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The spotted wing Drosophila (SWD), Drosophila suzukii, is a significant invasive pest of 
berries and soft-skinned fruits that causes major economic losses in fruit production 
worldwide. Automatic identification and monitoring strategies would allow to detect the 
emergence of this pest in an early stage and minimize its impact. The small size of 
Drosophila suzukii and similar flying insects makes it difficult to identify them using camera 
systems. Therefore, an optical sensor recording wingbeats was investigated in this study. 
We trained convolutional neural network (CNN) classifiers to distinguish D. suzukii insects 
from one of their closest relatives, Drosophila Melanogaster, based on their wingbeat 
patterns recorded by the optical sensor. Apart from the original wingbeat time signals, 
we modeled their frequency (power spectral density) and time-frequency (spectrogram) 
representations. A strict validation procedure was followed to estimate the models’ 
performance in field-conditions. First, we validated each model on wingbeat data that 
was collected under the same conditions using different insect populations to train and 
test them. Next, we evaluated their robustness on a second independent dataset which 
was acquired under more variable environmental conditions. The best performing model, 
named “InceptionFly,” was trained on wingbeat time signals. It was able to discriminate 
between our two target insects with a balanced accuracy of 92.1% on the test set and 
91.7% on the second independent dataset. This paves the way towards early, automated 
detection of D. suzukii infestation in fruit orchards.

Keywords: insect recognition, convolutional neural network, pest management, automatic monitoring system, 
wingbeat analysis, wingbeat frequencies, optical sensing and sensor, deep learning

INTRODUCTION

Drosophila suzukii (Matsumura), the spotted wing Drosophila (SWD), is a major invasive fruit 
pest which is native to Western Asia, but has spread to many countries around the world. It 
was first spotted in Southern Europe in 2008 (Rasquera, Spain) and in the following years it 
spread to the majority of European countries across a wide range of environmental conditions 
and climates (Mortelmans et  al., 2012; Asplen et  al., 2015). Unlike the majority of other 
Drosophilidae, D. suzukii lays its eggs in healthy ripening fruits rather than damaged or 
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overripe ones, thus creating special problems to growers. The 
host range of SWD includes mainly soft-skinned fruits and it 
is quite broad, having now been documented in cherries, 
peaches, nectarines, plums, persimmons, strawberries, grapes, 
blackberries, blueberries, raspberries, pluots, figs, and several 
other fruit crops, as well as a wide variety of non-crop host 
plants (Walsh et  al., 2011; Kenis et  al., 2016; Tait et  al., 2021). 
Damage in fruit production by SWDs ranges from negligible 
to 80% crop loss (Dreves et  al., 2009; Lee et  al., 2011; Walsh 
et  al., 2011; Asplen et  al., 2015; Potamitis and Rigakis, 2015; 
Klick et  al., 2016; Farnsworth et  al., 2017; Yeh et  al., 2020). 
A study looking into revenue losses due to SWD infestation 
and fruit rejections found that gross revenues decreased by 
37% for raspberries and 20% for strawberries in California, 
United  States (Goodhue et  al., 2011). The spread of D. suzukii 
is quite fast since it is introduced or re-introduced to habitats 
worldwide via global fruit trade and it then moves quickly 
from one region to another by flying (Rota-Stabelli et al., 2013). 
Consequently, knowledge of SWD (or similar) population sizes 
at any given time would be  very useful to growers of host 
crops and parties directly or indirectly affected by the subsequent 
economic losses since it would provide the ability to assess 
new possible infestations or the severity of existing ones.

Most traditional monitoring methods require a frequent 
human intervention to either sample larvae in fruits or identify 
and count trapped insects. These labor-intensive procedures 
are time consuming and can be  inefficient when dealing with 
rapid pest invasions. In the case of SWD, their population 
can double in size in only 4 days (Emiljanowicz et  al., 2014) 
and a single female can produce approximately 3,000 adult 
descendants within a couple of months (Tochen et  al., 2014). 
Moreover, SWD flies are known to utilize a variety of non-crop 
hosts and alternative habitats (Dalton et  al., 2011; Burrack 
et al., 2013; Atallah et al., 2014), which makes manual monitoring 
methods progressively more challenging and inefficient as the 
number of necessary inspection areas and field types increase. 
Besides, the high activity season of the SWD varies and lasts 
quite long, ranging from early July until late December according 
to studies conducted in the eastern part of the United  States 
(Pelton et  al., 2016; Guédot et  al., 2018) as well as Europe 
(Clymans et  al., 2019; Tait et  al., 2021). Hence, a necessity 
for more automated monitoring systems of pest insect 
populations arises.

