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Pea or Pisum sativum L. is a key diversification crop, but current varieties are not very
competitive against weeds. The objective was to identify, depending on the type of
cropping system and weed flora, (1) the key pea parameters that drive crop production,
weed control and weed contribution to biodiversity, (2) optimal combinations of pea-
parameter values and crop-management techniques to maximize these goals. For
this, virtual experiments were run, using FLORSYS, a mechanistic simulation model.
This individual-based 3D model simulates daily crop-weed seed and plant dynamics
over the years, from the cropping system and pedoclimate. Here, this model was
parameterized for seven pea varieties, from experiments and literature. Moreover,
ten virtual varieties were created by randomly combining variety-parameter values
according to a Latin Hypercube Sampling (LHS) plan, respecting parameter ranges
and correlations observed in the actual varieties. A global sensitivity analysis was run,
using another LHS plan to combine pea varieties, crop rotations and management
techniques in nine contrasting situations (e.g., conventional vs. organic, no-till, type
of weed flora). Simulated data were analyzed with classification and regression trees
(CART). We highlighted (1) Parameters that drive potential yield and competitivity against
weeds (notably the ability to increase plant height and leaf area in shaded situations),
depending on variety type (spring vs. winter) and cropping system. These are pointers
for breeding varieties to regulate weeds by biological interactions; (2) Rules to guide
farmers to choose the best pea variety, depending on the production goal and the
cropping system; (3) The trade-off between increasing yield potential and minimizing
yield losses due to weeds when choosing pea variety and management, especially
in winter peas. The main pea-variety rules were the same for all performance goals,
management strategies, and analyses scales, but further rules were useful for individual
goals, strategies, and scales. Some variety features only fitted to particular systems (e.g.,
delayed pea emergence is only beneficial in case of herbicide-spraying and disastrous in
unsprayed systems). Fewer variety rules should be compensated by more management
rules. If one of the two main weed-control levers, herbicide or tillage, was eliminated,
further pea-variety and/or management rules were needed.

Keywords: pea (Pisum sativum), weed damage, trait, yield loss, yield gap, ideotype, multi-criteria
decision, trade-off
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INTRODUCTION

Today, pea (Pisum sativum L.) is a minor crop in temperate
arable cropping systems (e.g., for France1). However, integrating
pea into rotations potentially has many benefits. As a legume
crop, it allows reducing nitrogen fertilizer use (Nemecek et al.,
2008) and diversifying cereal-based rotations to control weed
infestations (Chauvel et al., 2001) or pests (Ratnadass et al., 2012).
Pea also provides proteins for both human and animal food
supply (Voisin et al., 2014; Duc et al., 2015; Watson et al., 2017).

Pea reduces weed infestation at the rotation scale by
diversifying weed control options and disrupting the growing
season of the more harmfula utumn-emerging weeds (Chauvel
et al., 2001). These effects are essential in the necessary
shift from herbicide-based to agroecological weed management
(Weisberger et al., 2019). However, the current pea varieties
are not very competitive against weeds, notably because of a
slow crop establishment (McDonald, 2003). Pea is known to be
genetically diverse, in terms of flowering precocity, soil cover,
plant height, and architecture (Espósito et al., 2007; Vocanson
and Jeuffroy, 2008; Burstin et al., 2015; Spies et al., 2017), and
collections of pea lines are available (Smýkal et al., 2012; Tayeh
et al., 2015; Siol et al., 2017). Potentially, more competitive
varieties could be produced. But, though the traits that make a
crop competitive against weeds are known in general (Colbach
et al., 2019) and, particularly for cereals (maize, Ford and
Pleasant, 1994; barley, Christensen, 1995; Mennan and Zandstra,
2005; wheat, Drews et al., 2009; rice, Mahajan et al., 2014), they
are not yet known specifically for pea. These studies highlighted
the key role of shade response, which is not among the traits
routinely monitored during crop selection.

Screening existing pea lines in experiments is not only time-
consuming but presents methodological drawbacks when it
comes to assessing weed harmfulness. It is notoriously difficult to
correctly estimate crop yield loss due to weeds because it is next to
impossible to ensure a continuously weed-free control to measure
potential yield (Colbach et al., 2020c). Many studies thus use
weed biomass (or worse, weed densities) as a proxy for yield loss
(see references in Colbach et al., 2020c) but the results are often
difficult to extrapolate to other situations. Indeed, competitive
crop traits were shown to vary in terms of impact between
years, because of weather or management effects (see references
in Andrew et al., 2015).

Working with mechanistic (process-based) models makes it
easier to identify limiting factors and relevant species traits.
Consequently, many studies now rely on simulation to assess
crop genotypes or to identify ideotypes (i.e., theoretical ideal
crop plants that combine traits to optimize crop performance
in a particular environment, crop management and end-use,
Martre et al., 2015), whether for, e.g., tolerance to climate
change (Tao et al., 2017), fruit quality (Memmah et al., 2014)
or for weed management (Bastiaans et al., 1997; Colbach et al.,
2019). One of the rare pea studies (Jeuffroy et al., 2012)
compared contrasting pea varieties (including virtual ones based
on expert knowledge), evaluating their performance in response

1https://agreste.agriculture.gouv.fr/

to soil compaction in interaction with tillage/sowing dates and
weather. However, their objective was to assess the robustness
of genotypes and management strategies relative to weather
repetitions rather than to identify key parameters or optimal
parameter-value combinations.

The quality of these various assessments is highly dependent
on the model type and its prediction quality. When focusing on
pea competitivity against weeds, we need models that produce
realistic predictions of crop-weed interactions in a large range
of cropping systems, pedoclimates, and weed floras. This means
an individual-based model to account for the temporal and
morphological plasticity in weeds (Renton, 2013; Colbach et al.,
2021). It should be parameterized for many crop and weed species
to account for the diverse weed floras in arable crops (Fried
et al., 2008). It must include all crop management techniques
to account for both direct and indirect (e.g., via impacts on
the environment) effects on weeds (Colbach and Debaeke, 1998;
Colbach et al., 2021), and this over several years or decades to
account for weed seed persistence in the soil (Lewis, 1973). To
date, FLORSYS (Colbach et al., 2021) is the model that best meets
these needs.

