individual endophytes OS_12 and OS_25
or consortia (OS_12 + OS_25) exhibited enhanced activity
of PAL in contrary to uninoculated plants. Phenylalanine
ammonia lyase (PAL; EC 4.3.1.24) is a major enzyme of the
phenylpropanoid pathway responsible for synthesizing various
defense related metabolites such as lignans, flavonoids, and
isoflavonoids (Solekha et al., 2020). A parallel relationship has
been observed between increased PAL activity and enhanced
accumulation of phenolic compounds in pea plants infected
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with root rot pathogen. Phenolics accumulation is the key
defense mechanism in plants in response to pathogen infection
as reported in previous work by Singh and Gaur (2017) in
chickpea crop. Similarly, peroxidase and polyphenol oxidase
enzymatic activity were increased in fungal challenged pea
plants under plant growth promoting endophyte treatment
in agreement with previous studies by Muthukumar and
Venkatesh (2014) and Khodadadi et al. (2016). Polyphenol
oxidase (PPO; EC 1.10.3.1), a copper metalloenzyme oxidize
phenolics to toxic and highly reactive o-quinones which either
induce direct toxicity to pathogens or render low bioavailability
of protein and create a physical barrier to pathogen attack
(Zhang and Sun, 2021). Peroxidase (PO; EC 1.11.1.x) is another
key enzyme of the defense response of plants to pathogen
infection which contributes to scavenging pathogen induced
reactive oxygen species (ROS), thus conferring tolerance to
phytopathogen attack induced oxidative stress and protecting
cellular components from oxidative burst. In a similar way,
higher activity of ascorbate peroxidase was significantly higher
in plants pre-treated with tested antagonistic bacterial strains
under Fusarium induced biotic stress conditions with respect
to other studied treatments. The findings are in accordance
with previous reports which demonstrated the role of ascorbate
peroxidase in ROS detoxification in plants to pathogen
exposure (Agrawal et al., 2003). Catalase (CAT, EC 1.11.1.6)
is another antioxidative key H2O2 detoxifying enzyme nullifies
its detrimental effect on plant tissues and system on pathogen
invasion (Yang and Poovaiah, 2002).

Additionally, the consortium treated plants had efficiently
reduced ROS induced oxidative stress which was evident
through lower amounts of MDA levels in comparison to
infected control plants. This protective role might be due to
PGPE mediated enhancement of ROS-scavenging antioxidant
enzymatic activities, thus results in reduced lipid peroxidation
under pathogen challenge (Ray et al., 2016).

The principal component analysis (PCA) was further carried
out taking all the results of the present study into account
which clearly showed the maximum aggregation of variables
including morphological growth factors (length and fresh
biomass of roots and shoots), antioxidants (CAT, TPC, and
AO), defense related enzymes (PAL, PPO, and PO) as well as
photosynthetic pigments (Chlorophyll and Carotenoids) content
in consortium treated plants under both with and without
pathogen challenged conditions.

The colonization of pea roots by O. sanctum endophytes-
P. aeruginosa OS_12 and A. aneurinilyticus OS_25 was visualized
using scanning electron microscopy and fluorescent microscopy.
This association between bacteria and plants roots might be due
to the root exudates secreted from plant roots, responsible for
the chemotaxis and attachment of bacterial endophytes on to
the root surface (rhizoplane) as well as subsequent proliferation
of bacterial endophytes which ultimately leads to extensive
colonization of roots (Liu et al., 2017; Saleh et al., 2020). Apart
from these, most importantly, endophytic bacteria P. aeruginosa
OS_12 and A. aneurinilyticus OS_25 isolated from leaves tissues
of O. sanctum Linn. were able to colonize inner root section
of Pisum sativum which implies the symbiotic characteristic of
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FIGURE 13 | Principal component analysis of effect of different treatment
(shown in circles with blue dot) with respect to control (uninoculated) and
bacterial inoculation either single (OS_12 or OS_25) or in combination
(OS_12 + OS_25) in the presence and absence of F. oxysporum f. sp. pisi
(FOP) on growth parameters, defense enzymes and mortality rate of pea
plants (shown in red dots). The X-axis and Y-axis of PCA plot represent first
and second principal components (PCs). Symbols: RL, root length; SL, shoot
length; SFW, shoot fresh weight; RFW, root Fresh weight; CHL, chlorophyll
content; CART, carotenoid content.

bacterial strains and thus has major biotechnological implications
in sustainable agriculture.

The results of in planta experiments revealed that the
consortium of P. aeruginosa OS_12 and A. aneurinilyticus
OS_25 conferred significant enhancement of plant growth and
suppression of disease pathogenesis in pea plants under both
normal and Fusarium root rot pathogen challenged conditions in
contrary to individual application. This increased PGP potential
and biocontrol efficacy of consortium suggests that both the
strains were compatible to each other and synergistically provide
protection to pea plants against fungal root rot infection. Previous
reports have demonstrated the effectiveness of consortia in
conferring greater protection and PGP effects in various crop
plants under biotic stressed conditions (Faria et al., 2021; Win
et al., 2021).

CONCLUSION

Results of present analysis suggest that endophytic bacteria
P. aeruginosa OS_12 and A. aneurinilyticus OS_25 from healthy
leaves of O. sanctum Linn. has played a significant role in
improving plant health and performance under biotic stress.
The mechanism employed by bacterial antagonists might be
attributed to multiple factors such as direct phytopathogen
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inhibition through production of secondary metabolites
including VOCs, siderophore, ammonia, and nutrient
enrichment through solubilization of inorganic inaccessible fixed
phosphate sources. Other indirect factors include modulation of
innate antioxidants system triggering the production of defensive
compounds inside the plant leading to suppression of pathogen
growth and controlling its associated disease. Apart from these,
most importantly, endophytic bacteria P. aeruginosa OS_12
and A. aneurinilyticus OS_25 isolated from the leaf tissues of
O. sanctum Linn. were able to colonize inner root section of
P. sativum which implies the symbiotic characteristic of bacterial
strains and thus has major biotechnological implications in
sustainable agriculture.

These bio-efficient endophytes could be a promising
alternative to reduce the pathogenicity of root rot disease and
improve the health of pea plants under F. oxysporum stress.
However, for future prospects, further exploration is needed to
elucidate the bio efficacy and plant growth promotion potential
of these endophytes under actual field trials.
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