Automatic monitoring systems of pests can generate timely 
warnings in real-time and prompt farmers to act if needed. 
This could also help control the use of insecticides, which 
create severe negative effects on public health and the environment 
(Wilson and Tisdell, 2001; European Commission, 2019). By 
relying on data-derived metrics of pest population sizes, 
insecticide use could be  applied only under certain infestation 
conditions and not as a precautionary measure. In the past 
years, several automatic insect traps have been developed (Jiang 
et al., 2008, 2013; Shieh et al., 2011; López et al., 2012; Lampson 
et  al., 2013; Potamitis et  al., 2015; Lima et  al., 2020a). The 
two main approaches that prevail in designing insect monitoring 
devices are: (1) imaging of trapped insects; and (2) recording 
a sensor reading of the insect upon entry.

In the first approach, the insects are commonly trapped 
on a sticky surface which is imaged by a camera. Then, the 
trapped insects on that surface are counted and identified by 
using simple computer vision and artificial intelligence (AI) 
algorithms (Espinoza et  al., 2016; Nieuwenhuizen et  al., 2018; 
Lima et al., 2020a). Image-based traps are frequently combined 
with Convolutional Neural Network (CNN) classifiers and object 
detectors (Li et  al., 2021). For example, Roosjen et  al. (2020) 
used images taken from an unmanned aerial vehicle (UAV) 
and fed them to CNNs to detect SWD individuals trapped 
on sticky plates. They demonstrated a rather low area under 
the precision-recall curve (AUC) of 0.086 for female SWDs 
and 0.284 for male. When using static images instead, they 
detected female SWDs with a promising AUC of 0.506 and 
male SWDs with AUC of 0.603. Thus, despite the success of 
CNN models in classifying images or detecting objects, systems 
that employ CNNs still struggle to address challenges that 
arise in the field, such as varying illumination, blurry images 
due to insect movement, orientation or crowding, and 
uncalibrated systems (out of focus cameras, poor color calibration, 
white balancing, etc.). To overcome some of these challenges, 
practitioners often apply data augmentation by creating replicas 
of their original data with visual differences that simulate 
various real conditions. This way, CNN models learn features 
that distinguish their target insects from others in multiple 
different settings. Still, classifying small insects in images remains 
a challenge even for such complex models, especially for insects 
that do not have prominent or unique features.

In sensor-based insect traps, often an infrared or optical 
sensor is placed inside a lure trap to count the number of 
times a target insect enters, or to capture its wingbeat pattern 
or produced vibrations to classify it (van Roy et  al., 2014; 
Potamitis and Rigakis, 2015; Potamitis et  al., 2017; Lima et  al., 
2020b; Kalfas et  al., 2021; Rigakis et  al., 2021). Sensor-based 
traps are paired with lures, and they can either record events 
that likely belong to a target insect or capture more complex 
patterns on which prediction models are built. In two example 
cases, researchers built a detection system for Red Palm Weevil 
infestations in trees using bioacoustics signals produced by 
this insect (Ilyas et  al., 2009; Hussein et  al., 2010). Bioacoustic 
signals like calling or courtship sound signals are also recorded 
using microphones or similar audio recorders to classify insect 
species (Mankin, 1994; Chesmore, 2001; Raman et  al., 2007; 
Zamanian and Pourghassem, 2017), but these devices are 
sensitive to wind noise or ambient sounds when deployed in 
the field. In two different studies, Potamitis et  al. (2014, 2015) 
embedded an optoelectronic sensor in a McPhail-type trap 
and were able to count and classify fruitfly species by measuring 
the insects’ wingbeat. Optoelectronic sensors provide several 
benefits for recording insect biometric data compared to 
microphones and cameras since they are not influenced by 
the environmental conditions or the target’s distance from the 
sensor while recording data (Potamitis et  al., 2018). Wingbeat 
data captured from optical sensors have already been used 
successfully to classify insect species and with the recent 
advances in the field of Machine Learning (ML) it has become 
possible to build high-performing classification systems 
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(van Roy et  al., 2014; Chen et  al., 2014; Potamitis and Rigakis, 
2015; Fanioudakis and Potamitis, 2018). However, strict validation 
procedures are crucial to avoid that over-optimistic results are 
obtained with these powerful machine learning techniques. In 
a previous study involving a rigorous validation strategy, we have 
shown that CNNs are able to classify wingbeat data of mosquitoes 
on the genus level, but were less successful at the species level 
(Kalfas et  al., 2021).

Both the D. melanogaster (DM) and the D. suzukii (SWD) 
occur in similar habitats with presence of soft-skinned fruits 
and overlapping high activity seasons. However, unlike SWD, 
DM poses no considerable threat to fruit crops since it will 
mainly attack overripe fruit that are already unfit for sale. 
Hence, a system that can accurately discriminate between the 
two Drosophila genera will be  very valuable to estimate the 
need for crop protection at any given time. Both insect types 
are very small in size and range between 2 and 4.5 mm in 
body length, and 2 and 3.5 mm in wing length (Walsh et  al., 
2011). On average, DMs are slightly smaller than SWDs, but 
there is substantial overlap between both populations. Using 
optical sensor recordings of the wingbeats, we aim to overcome 
the limitations that an in-field camera system would have, 
dealing with such small insects with similar appearance. As 
no reports were found on the discrimination of these highly 
similar inspect species from the Dropsophila genus based on 
their wingbeat signals, the aim of this study was to train and 
strictly validate CNN classifiers to discriminate wingbeat signals 
of the SWD pest from the DM as a stepstone towards automatic 
in-field pest monitoring.