The objective of the present study was to identify parameters
that make pea competitive against weeds, depending on
management strategies. To achieve this, we (1) parameterized the
FLORSYS model with contrasting pea varieties from experiments
and literature, (2) created virtual varieties based on these data,
(3) ran virtual experiments with these actual and virtual varieties
in contrasting cropping systems to identify the pea parameters
that drive crop production, weed disservices and services
(hence (dis)services), (4) identified optimal pea-parameter value
combinations, depending on the production goal and the
cropping-system type. Production goals included not only yield,
but also reduced herbicide use and weed contribution to
biodiversity.

MATERIALS AND METHODS

The Virtual Field FLORSYS
FLORSYS is a virtual field on which cropping systems can be
experimented with a large range of virtual measurements of crop,
weed, and environmental state variables (Gardarin et al., 2012;
Munier-Jolain et al., 2013, 2014; Colbach et al., 2014a,b, 2021;
Pointurier et al., 2021).

Weed and Crop Life Cycle
The input variables of FLORSYS consist of (1) a description of the
simulated field (daily weather, latitude, and soil characteristics);
(2) all the crops and management operations in the field, with
dates, tools, and options; and (3) the initial weed seed bank. These
input variables influence the annual life cycle of annual weeds and
crops, with a daily time-step.

Pre-emergence stages (surviving, dormant, and germinating
seeds, emerging seedlings) are driven by seed depth, soil
structure, temperature, and water potential. The crop-weed
canopy is represented in 3D, with each crop and weed plant
schematized as a cylinder (above ground) and on top of a
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spilled cone (below ground). Post-emergence processes (e.g.,
photosynthesis, respiration, growth, shade response) are driven
by light availability and air temperature. At plant maturity, weed
seeds are added to the soil seed bank; crop seeds are harvested
to determine crop yield. Nitrogen stress is disregarded in the
present model version, and water stress is only considered for
pre-emergent processes.

The model is currently parameterized for 26 frequent and
contrasting annual weed species and 32 crop species (section A.2
of the Supplementary Material).

Effect of Cultural Techniques
Life-cycle processes depend on the dates, options, and tools of
management techniques (tillage, sowing, herbicides, mechanical
weeding, mowing, harvesting), in interaction with weather and
soil conditions on the day the operations are carried out
(section A.3 of the Supplementary Material).

Indicators of Weed Impact on Crop Production and
Biodiversity
FLORSYS simulates crop yield as well as indicators assessing
weed impacts on crop production and biodiversity (Mézière
et al., 2015; Colbach et al., 2020a) (see section A.4 of
the Supplementary Material). Here, one yield indicator was
considered, i.e., potential crop yield from weed-free simulations.
Then, two indicators of weed harmfulness for crop production
were analyzed: crop yield loss, as the relative crop yield difference
of simulations with and without weeds, as well as field infestation.
In addition, two indicators of weed contribution to biodiversity
were included, i.e., weed species richness (illustrating wild plant
biodiversity) and weed contribution to feeding domestic bees (as
an example for functional biodiversity).

Domain of Validity
FLORSYS was evaluated with independent field data (Colbach
et al., 2016; Pointurier et al., 2021). This showed that crop yields,
daily weed species densities, and densities averaged over the years
were generally well predicted and ranked as long as a corrective
function was added to keep weeds from flowering during winter
at more southern latitudes. Higher crop yield losses than those
reported in previous field studies resulted from the simulation
plan. This does not adapt practices to simulated weed floras
and interannual weather variability (as farmers or trial managers
would do), in order to discriminate the effect of crop species and
management practices on weeds from the effect of weeds on the
choice of crops and practices (Colbach and Cordeau, 2018).

Parameterize Contrasting Pea Varieties
Choosing Contrasting Pea Varieties and Necessary
Experiments
For this study, seven pea varieties contrasting in terms of
seasonality and morphology were chosen (Table 1A) and
parameterized for FLORSYS. In FLORSYS, a crop species
is represented by 220 parameters (section A.4 of the
Supplementary Material). To parameterize pea varieties,
we used existing literature (Lecomte et al., 2003; Raveneau
et al., 2011; Tayeh et al., 2015; Castel et al., 2017; Varela Nicola,

2017; Colbach et al., 2020b), extracted parameters from other
models (Brisson et al., 2009; Pointurier et al., 2021) and set up
experiments when no parameter source was available. This
was mainly the case for parameters describing potential plant
morphology in unshaded conditions and response to shading
by neighbor plants. These key processes drive crop-weed
competition and determine how fast plants occupy space once
they emerge, how much space they occupy, and how they adapt
light capture when surrounded by neighbor plants. In FLORSYS,
potential plant morphology in unshaded conditions depends
on eight parameters per species and stage, for 11 plant stages
(Figures 1A–H). Two further parameters determine maximum
plant height and width in unlimiting growth conditions. These
parameters determine plant dimensions, leaf area, and leaf-area
distribution along plant height in unshaded conditions. Another
five parameters per species and stage drive species response to
shading, determining whether shaded plants invest more into
plant height vs. width or into leaf vs. stem biomass, whether they
reduce their leaf thickness to increase leaf area, and whether they
shift their leaves upward or downward (Figures 1I–M).

Garden Plot Experiments
The principle for estimating parameters of potential morphology
and shading response in garden plots was described by Colbach
et al. (2020b), based on the experimental and computational
approaches developed by Munier-Jolain et al. (2014). In
summary, isolated plants were sown in garden plots at the
usual crop sowing dates, either under shading nets to mimic
shading by neighbor plants or in unshaded conditions. The
plants were placed at a distance exceeding 50 cm to avoid
any interference. With each sampling date, plant-plant distance
increased as more plants were taken out for measurements.
Temperature and incident photosynthetically radiation (PAR)
were measured continuously from sowing up to harvest inside
and outside the shading cage. The plots were fertilized, watered,
and hand-weeded regularly to avoid any water or nitrogen
stress. Experiments were carried out in Dijon Burgundy, France
(47◦19′2.624′′N, 5◦4′26.883′′E, 257 m asl), in 2010 (varieties
886/1, China, Enduro) and 2018 (varieties Cameor, DCG0449,
Isard, Kayanne). The soil was 0.33 g/g clay, 0.49 g/g silt, and
0.17 g/g sand, with pH = 8.3 and 0.31 g organic matter/g soil.

For each variety, four to eight plants were sampled at five
stages, ranging from the 2-leaf stage to the end of flowering.
A vertical RGB image of each sampled plant was taken with
a Canon powerShot SX20 IS (Canon Inc., Tokyo, Japan)
commercial digital camera. For each image, a white calibration
square (10 cm x 10 cm) was placed next to the plant to
determine the spatial resolution of the camera. Vegetation was
discriminated from the background using the excess green
vegetation index (ExG) developed by Woebbecke et al. (1995).
Then, binary thresholding (B&W) was performed using Otsu’s
method (Otsu, 1979; Gée et al., 2021). Finally, the distribution of
leaf area vs. relative plant height was determined. All the image-
processing algorithms were implemented in Matlab (Version
2016b, The Mathworks, Natick, MA, United States).

Then, plant height and width, leaf area and biomass as well
as total above-ground biomass were measured. For the latter
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TABLE 1 | List of pea (Pisum sativum L.) varieties tested in the present experiments.

A. A few species parameters measured in garden plot experiments and field experiments.

Variety Seasonality& Leaf morphology# Usage Seed mass (mg)§ Harvest index☼ (g/g) Plant dimensions in unlimited growth conditions$

Height (cm) Width (cm)

Cameor Spring Leafy Garden 157 0.45 75 72

Kayanne Spring afila Protein 183 0.52 121 89

China Winter Hr Leafy Forage 153 0.35 165 100

DCG0449 Winter Hr Leafy Forage 102 0.30 160 105

886/1 Winter Hr afila Protein 131 0.40 145 120

Enduro Winter hr afila Protein 187 0.52 110 70

Isard Winter hr afila Protein 153 0.54 97 63

B. A few indicators of pea production and weed impacts simulated by FLORSYS. Lsmeans (and SE) were calculated after analyses of variance of
indicator as a function of pea variety, situation, repetition, simulation year, and interactions (not significantly different at p = 0.05 if followed by the
same letter, based on least significant difference test). SDs are standard deviations per variety. Cells of each column were colored from green = best
(highest yield, lowest yield loss or field infestation, lowest standard-error) to red = worst (vice-versa).

Variety Potential yield (t/ha) Yield loss (%) Field infestation (t/ha)

Cameor 4.51 (1.35) d 48.6 (37.5) d 2.73 (2.89) a

Kayanne 5.18 (1.26) b 33.7 (36.5) e 2.01 (2.29) e

China 2.65 (0.97) g 58.9 (33.2) b 2.19 (1.65) d

DCG0449 5.07 (1.03) c 55.1 (34.5) c 2.41 (2.03) c

886/1 3.98 (0.96) e 56.3 (33.2) c 2.56 (2.11) b

Enduro 3.14 (1.77) f 74.1 (27.1) a 2.57 (1.91) b

Isard 6.67 (1.15) a 57.1 (32.5) bc 2.29 (1.79) cd

&Reactive (dominant Hr) or non-reactive (recessive hr) to photoperiod type. #afila (recessive af) or Leafy (dominant Af) type. §Dry mass per seed. ☼The ratio of dry seed
biomass/dry above-ground plant biomass. $Without shading and with unlimited soil resources.

two, leaves (including petioles), stems, and reproductive parts
were discriminated. At each sampling stage and for each variety,
these measurements were used to determine eight parameters
(Figures 1A–H) characterizing potential plant morphology by
fitting key state variables (e.g., plant height or width) against
above-ground biomass using the plants grown in unshaded
conditions. Then, five shade-response parameters (Figures 1I–
M) were estimated by fitting the main morphology variables
(e.g., specific leaf area SLA) against shading intensity (i.e., 1 –
PAR in shaded/PAR in unshaded conditions) with a non-linear
regression using all (shaded and unshaded) plants sampled at the
same stage. Finally, for each variety, the parameter values from
the five sampling stages were extrapolated to obtain parameter
values for 11 BBCH stages ranging from emergence (stage 0)
to full maturity (stage 10), using non-parametric regressions.
All statistical analyses were carried out, using SAS (PROC REG,
NLIN, and LOESS). Further details can be found in section B of
the Supplementary Material.

Virtual Experiments
Create Virtual Pea Varieties
To determine correlations among pea parameters, Pearson
correlations coefficients were calculated among the 220
parameters of the seven parameterized pea varieties, using
corr() of Hmisc package of R (R Core Team, 2016). In addition,
the minimum and maximum values for each quantitative
parameter were determined for pea (section D.3 of the
Supplementary Material). This range of variation was extended
to [0.9 × min, 1.1 × max] for each parameter, but capped to

remain biologically realistic (e.g., a proportion such as a harvest
index needed to be in [0, 1] g/g).

Furthermore, ten virtual pea varieties were created by
randomly drawing parameter values inside the extended range
of variation of the seven actual varieties following a Latin
Hypercube Sampling (LHS) plan and using the correlation matrix
as constraints. This was done using the randomLHS() and
LHScorcorr() functions of the lhs package of R.

Simulation Plan
The simulation plan aimed to evaluate the impact of pea
parameters and management techniques in contrasting cropping
systems, with a global sensitivity analysis (i.e., varying factors
simultaneously to analyze the sensitivity to factors and their
interactions, Saltelli et al., 2000). First, nine situations were
chosen, varying in terms of rotation length and diversity,
management techniques, and initial weed seed bank (Table 2).
The two contrasting weed seed banks were based on a
preliminary simulation study linking weed species to weed
impact (section D.1 of the Supplementary Material).