MATERIALS AND METHODS

Insect Stock Culture
The D. suzukii culture used in the laboratory experiments 
originated from multiple collections of adults in a private 
garden (Gentbrugge, Belgium, 51°1.522′N, 3°46.093′E). The 
D. melanogaster culture was received from the “Expertise Unit 
on Educational Provision” (Faculty of Bioscience Engineering, 
KU Leuven, Belgium). The laboratory colonies were maintained 
in polystyrene Drosophila vials (Greiner Bio-One™ Insect 
Breeding Conical Container, 217,101) on a cornmeal-yeast-agar 
diet (42 g/l fresh yeast, Saccharomyces cerevisiae, Algist 
Bruggeman; 55 g/l white table sugar, Suikerraffinaderij Tienen; 
90 g/l crushed cornmeal, Aveve; 2 g/l Ethyl 4-hydroxybenzoate 
99%, Alfa Aesar; 9 g/l agar powder, VWR chemicals and 910 g/l 
tap water). The vials were stoppered using foam stoppers 
(Greiner Bio-One™ Ceaprenstop, diameter 36 mm, 330,070) 
and kept in a plant-growth chamber at 22 ± 1°C, 60 ± 11% RH, 
and a 16:8 l:D photoperiod.

Sensor Design
The wingbeat sensor consists of two main parts: (a) a sensing 
head and (b) a microelectronic device that handles how the 
signals are stored (Figure  1). The sensing head consists of 
two boards placed opposite to each other, which act as a light 
emitter and receiver, respectively. As an insect flies between 

the two boards, it occludes the emitted light with its body 
and wings. The light receiving board then records a pattern 
of varying light intensity values which constitutes the wingbeat 
signal in the time domain. The microelectronic device measures 
the Root Mean Square (RMS) value of the live signal and 
contains software that defines the sampling frequency, triggering 
and storing of wingbeat events (in an embedded SD card). 
For more details regarding the wingbeat sensor device we refer 
to Potamitis and Rigakis, 2015 and Kalfas et  al., 2021.

Experimental Setup and Data Collection
All wingbeat data were recorded in a laboratory or a climate 
room by placing an optoelectronic sensor inside spacious insectary 
cages where either D. melanogaster or D. suzukii insects were 
free to fly in (Figure  1). The same sensor device was placed in 
each insect cage sequentially for a period of 2–3 weeks (Figure 2) 
until sufficient data were collected for each population, considering 
that the number of valid signals would be  fewer than the total 
number of signals per population after our data cleaning process. 
We  reared two separate populations per Drosophila species (four 
insect populations in total) and tried to limit the number of 
insects in each population to around 200–300 individuals. We did 
not select insects based on their age or sex and new insects 
kept on hatching from larvae in the food media during the 
entire experiment. The vials with the food media were replaced 
once the food was depleted and no new eggs seemed to appear inside.

To collect a dataset of wingbeat signals under controlled 
conditions (Controlled dataset in Table  1), all insect cages 
were placed in a “climate room” to have stable environmental 
conditions. The average temperature in this room was 22 ± 0.6°C 
and the average relative humidity was 64 ± 5%. During this 
controlled experiment 99,154 wingbeat signals were recorded 
across all populations. False triggers and weak signals (with 
a noisy Power Spectral Density) were filtered out by employing 
a data cleaning procedure which is explained in “Selected Data 
Types and Data Cleaning.” The numbers of retained signals 
are summarized in Table  1.

A second set of wingbeat signals was compiled from data 
acquired in a different lab environment 6 months prior to the 
controlled dataset (Table 1). Data collection for this dataset lasted 
from late July until middle of October 2020, starting with the 
SWD class. The collection process of the DM class was initiated 
in August, but it was interrupted due to being provided with 
a non-flying variant of DMs. The process restarted late in September 
with a stock of wild DMs, but it was hindered by the environmental 
and room conditions at that time; hence the low numbers of 
DM wingbeat signals collected. Temperature and humidity were 
not controlled and varied according to the room environmental 
conditions, which were on average 23 ± 1°C and 55 ± 9% RH. After 
applying the higher mentioned filtering procedure, a total of 
22,744 wingbeat signals were retained in this dataset; 21,572 of 
those belong to the SWD class and 1,172 belong to the DM class.