For each situation, 400 cropping systems were built by
randomly choosing management techniques based on a Latin
Hypercube Sampling (LHS) plan and respecting the constraints
of Table 2. For pea, varieties were chosen among a pool of 18
varieties: the seven actual varieties of Table 1, the ten virtual
ones of section “Create Virtual Pea Varieties,” and a final one
whose parameters were estimated from simulations with the
STICS crop model (Brisson et al., 2003). Dates and options
of techniques (e.g., depth, speed, and tool for tillage) were
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FIGURE 1 | Parameters describing potential plant morphology in unshaded conditions (A–H) and shading response (I–M) measured on 7 pea varieties (red
symbols = spring varieties, blueish colors = winter varieties, N = afila, � = Leafy) over plant stages (BBCH) estimated from garden-plot experiments. SLA, plant leaf
area/plant leaf biomass; LBR, plant leaf biomass/plant above-ground biomass; HM, plant height/plant above-ground biomassb_HM; WM, plant width/plant
above-ground biomassb_WM; RLH, plant height below which 50% of leaf area are located/total plant height; b_RLH, shape parameter for leaf area distribution along
plant height. mu_X shapes shade response of morphogical variable X (SLA, LBR, etc.) via X = Xunshaded · exp(-mu_X · shading intensity) (Colbach, 2020 ).
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TABLE 2 | Contrasting situations used to stratify the simulation plan testing the sensitivity of crop production and weed impact to pea parameters and management
techniques with FLORSYS simulations. The two alternative weed seed banks were based on a preliminary simulation study linking weed species to weed impact (section
D.1 of the Supplementary Material). For each situation, 400 cropping systems were built by randomly choosing management techniques based on a Latin Hypercube
Sampling (LHS) plan and respecting the constraints of the situation. Pea varieties were chosen among a pool of 18 (virtual and actual) varieties.

Situation Possible crops in the rotation (in any
order, each crop only once)

Possible management techniques Weed species pool

Tillage Herbicides Mechanical weeding Fertilizer§

Reference Pea, WW, WOSR Yes Yes No Mineral Complete (26 species)

Change management strategy

Complete Yes Yes Yes Mineral

Same as referenceOrganic Same as reference Yes No Yes Organic

No till No Yes No Mineral

Change crop rotation

2-year rotation Pea, WW

Same as reference Same as reference4-year rotation Pea, WW, WOSR, B

6-year rotation Pea, WW, WOSR, B, S, M

Change initial weed seed bank$

Harmful
Same as reference Same as reference

6 harmful weeds

Harmful + bee food 6 harmful dicots promoting bee food

WW, winter wheat; WOSR, winter oilseed rape; B, winter or spring barley; S, sunflower; M, maize. §Though competition for nitrogen is disregarded as simulations are
run with unlimited nitrogen conditions, organic fertilizer influences weed seed germination/emergence by adding a layer of organic matter on the soil surface. $The two
alternative seed banks were based on a preliminary simulation study linking weed species to weed impact (section D.1 of the Supplementary Material).

randomly chosen for each crop but respecting agronomic logic
(e.g., winter wheat could not be sown in spring, sowing and
harvesting dates of pea varieties allowed full maturation, no-
tillage after crop sowing). The analysis of the Pearson correlations
among simulation factors showed that our simulation plan
was adequate to avoid confusing effects among management
techniques. Indeed, the median correlation coefficient among
crop management techniques as well as between techniques
and rotation or situation varied from 0.05 to 0.09, depending
on variety types and crops (details in section D.2.1 of the
Supplementary Material). Pea parameters and management
techniques were even less correlated (0.03–0.06). The Latin
Hypercube Sampling (LHS) plan thus allowed decorrelating
management variables. Correlations among rotation variables
or between rotation and situation were much higher (0.12–
0.21), reflecting the rotation rules fixed for each situation.
Pea parameters were highly correlated (0.23–0.3), reflecting the
biological correlations among variety characteristics, which we
introduced by constraining the LHS via parameter correlations.

The 9 × 400 cropping systems were simulated over 12
consecutive years to assess long-term effects and repeated five
times with five weather series consisting of randomly chosen
records from the INRAE Dijon weather station (INRAE Climatik
database). Each system × repetition was run twice, once starting
with weeds and once without, to assess potential crop yield. Crop
yield loss due to weeds was then calculated as (yield from weed-
free simulation – yield from weedy simulation)/(yield from weed-
free simulation). This simulation plan succeeded in producing
differences in pea and weed (dis)services across situations (see
details in section D.6 of the Supplementary Material).

Statistics
To make the indicators of potential crop yield and weed
(dis)services (see section “Indicators of Weed Impact on Crop

Production and Biodiversity”) comparable, they were rescaled to
[0,1] with 0 corresponding to the worst value (lowest yield or
biodiversity, highest harmfulness) across all situations, cropping
systems, years and weather repetitions, and 1 to the best (highest
yield or biodiversity, lowest harmfulness). To stress that a
rescaled weed-harmfulness value of 1 means low harmfulness
(e.g., low yield loss), we renamed such indicators as “weed-
harmfulness control” (e.g., yield-loss control).

To analyze trade-offs among indicators of yield and weed
(dis)services, a PCA was run across all situations with the PCA()
function of R software version 4.0.1 (R Core Team, 2021),
separately for cropping systems with spring vs. winter varieties.

To identify which simulation factors (situation, pea
parameters, management techniques for peas and other
crops, weather repetition) influence the indicators, classification
and regression trees (CART) (Breiman et al., 1984) were run
per pea variety type (spring or winter), either on annual data
(years with a pea) or data averaged over the simulation, including
years grown with crops other than a pea (rotation scale).
The trees predict a continuous response variable (here either
individual indicators, or a combination of several indicators
hence called “performance profile”) from a set of discrete or
continuous predictors (here situation, pea-variety parameters,
crop management techniques). The data set is recursively split
into two subsets along a threshold value of the predictor in
order to maximize the difference between subsets (see example
in Figure 2). Branches are combinations of predictor values
that lead to predictions contained in leaf nodes. The trees were
computed with the R package mvpart (Glenn De’ath, 2014).
The optimal tree size was internally identified using a 10-fold
cross-validation procedure to avoid overfitting. In the following,
R2 refers to the cross-validated R2 of the resulting tree.

Predictors (including surrogate variables that would split
the data set exactly as the primary splitting variables) were
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ranked according to their relative Variable Importance Predictor
(VIP, rescaled here by dividing by the total amount of
variability explained by the tree, see section D.4 of the
Supplementary Material). The CARTs were built, allowing up to
“perfect” 20 surrogates (i.e., with raw agreement = 1) per split.
In addition, the probability that the analyzed response variable
increases when the predictor value increases were estimated by
summing the relative number of individuals that split the branch
toward a higher predictor value, over all tree nodes including the
predictor as a primary or surrogate splitting variable. We defined
the partial R2 of a predictor as its relative VIP multiplied by
the total R2 of the tree. To assess the contribution of predictor
classes (situation, pea parameters, pea techniques, other-crop
techniques), partial R2 was calculated for each class, summing
partial R2 over all predictors belonging to the class.

Finally, optimal combinations of pea parameter values and
crop management techniques were identified for different
performance goals, per variety type (spring or winter), analysis
scale (years with pea or average over-rotation including all
crops), and situation. Several individual performance goals
were considered, maximizing either potential pea yield (i.e.,
yield in weed-free simulations), weed-infested pea yield (from
weed-inclusive simulations), weed-based trophic resources for
domestic bees, or weed species richness, or minimizing either
crop yield loss due to weeds or field infestation. In addition,
composite goals were included, called “Integrated” (maximizing
weed-infested yield and minimizing herbicide use intensity),
and “Agroecology” (the former plus maximizing bee-food offer).

To identify these optimal combinations, CARTs were run per
goal, variety type, and analysis scale (years with pea vs. average
over-rotation). The three best branches were selected, i.e., those
leading to the leaves with the highest indicator value (remember
that, e.g., the lowest yield loss gives the highest rescaled indicator
value). For multi-variate goals, the best branches were those with
the highest minimum value of the constituting indicators. The
best branch b of a given tree answers to the following condition:

min
over i

(Tbi) > max
over b′

(
min
over i

(Tb′i)

)
where Tbi is the value of the indicator i for branch b.

Here, only a few examples were presented, the complete results
are in sections E and F of the Supplementary Material.

RESULTS

Parameterizing Contrasting Pea Varieties
The garden-plot experiments allowed estimating the
parameters related to potential plant morphology and shading
response. These parameters were among those that the most
discriminated the seven pea varieties (see section C.3 of
the Supplementary Material). Differences between varieties
depended on the analyzed parameter (Figure 1). There was, for
instance, little difference among varieties for the leaf biomass
ratio, i.e., the ratio of leaf biomass divided by aboveground
plant biomass (Figure 1E). This ratio was around 0.8 until

FIGURE 2 | Example of regression and classification tree (CART) analyzing potential yield of spring pea from weed-free simulations (response variable) as a function
of pea parameters (in green), pea management techniques, and other-crop techniques (in gray) (predictors). Only pea crops with herbicides were used here. The
highlighted branches show the best and third-best performances (which are also shown in Table 5A). Boxes show principal and surrogate predictors and thresholds
for splitting branches (only for the two highlighted branches). Leaves (at the bottom of the tree) and nodes show indicator values normed to [0 = lowest yield,
1 = highest yield of simulated data set]; leaves are colored from red (lowest yield) through yellow (intermeidate yield) to green (highest yield). Percentages below
nodes show the proportion of individuals that fall into that node. The root node at the top of the tree has 100% since the dataset has not been split yet (Colbach,
2021 ).
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nearly flowering onset and then continuously decreased until
full maturity, regardless of the variety. Other parameters differed
according to the seasonal type, e.g., at early stages, specific leaf
area (SLA, ratio of total leaf area divided by total leaf biomass)
was lower for the two spring varieties (Cameor and Kayanne)
tested here than for the five winter varieties (except Isard,
Figure 1A). But, most parameters greatly varied among varieties,
regardless of seasonal or morphological type (i.e., afila vs. leafy).

Trade-Offs Among Indicators of Pea
Yield and Weed (Dis)services
Across the nine simulated situations, weed-infested pea yield
(in the presence of weeds) was opposed to direct weed
harmfulness for pea production (yield loss, harvest pollution by
weed seeds and debris, harvesting problems) in the Principal
Component Analysis (PCA), regardless of the pea variety type
(Figures 3A,C). The potential yield (yield from weed-free
simulations) was badly represented in the first two PCA axes
(the corresponding arrow was short) and was little correlated to
yield loss due to weeds (Pearson correlation coefficients = −0.23
and −0.30 for spring and winter varieties, respectively). This
means that the situations maximizing potential pea yield were
not necessarily good at controlling weeds, and vice-versa.
Correlations among weed-harmfulness indicators were higher in
spring pea (Figure 3A) than winter pea (Figure 3C). Irrespective
of the variety type, weed harmfulness was not or little correlated
to either herbicide use intensity or biodiversity (weed species
richness and evenness, trophic resources for birds, carabids,
and pollinators).

Pea Varieties Differ in Terms of Yield and
Weed (Dis)services
The ellipses corresponding to the different pea varieties were very
large, indicating that their performance in terms of pea yield
and weed (dis)services varied greatly with the situation, cropping
system, year, weather repetition (Figures 3B,D). These ellipses
mostly overlapped, indicating that simulation factors other than
pea variety explained most of the variability. Despite this, a
few tendencies could be observed. In spring pea, varieties were
roughly ranked along a line ranging from yield to field infestation
(Figure 3B). The best-performing variety was an actual one, i.e.,
Kayanne, the worst-performing varieties were all virtual ones.
Winter pea varieties were ranked roughly along a line from weed-
infested yield to yield loss due to weeds, with larger differences
among varieties than for spring pea (Figures 3D vs. B). Actual
varieties were all outperformed by a virtual one (Virtual 4), and
the worst variety was an actual one (Enduro).