Selected Data Types and Data Cleaning
The time profiles of the wingbeats collected by the optoelectronic 
sensor device were digitized using a sampling frequency of 
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8 kHz. According to the Nyquist-Shannon sampling theorem 
(Shannon, 1949), this value should be  sufficient to cover the 
main wingbeat frequencies of most insects, which were estimated 
to be < 1 kHz (Byrne et al., 1988), and their respective overtones 
in fine detail. The recorded signals consist of 5,000 light intensity 
measurements across 0.625 s. The intra-class variability for the 
two insects’ wingbeat signals is high due to the various flight 

patterns that insects perform while flying through the sensor, 
while the inter-class difference seems small in both time (see 
Figure  3) and frequency domains (see Figure  4).

The three data types that were analyzed and classified in 
this research are: (1) wingbeat time signals, (2) their frequency 
content, and (3) time-frequency content (see Figure  5). The 
frequency content of the wingbeat time signals was calculated 

FIGURE 1 | Photograph of the laboratory setup with two insect cages and the wingbeat sensor. The wingbeat sensor consists of a sensing head, a data transfer 
cable and a microelectronic device with an SD card storage.

FIGURE 2 | Histogram of the signal counts collected on each day for the whole length of the controlled environment experiment. The number of valid signals per 
Drosophila species and the data split (train or test) they belong to are shown in the legend.
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using the Welch power spectral density (PSD) method with 
a “Hanning” window (FFT size of 8,192 samples, segment 
length of 5,000 samples and 2,500 samples overlap). The 
spectrogram of the wingbeat time signals is calculated as the 
frequency-over-time representation (FFT size of 8,192 samples, 
hopping length of 5, window length of 600).

A strict data cleaning procedure was employed to remove 
weak signals or false triggers captured by the sensor. A 
preprocessing bandpass filter was first applied to all signals 
(“low-cutoff ”: 140 Hz, “high-cutoff ”: 1500 Hz). Then, two metrics 
were employed to evaluate the validity of wingbeat signals: 
(a) a “PSD-score” defined as the sum of a wingbeat signal’s 
L2-normalized PSD values and (b) the number of peaks detected 
in its PSD, measured in V2/Hz. The peaks were detected using 
Scipy-library’s “find_peaks” function (McKinney, 2010) with 
the following settings:

 • “prominence” = 0.001,
 • “height” = 0.04,
 • “width” = 1,
 • “distance” = 5.

A wingbeat signal was considered valid if its PSD-score 
was between 3.5 V2/Hz and 12  V2/Hz, and it had more than 
1 but fewer than 15 peaks in its PSD. These threshold choices 
for the two metrics were found to substantially reduce the 
number of weak or noisy signals without discarding too much 
data. In theory, a clean wingbeat signal PSD is expected to 

contain five peaks in total—one peak at the main wingbeat 
frequency (max<300 Hz; see Figure  4) and a single peak for 
each of the occurring harmonics. In practice, however, more 
peaks might occur in a high-resolution PSD (see Figure  6). 
Therefore, a ceiling of maximum 15 peaks is considered to 
be  a safe threshold to keep signals with three times more 
peaks in their PSD than the theoretically “cleanest” signal and 
remove noisier signals. Lowering this threshold did not have 
a significant impact on the resulting signals, so further 
optimization is possible, but its increase is not recommended. 
Examples of a valid D. melanogaster wingbeat signal and one 
that was rejected by the above procedure are shown in Figure 6. 
The bandpass-filtered wingbeat signals were then fed to the 
classification models as waveforms of 5,000 dimensions or as 
PSD and spectrogram transformations. Both the PSD and 
spectrogram data were converted to decibel (dB) scale and 
only the values within the preprocessing filter’s range (i.e., 140 
to 1,500 Hz; 1,360 dimensions) were retained. The spectrogram 
images were downscaled to 295 × 400 pixel dimensions, 
maintaining the same aspect ratio of the original spectrograms, 
while allowing computational efficiency during training.

Data Splitting and Performance Evaluation
The aim of this research was to design an experiment where 
it would be  possible to validate our trained models in a strict 
way and uncover their “true” performance in field conditions. 
To this end, we  used data from two different datasets. The 
“Controlled” dataset, where data was collected under controlled 
environmental conditions and a “Remote-Uncontrolled” dataset 
where environmental variables were not controlled, and the 
data acquisition was 6 months earlier than for the controlled 
dataset (Table  1).

It should be  noted that in our experimental setting a 
single insect can produce multiple similar signals within a 
population, because it can fly through the sensor multiple 
times while in the enclosure. When a random validation 
strategy would be  applied, these highly similar datapoints 
could end up in different data splits and lead to over-optimistic 
estimates for the model performance (Kalfas et  al., 2021). 

TABLE 1 | The number of signals for the two datasets used in this study 
(Controlled and Remote-Uncontrolled) and the data splits we applied.