The trade-off between pea yield in the absence of weeds
(i.e., potential yield) and pea resilience toward weeds (i.e., yield
loss due to weeds) as well as crop impact on weeds (i.e., field
infestation) was obvious on actual varieties (Table 1B). The
variety with the highest potential yield (Isard) was intermediate
in terms of yield loss and field infestation. Conversely, the variety
with the highest field infestation (Cameor) was intermediate in
terms of potential yield and yield loss. The two spring varieties
(Cameor and Kayanne) presented the lowest weed-related yield

loss and almost the best yield potential. Otherwise, there was
no obvious link between average variety-performance indicators
and major variety characteristics, i.e., leaf morphology (Cameor,
China and DCG0449 did not differ from the rest), seed mass or
maximum plant height (no correlation between these two traits
and any of the three indicators of Table 1B).

There was also a trade-off between the average performance
of actual varieties and their stability across situations, years,
and weather repetitions (sd in Table 1B). For instance, the
variety with the lowest average potential yield (China) had the
second-highest yield stability; the variety with the most stable
yield loss (Enduro) was also the one with the highest yield
loss. Conversely, the variety with the highest field infestation
(Cameor) also presented the most variable one. Generally, spring
varieties (Cameor and Kayanne) presented the highest variability,
regardless of the analyzed indicator.

Which Simulation Factors Drive Potential
Yield and Weed (Dis)services?
The more detailed analysis of the pea-variety impact with the
help of the classification and regression trees (CART) showed
that this impact greatly varied with the analyzed indicator
and scale (Table 3). The more a weed (dis)service indicator
was related to crop growth and production, the larger the
effect of pea parameters was (larger partial R2 in Table 3)
and the lower the effects of management techniques and
situation were (lower partial R2 in Table 3). Potential yield
(i.e., from the weed-free simulations) mostly depended on pea
parameters (higher partial R2 than for other simulation factors
in Tables 3A,C). The response of pea to weeds also depended
on pea parameters as shown by weed-infested yield and weed-
caused yield loss but the latter depended much more on crop
management. The effect of pea parameters was even smaller
when looking at indicators translating weed response to pea
and management, whether quantitative (i.e., field infestation
which is based on weed biomass) or qualitative (bee food
offer and species richness which are based on weed traits
and/or species).

The CART analyses of Table 3 confirmed some tendencies
already identified with the Principal Component Analysis of
Figure 3. For potential pea yield, pea parameters were more
important in spring pea (Table 3A) than in winter pea
(Table 3C) and vice-versa for pea techniques; for yield loss, the
opposite was true, i.e., pea parameters were most important in
winter pea and pea techniques most important in spring pea.
Explained variability was smaller for weed-impact indicators
than for potential yield, pointing to stronger interactions among
simulation factors and to a larger impact of effects that were
not included in the analysis, i.e., weather and stochastic effects
(e.g., weed plant location). Generally, the effect of both pea
parameters and pea management techniques was more visible
during the years with pea (Tables 3A,C) than at the rotation scale
(Tables 3B,D) where these effects were overshadowed by other-
crop techniques. This was particularly true for rotation-scale
yields (potential and weed-infested) as these indicators included
yield data from crops other than pea. Though the management
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FIGURE 3 | Trade-offs among indicators of pea yield and weed (dis)service identified with Principal Component Analyses (PCA) for spring (A,B) and winter pea
varieties (C,D) on the nine simulated situations, using annual simulated data. Pea-yield and biodiversity indicators are shown in green, weed harmfulness for pea
production is in red (Colbach, 2020 ).

of crops other than pea was the most influential when analyzing
weed (dis)services at the rotation scale, other-crop techniques
also influenced both pea yield and, particularly, weed impacts in
pea crops at the annual scale (Tables 3A,C).

The effect of simulation factors on the indicators of
the composite performance profiles (“Integrated” and
“Agroecology”) varied with varieties and scales. But generally,
pea parameters were the most important for winter varieties,
and pea techniques for spring varieties; the opposite was true
for other-crop management. The situation had no effect at the

rotation scale, and variability was least well explained for the
“Agroecology” profile.

Which Pea Parameters and Techniques
Drive Potential Yield and Yield Loss?
Table 4 lists the main pea parameters (Table 4A) and techniques
(Table 4B) driving potential yield and weed-caused yield loss in
pea as well as the explanations for these effects, based on the
functioning of the FLORSYS model. The results on the other-
crop techniques, the other weed-impact indicators, and from the
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TABLE 3 | Variability in weed (dis)service indicators is explained by the different types of simulation factors.

Type of explanatory
variables (CART predictors)

Yield Weed services and disservices Performance profiles

Potential
(without
weeds)

Actual (with
weeds)

Yield loss Field
infestation

Bee food Species
richness

Integrated Agroecology$

A. Spring pea – Years with pea

Pea parameters 0.72 0.36 0.11 0.03 0.01 0.01 0.19 0.11

Pea techniques 0.04 0.14 0.22 0.26 0.11 0.15 0.30 0.22

Other-crop techniques 0.01 0.12 0.14 0.26 0.19 0.12 0.28 0.25

Situation 0.00 0.02 0.07 0.07 0.08 0.16 0.03 0.06

TOTAL 0.77 0.64 0.54 0.61 0.40 0.44 0.80 0.65

B. Spring pea – Average over rotation

Pea parameters 0.42 0.22 0.03 0.04 0.02 0.03 0.11 0.04

Pea techniques 0.04 0.17 0.17 0.13 0.15 0.06 0.25 0.13

Other-crop techniques 0.21 0.33 0.39 0.45 0.37 0.33 0.46 0.50

Situation 0.16 0.06 0.18 0.20 0.17 0.33 0.04 0.02

TOTAL 0.83 0.78 0.77 0.81 0.71 0.75 0.85 0.69

C. Winter pea – Years with pea

Pea parameters 0.60 0.27 0.18 0.02 0.01 0.02 0.22 0.28

Pea techniques 0.07 0.14 0.13 0.11 0.11 0.11 0.34 0.17

Other-crop techniques 0.02 0.10 0.12 0.25 0.16 0.12 0.17 0.18

Situation 0.00 0.07 0.13 0.10 0.09 0.16 0.10 0.06

TOTAL 0.70 0.57 0.56 0.49 0.37 0.42 0.83 0.69

D. Winter pea – Average over rotation

Pea parameters 0.30 0.14 0.06 0.04 0.04 0.04 0.16 0.06

Pea techniques 0.08 0.12 0.06 0.06 0.13 0.07 0.12 0.16

Other-crop techniques 0.30 0.29 0.37 0.45 0.34 0.29 0.49 0.37

Situation 0.10 0.18 0.26 0.20 0.15 0.32 0.05 0.04

TOTAL 0.78 0.73 0.75 0.75 0.66 0.71 0.81 0.63

Partial R2 of descriptors from classification and regression trees (CART) were summed per type of simulation factor; CARTs were run separately on cropping systems
including spring vs. winter pea and considering either only years with pea or averages over all simulated years (note that yield then includes yield from crops other
than pea). Cells were colored from white (0, no impact) through yellow (0.5, intermediate impact) to green (1, highest impact). Gray triangles schematize the relative
impact of crops and weeds on indicators. §The “Integrated” profile aggregates weed-infested yield and herbicide use reduction, and the “Agroecology” profile moreover
considers bee food offer.

rotation scale are in section E of the Supplementary Material.
In short, any parameter value which delays and/or reduces
crop emergence (e.g., large darknessReduction or gamma values)
decreased potential yield and, particularly, yield-loss control.
Conversely, any parameter value which increases crop canopy
volume (e.g., large LBRlate or mu_HMmid values) and crop
growth duration (e.g., large PeaFloweringTT values) had the
opposite effect (Table 4A). Shading response (mu parameters)
was crucial: the more pea plants increase plant height (large
mu_HMmid values) and leaf biomass (large mu_LBRlate)
when shaded, the better. However, key parameters completely
differed between pea-variety types and indicators: for instance,
parameters driving germination and pre-emergent growth were
crucial for yield-loss control in winter pea but not in spring pea
or for potential yield. Field infestation was little affected (details
in section E).

Interestingly, almost all parameters either always increased
(probability values in Table 4A = 1) or always decreased indicator

values (probability = 0), indicating a stable effect regardless
of other parameters and management techniques. Three of
the key parameters (darknessReduction, gamma, rb) did not
vary among actual varieties as variety-specific information was
unavailable when parameterizing pea in FLORSYS. All three
concern pre-emergent processes. All other parameters vary as
much for virtual as for actual varieties. Generally, the range
of variation of the key pea parameters was smaller than the
range for other crops and included in this latter range. The only
exceptions concern plant morphology: when shaded, pea plants
mostly reduced their leaf biomass ratio (mu_LBR < 0) whereas
most other crops increase theirs (mu_LBR > 0).

In terms of pea management, the technique driving crop
growth duration, i.e., sowing date, was the most influential
factor, but its effect depended on the pea variety type and other
interactions (Table 4B). Delayed spring-pea sowing deteriorated
the control of yield loss and field infestation whereas the effect
varied for delayed winter-pea sowing. Field-infestation control
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TABLE 4 | The key pea parameters and techniques driving potential yield and yield loss due to weeds in Spring (S) and Winter (W) pea.

A. Pea parameters (Parameter names terminating in “early,” “mid”
or “late” respectively concern plants at BBCH stages [0,4], [4,8] or
[8,10])

Min-max in pea
varieties (other
crops)$

Prob of increase§ Reasons for effect (based on the analysis of simulated state
variables)

Name Meaning Unit Potential
yield

Yield loss
control

Germination and pre-emergent growth

darknessReduction Reduction in germination if seeds are in darkness seeds/seeds 0.90; 1.10*
(0.40; 1.00)

S
W 0.00

Fewer crop seeds germinate and emerge, reducing crop canopy density
and leaving more space/light to weeds

g0 Time from germination triggering (sowing if moist soil,
post-sowing rainfall otherwise) to first germinated seed

◦C days 15.0; 24.9
(6.4; 33.3)

S
W 0.00

Crop mergence is delayed, protecting spring-sown crops from frost. Crop
germination and emergence are delayed, reducing crop growth duration

rb Shape parameter for pre-emergent root growth. The
higher this value, the later the growth onset but the
higher the growth speed

none 1.24; 1.52*
(1.24; 1.52)

S
W 1.00

Pre-emergent crop root elongation starts earlier, thus reducing crop
seedling loss due to early drought

gamma Increase of seedling mortality with seed depth seedlings·
seedlings−1

·lnmm−1

0.30; 0.37*
(0.41; 0.58)

S
W 0.00

More crop seedling loss during pre-emergent growth

shootDiameter Shoot diameter during pre-emergent shoot growth mm 1.98; 2.42
(0.44; 2.20)

S
W 1.00

Lower pre-emergent seedling mortality in buried crop seeds

Potential morphology (in the absence of shading)

Emax Potential maximal extension of the root system mm 213; 301
(191; 363)

S
W 1.00

A more voluminous crop root system leaves less water for weed seed
germination and pre-emergent growth

max_height Maximum plant height cm 15.0; 24.9
(6.4; 33.3)

S
W 0.00

Taller crop plants grow above weeds, increasing crop biomass production
and shade cast on weeds, and this from emergence onward

LBRlate Leaf biomass ratio (leaf biomass/total above-ground
biomass) during reproduction if no shading

g/g 0.27; 0.59
(0.00; 0.98)

S 1.00
W

Crop plants have a larger light interception area, increasing crop biomass
production and shade cast on weeds

WMearly Plant width per above-ground plant biomass after
emergence if no shading

cm/g 4.31; 66.18
(0.01; 100.00)

S 0.00
W

Unshaded crop plants are wider per unit biomass and more prone to be
shaded by taller neighbor plants and more exposed to damage by
mechanical weeding

b_WMearly Sensitivity of plant width to above-ground plant biomass
after emergence (b_WM = 0: plant width is constant;
b_WM > 0: plant width increases with plant biomass)

none 0.17; 0.79
(0.05; 0.75)