Controlled dataset
Remote-uncontrolled 

dataset

Train and 
validation

Test Test

DM signals 12,992 12,115 1,172
SWD signals 16,857 13,560 21,572

FIGURE 3 | Illustrations of different wingbeat time signals of Drosophila suzukii and of Drosophila melanogaster.
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Using separate populations for training and testing, we aimed 
to tackle this problem and uncover the models’ “true” 
classification performance which would emerge in field 
conditions. Hence, for the controlled dataset we  created two 
separate insect populations for each of the two fruitfly species 
we  are classifying (Figure  2). For each insect species, the 
population with the higher number of samples was chosen 
for training our models (“A” groups; Figure  2) and the other 
is used for testing (“B” groups; Figure  2). The training set 
was further split into training and validation sets which 
consist of 80 and 20% of its randomly sampled data, respectively. 
This validation set was used for hyper-parameter tuning of 
the models during training and model checkpoint selection. 
The remote uncontrolled dataset, which contains different 
insect populations, was used as an additional, truly external 
test set.

To evaluate the classification performance, we calculated the 
balanced accuracy and F1-score metrics on the test sets. The 
balanced classification accuracy in this binary setting is defined 
as the average of the proportion of correct predictions of each 
class individually, or the average of recall obtained on each 
class (best value equals to 1 and worst value is 0). The recall 
is defined as:

 
recall

TP

TP FN
=

+
,

where TP is the number of true positives and FN the number 
of false negatives. To calculate the F1-score, we  first define 
precision as:

 
precision

TP

TP FP
=

+
,

where TP is the number of true positives and FP the number 
of false positives. Finally, the F1-score is defined as:

 

precision recall1 score 2
precision recall

∗
− = ∗

+
F

which constitutes the harmonic mean between precision and 
recall. Time required to train or perform inference is measured 
and compared across models. For the latter, we take the average 
of five runs given a single batch of size 1. For the model 
with the highest classification performance, we  report its 
confusion matrix for the test sets derived from the Controlled 
and Remote-Uncontrolled datasets.

Model Architectures and Training
Custom and state-of-the-art models from literature were chosen 
to fit 3 different types of wingbeat data, i.e., wingbeat time 
signals, their frequency (PSD) and time-frequency representations 
(spectrograms). For the wingbeat time and frequency signals, 
two models were trained: a custom 8-layer CNN—which 
we  named “DrosophilaNet,” and a variation of the state-of-
the-art model for time-series and 1-dimensional data classification 
known as “InceptionTime”(Fawaz et al., 2019)—which we named 
“InceptionFly.” DrosophilaNet consists of 8 blocks of 
Convolutional (“type”: 1D-Convolution, “activation”: ReLU), 
Batch-Normalization and Max-Pooling layers (“window”: 2) 
that progressively create lower dimensional representations of 
the original data and feed their output to an Average Pooling, 
a Dropout layer (“drop rate”: 0.2) and a Linear classification 
layer (“activation”: Sigmoid) with 1 output unit. The number 
of filters in the convolutional layers increased in powers of 2, 
starting from 16  in the 1st block, to 2,048  in the 8th block, 
while the kernel size was fixed to a value of 3.

InceptionTime consists of residual blocks which in turn 
consist of multiple “inception modules” each. The residual 
blocks’ input is transferred via skip connections to be  added 
as input to the next block. Inception modules in each block 
reduce the input’s dimensionality using a bottleneck layer 
and then extract hierarchical features of multiple resolutions 
by applying convolution filters of various lengths in parallel. 
These features are pooled, convolved, batch-normalized and 
fed to a ReLU activation function. For our InceptionFly, 
we  used two residual blocks composed of three inception 
modules each. All inception modules had a fixed number 
of 32 convolutional filters using kernel sizes of: 6, 12, and 
24. The two residual blocks were followed by an Average 
Pooling layer and a Linear classification layer (“activation”: 
Sigmoid).

The spectrogram images were modeled with DenseNet121 
(Huang et  al., 2017), which is a popular CNN model for 
image classification tasks that was already tested and known 
to perform well in a similar task of classifying mosquito 
spectrogram images (Kalfas et  al., 2021), while ranking first 
among other popular CNN models in a different study 
(Fanioudakis and Potamitis, 2018). We  removed the top layer 
of DenseNet121 to replace it with a Linear fully-connected 
layer with 512 units (“activation”: ReLU), a Dropout layer (“drop 
rate”: 0.2) and a Linear classification layer (“activation”: Sigmoid) 
with 1 output unit. Its input layer dimensions were modified 

FIGURE 4 | Histograms of the main wingbeat frequencies and the first 
harmonics of D. melanogaster and D. suzukii wingbeat signals from the 
controlled dataset.
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to match our spectrogram data dimensions (295  × 400) and 
the rest of the model’s architecture remained intact. A summary 
of our data processing pipeline and an illustration of the model 
architectures used, are presented in Figure  7.

The training procedure for all neural network models was 
designed with the following settings:

 • Training epochs: 100.
 • Batch size: 32.
 • Loss: categorical cross-entropy.
 • Optimizer: Adam.

To help the neural networks to converge faster and reach 
high classification rates we used Cyclical Learning Rates (CLR; 
Smith, 2017) with the following settings for the CLR scheduler:

 • Base learning rate: 0.0001.
 • Max learning rate: 0.01.

 • Cycle momentum: False.
 • Mode: triangular.

The training procedure was allowed to run for 100 epochs 
while saving a model checkpoint (with the model’s parameters) 
in each epoch. In the end, we  selected the model checkpoint 
that showed the maximum validation accuracy. This accuracy 
is different from the balanced accuracy score we  report on 
the model performance and is defined as the set of labels 
predicted by the model for each training datapoint, that exactly 
match the corresponding ground truth labels.

All models output a single probability score, ranging from 
0 to 1, based on the Sigmoid activation of their last Linear 
classification layer. Probability scores below 0.5 are mapped 
to DM predictions, while scores greater or equal to 0.5 indicate 
a SWD prediction. Thus, in this binary classification setting 
the DM is considered the “negative class” and SWD the “positive 
class.” We  fine-tuned the selected models’ decision thresholds 

A

B C

FIGURE 5 | Illustration of the selected datatypes used in this study for a D. suzukii signal: (A) the wingbeat signal, (B) its power spectral density, and (C) its 
spectrogram.
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by choosing the threshold that maximized the respective model’s 
balanced accuracy score on the validation data (Fernández 
et  al., 2018).

While training our models we  experimented with custom 
data-augmentation techniques to increase model robustness 
and guide the neural networks in learning the important 
distinguishing features of the input data. Since all analyses 
begin with the wingbeat time signals—which are either modeled 
directly or transformed into frequency (PSD) or time-frequency 
(spectrogram) representations—we designed data transformations 
that might be  applied on them as an “online” pre-processing 
step. First, a “Random-Roll” operation was applied that shifts 
the raw signal forwards or backwards in time by a number 
(of samples) randomly chosen from a range between 500 
(0.0625 s) and 4,500 (0.5625 s). The part of the time signal 
that goes out of the original length because of shifting forwards 
(or backwards) is attached at the beginning (or the end) of 
the time signal. This augmentation technique helps in producing 
signals for various insect flights. Second, a “Random-Flip” 
operation was applied which mirrors the signal in the time 
dimension and third a “Random-Noise” operation was applied 
which adds Gaussian noise in a randomly selected part of the 
signal, which acts like signal “time masking” (Bouteillon, 2019). 
Each of the above operations had a 50% chance to be  applied 
to any given input signal during training. As these 50% changes 
were applied independently, combinations of these operations 
were also possible.

All experimental scripts to train, evaluate and visualize our 
results were written in Python3, using the Pytorch library 

(version 1.8.1), Scikit-learn (version 0.24.1), and other scientific 
computing libraries (McKinney, 2010; Oliphant, 2010; Pedregosa 
et  al., 2011; Mcfee et  al., 2015). The code was executed on a 
single GPU (Nvidia RTX 5000; 16 GB RAM) laptop computer.

RESULTS AND DISCUSSION

Wingbeat Signals
As illustrated in Figure  4, the main wingbeat frequencies and 
the first harmonics of SWD and DM overlap. This makes it 
difficult to use these features for efficiently classifying between 
SWD and DM (Chen et  al., 2014; Genoud et  al., 2018). There 
is also no clear distinction between the two sexes of either 
insect species in terms of their wingbeat frequencies. This is 
not unexpected since visually, the sexes of both Drosophila 
species are very similar. Having a highly similar wing and 
body shape is expected to result in highly similar wingbeat 
recordings, which is confirmed by the wingbeat time signals 
for SWD and DM in Figure 3. Sex and age have been reported 
to influence the wingbeat recordings (Chen et al., 2014; Genoud 
et  al., 2018). However, such information was not included in 
this study as for each Drosophila species both male and female 
flies of varying age were placed in the cages with the optical 
sensor, as would be  the case in the field.

Our data cleaning procedure retained 55,524 valid wingbeat 
signals in the controlled dataset. Out of those, 29,849 were 
used for training and validation (SWD: n = 16,857; DM: 
n = 12,992), and the remaining 25,675 signals formed the test 

FIGURE 6 | Illustration of a “valid” and “invalid” D. melanogaster wingbeat signal and their respective PSD’s.
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set (SWD: n = 13,560; DM: n = 12,115). For the remote 
uncontrolled dataset, the data cleaning procedure retained 
22,744 valid wingbeat signals. Out of those, 21,572 belonged 
to SWD and 1,172 to the DM class. The low number of DM 
wingbeat signals in the Remote-Uncontrolled dataset can 
be  attributed to unfavorable external conditions during this 
experiment. The experimental setup was in the same room as 
other machinery that raised the temperature and dried up the 
air during the morning hours of the same time period. This 
motivated us to use climate chambers for the collection of 
the Controlled dataset. Notably, the data acquired from the 
DM cages contained a considerably higher number of invalid 
signals compared to the SWD data. This may partly be attributed 
to the higher activity levels of DMs that lead to falsely triggering 
the sensor more often, e.g., by crawling on the sensor head. 
SWD insect population sizes seemed more stable throughout 
the length of the experiment, in contrast to DM populations 
which seemed to fluctuate.

Classifier Performance
The performance of all classifiers is summarized in Table  2. 
Their precision-recall curves for both datasets are shown in 
Figure  8. The best performing model was InceptionFly with 
wingbeat time signals. Trained with the Controlled dataset, it 

classifies wingbeat signals from the Controlled test set with a 
balanced accuracy score of 92.1% and F1-score of 0.93. 
DrosophilaNet performed similarly with a balanced accuracy 
of 91% and F1-score of 0.92. Using either InceptionFly or 
DrosophilaNet with PSD input data provided inferior 
classification results with balanced accuracies of 78.7 and 81.8%, 
and F1-scores of 0.67 and 0.84, respectively. Densenet121 trained 
with spectrograms provided a balanced accuracy of 87% and 
F1-score of 0.80  in the Controlled test set. This is in line with 
our previous work, where “InceptionTime” outperformed all 
other models on either wingbeat time signals, frequency signals 
or time-frequency signals (Fawaz et  al., 2019; Kalfas et  al., 
2021). However, in this study, we  found that DrosophilaNet 
had similar performance while being faster to train and perform 
inference with, compared to InceptionFly. In Table  2 and 
Figure  8, we  note that DrosophilaTime is more capable to 
model PSD data in both datasets, while it trains and performs 
inference on it faster, too. In Figure 9, the training and validation 
accuracy curves are plotted for the top two models in classification 
performance – InceptionFly and DrosophilaNet trained with 
wingbeat time signals. Despite InceptionFly reaching a higher 
validation accuracy, DrosophilaNet converges faster in the 
training set, while showing signs of high validation accuracies 
from the 10th epoch onwards. This makes it a good candidate 
for being deployed in the field where fast training and inference 

FIGURE 7 | Diagram of the data processing and modeling procedures including an illustration of the optical wingbeat sensor and the model architectures used in 
this study. For more information on the “Dense Block” and “Transition Block” layers, see Huang et al. (2017).
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are critical. However, it could be  interesting to investigate 
simpler variants of InceptionFly—fewer filters or smaller kernel 
sizes – that could improve its training and inference 
time performance.

The Remote-Uncontrolled dataset was used as an additional 
test set to evaluate our models’ robustness. In Figure  10, the 
best model’s confusion matrix and classification performance 
using wingbeat time signals on this dataset are illustrated. 
Data belonging to this dataset were collected months in advance, 
in different environmental conditions – which were expected 
to be  closer to in-field conditions, and from different insect 
populations compared to those included in the training set. 
Still, InceptionFly trained on the Controlled dataset was able 
to classify wingbeat time signals in this Remote-Uncontrolled 
dataset with a balanced accuracy score of 91.6% and F1-score 
of 0.96. DrosophilaNet was again a close second with a balanced 
accuracy of 91% and a slightly higher F1-score of 0.97.

The two classification performance metrics used in this 
study—balanced accuracy and F1-score—are both reliable metrics 

for binary classification problems, but they are not equally 
sensitive to how the model performs on both classes. The 
F1-score is more sensitive to a model’s performance in the 
positive class (SWD), while balanced accuracy equally considers 
both classes (SWD and DM) when evaluating model performance. 
This means that a higher F1-score is expected when a model 
accurately classifies many SWD signals regardless of making 
more mistakes in the DM predictions. On the other hand, 
the balanced accuracy metric assigns equal weight to SWD 
and DM mistakes. This explains the high F1-scores for the 
class-imbalanced Remote-Uncontrolled dataset. From a pest 
monitoring perspective, one could argue that it is more important 
to classify SWD correctly, but a robust model should also 
be  sensitive to the DM classification performance for both the 
Controlled and Remote-Uncontrolled dataset. Therefore, 
we  report both metrics.

Models trained on wingbeat time signals outperformed 
models using either PSD or spectrograms as input on both 
datasets. This suggests that important information for classifying 

TABLE 2 | Model performance for selected data types on the two test datasets (controlled and remote-uncontrolled).

Input Model
Decision 
threshold

Total training 
time

Inference time Controlled dataset Remote-uncontrolled dataset

Balanced 
accuracy

F1-score Balanced 
accuracy

F1-score

PSD (1360 × 1) DrosophilaNet 0.694 31 min 4 ms 81.8% 0.84 83% 0.90
InceptionFly 0.674 1.25 h 5.5 ms 78.7% 0.67 79.5% 0.86

Wingbeat signal (5000×1) DrosophilaNet 0.744 53 min 4.8 ms 91% 0.92 91% 0.97
InceptionFly 0.737 3.3 h 7.8 ms 92.1% 0.93 91.6% 0.96

Spectrogram (295×400) DenseNet121 0.646 36.6 h 29.8 ms 87% 0.80 88.1% 0.95

Classification performance is measured using the balanced accuracy and F1-score. The models’ fine-tuned decision thresholds are reported along with the total training time 
(measured in minutes or hours) and the inference time which was estimated for a batch size of 1, by taking the mean inference time of five runs for each model (measured in 
milliseconds). The best score for each performance metric is shown in bold.

FIGURE 8 | Precision-recall curves for all models for the controlled and remote-uncontrolled datasets.
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the wingbeats of these two highly similar insect species is 
present in the time dimension. It is hypothesized that micro-
movements of the insects’ wings are captured by the artificial 
neurons of InceptionFly or DrosophilaNet, which helps them 
classify wingbeats more accurately. This information is likely 
averaged out in the PSD and spectrograms. Higher resolution 
spectrograms could lead to better classification results, but 
that would create higher computational costs with even longer 
training and inference times. Besides, DenseNet121 was already 

the slowest among all models requiring 36.6 h to train and 
29.8 ms to perform inference on a single datapoint, which 
is, respectively, 12 and 4 times longer than for the best 
performing model InceptionFly (see Table  2).

Towards Deployment in the Field
To obtain more insight in the cases were the algorithms resulted 
in misclassifications, we  analyzed the temperature, relative 

FIGURE 9 | Training and Validation accuracy curves for the top two performing models: InceptionFly and DrosophilaTime.

FIGURE 10 | Confusion matrix for InceptionFly trained with wingbeat time signals for our two datasets.
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humidity and timestamp of all misclassified wingbeat recordings. 
However, no clear correlations were found between these 
parameters and the models’ classification performance. To obtain 
a better understanding of where the model fails and in what 
aspects the wingbeat patterns of the two species differ, it is 
recommended to investigate the role of the sampling frequency 
on classification performance of deep CNNs and to focus on 
the models’ explainability.

The results reported here were obtained without applying 
any of the aforementioned data augmentation techniques 
since no significant performance change was noted when 
using these. Similar classification results were reached with 
all different data types used in this research when employing 
one or a combination of all considered data augmentation 
techniques. Data augmentation is expected to have a stronger 
effect when used with much smaller amounts of data since 
it would help to capture all different variations of the input 
data that would remain unseen given less data. An interesting 
follow-up study could help to identify the classification 
performance of wingbeat models and the effect of data 
augmentation starting from few data and increasingly adding 
more. The non-deterministic nature of neural networks would 
need to be  taken into account when performing such 
experiments, since slight performance changes are expected 
after every training procedure.

The confusion matrix for InceptionFly trained with 
wingbeat time signals indicates a strong classification ability 
for this model (Figure  10). InceptionFly seemed to perform 
better for the SWD class compared to the DM class, since 
for the Controlled test set, only 4% of all SWD samples 
were misclassified as DM compared to 13% for the DM 
samples. For the Remote-Uncontrolled test set the 
misclassification rates were more balanced with 7 and 9%, 
respectively. The in-field performance of InceptionFly is 
expected to be  close to its performance on the Remote-
Uncontrolled dataset, but some challenges are expected still 
due to variation in the wingbeat frequencies in response 
to variable environmental conditions (Unwin and Corbet, 
1984). Therefore, special attention needs to be  given to 
performance monitoring and error analysis when the model 
is deployed in the field, especially for signals collected in 
extreme environmental conditions that were not covered in 
our two datasets.

CONCLUSION

Fruit production is increasingly challenged by the D. suzukii 
fruitfly which lays its eggs in healthy ripening fruits rather 
than damaged or overripe ones. Fruit growers demand automatic 
monitoring tools to efficiently protect fruit crops against this 
pest. To this end, we  combined an optical wingbeat sensor 
with convolutional neural networks and evaluate the possibility 
to discriminate the wingbeat signals acquired for Drosophila 
suzukii and D. melanogaster fruitflies. To our knowledge, no 
other studies have previously built classification models for 
these two common pests. All models used in this work were 

validated in a strict way to uncover the “true” classification 
performance that can be  expected in field conditions. A first 
validation involved classification of wingbeat signals collected 
in different enclosures under the same environmental conditions. 
Our best performing model, InceptionFly trained with wingbeat 
time signals was able to discriminate these wingbeat signals 
with an accuracy of 92.1%. Next, the model was also validated 
on wingbeat signals that had been collected independently 
under more variable environmental conditions. This validation 
was also successful with an accuracy of 91.7%. This shows 
that this model is sufficiently robust to be  embedded in an 
automatic insect monitoring system that will operate in field 
conditions to provide accurate estimates of D. suzukii and 
D. melanogaster pest presence.
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