S 1.00
W

Heavier crop plants are wider, increasing soil coverage and light
interception by the crops, increasing crop biomass production and shade
cast on weeds

b_RLHlate Unevenness of leaf area distribution along plant height
during reproduction. The lower this parameter, the more
uniformly leaf area is distributed along plant height

none 1.94; 4.62
(1.28; 20.64)

S 0.00
W

Crop leaf area is distributed unevenly along plant height in crops resulting
in a heterogeneous canopy

Shading response

mu_HMmid Increase in plant height per biomass HM if shaded
during vegetative stage

none −0.30; 0.61
(0.00; 1.77)

S 1.00
W

Shaded crop plants increase their height per unit per unit biomass to grow
above weeds, increasing crop biomass production and shade cast on
weeds

mu_LBRlate Increase in leaf biomass ratio LBR if shaded during
reproduction

none −0.33; 0.12
(−0.62; 1.39)

S 1.00
W

Shaded crop plants increase leaf area. Crop plants intercept more light,
produce more biomass and cast more shade onto weeds

Plant phenology

PeaFloweringTT Time from plant emergence to flowering onset ◦C days 82; 2696
(434; 4701)

S 1.00
W 0.91

More crop biomass is produced before reproduction sets inA longer crop
growth duration delays the harvest and leaves more time for the weeds to
produce biomass inside the crop

Temperature requirements

tPhoto2 Temperature above which net photosynthesis is
maximum

◦C 15; 27
(10; 30)

S 0.00
W

Maximum crop photosynthesis rate is reached only on hot days, reducing
crop biomass production

(Continued)
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TABLE 4 | (Continued)

B. Pea techniques Min-max in
data set$

Probability of increase§ Reasons for effect (based on the analysis of simulated state variables)

Meaning Unit Potential
yield

Yield loss
control

Field infestation
control

Tillage

Superficial tillage (disregarding
rolling)

Number per
year

0; 10 S
W 0.60

Empties weed seed bank by stimulating germination during summer fallow (“false seed bed
technique”), destroys weed plants prior to crop sowing. But stimulates weed seed germination
and emergence of excavated weed seeds which can emergence after crop sowing

Maximum tillage depth cm 0; 29 S 0.17 S 0.06
W

Buries more weed seeds, reducing weed seed germination and emergence. But stimulates
weed seed germination and emergence of excavated weed seeds

W 1.00

Tillage depth averaged over all
tillage operations (excluding
rolling and shredding)

cm 0; 20 S 0.22
W

S 0.24
W

Buries more weed seeds, reducing weed seed germination and emergence. But stimulates
weed seed germination and emergence of excavated weed seeds

Residue shredding during
summer fallow

Number per
year

0; 2 S 1.00
W 1.00

Destroys weeds during summer fallow when they are most important for feeding bees

Time from previous harvest to
first tillage operation

days 1; 285 S 0.09
W 0.02

More time for weed seeds to be imbibed by rain on soil surface and getting more sensitive to
false seed bed operations. But leaves more time for summer annuals to grow before
destroying them. Less time to till frequently, larger risk of triggered weed seed germinations
resulting in weeds emerging after crop sowing

Time from last tillage to crop
sowing

days 0; 127 S 0.00
W 0.00

S 0.00
W 0.00

Leaves more time for weeds to reinfest the field after the last tillage operation cleaned out all
weeds

Pea sowing

Sowing date Julian days 1 Oct; 15 Apr S
W 0.85

S 0.02 S 0.01
W 0.00

Leaves more time for false seed bed techniques; shortens the time during which weeds can
grow inside the crop. But shortens the crop growth duration

W 0.67

Sowing density seeds/m2 25; 115 S 1.00
W 0.89

More crop plants and leaf area to produce crop biomass and shade weeds. But crop-crop
competition can hinder crop biomass production in very high crop densities

Interrow width if row sowing cm 4; 52 S
W 0.00

More competition between plants inside a given row, more light unintercepted by crops inside
interrow

Harvest

Pea leaves and stems were left
in the field after harvest

1 (yes) or 0 (no) 0; 0.8 S 1.00
W 1.00

S 0.41
W

Hinders weed emergence after harvest. But leaves harvested weed seeds in filed

Herbicides and Mechanical weeding

Time from sowing to 1st
herbicide spraying

days 1; 294 S
W 0.71

Earlier treatments miss later emerging weeds

Total mortality of monocot
weeds due to herbicides

[0,1] S
W 0.99

Fewer weeds survive

Mechanical weeding operations Number per
year

0; 5 S
W 1.00

Destroys weed plants inside the crop

The most influential parameters and techniques per indicator were selected based on relative variable importance predictor (VIP > 0.1) in classification and regression trees analyzing weed (dis)service indicators of years
with pea as a function of pea parameters, pea management techniques, and other-crop management techniques. §Probability cells were colored from green (1, 100% probability that an increase in parameter/technique
values results in an increased indicator value) to red (0, 100% probability that an increase in parameter/technique values results in a decreased indicator value) through white (0.5, 50% for both increased and decreased
indicator values depending on interactions with other parameters or techniques). Empty cells indicate that the parameters/techniques had no significant effect on the indicator. For complete results, see sections
E.2–E.7 of the Supplementary Material. *This parameter does not vary for actual varieties as variety-specific information was available when parameterizing pea in FLORSYS. § if b_WM is zero, plant width does not
depend on plant biomass; the larger b_WM is, the more width increases with biomass. $5 and 95% percentiles of values.
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systematically decreased but yield potential and yield-loss control
usually improved (because of, e.g., less frost damage). All the
other key techniques presented a stable effect, irrespective of
pea varieties, though the effect could vary (i.e., the probability
was not 0 or 1) depending on other conditions (e.g., other
management techniques). Potential pea yield mostly depended
on a dense (high sowing density) and uniform crop canopy (row
sowing, small interrow width) whereas the control of yield loss
and field infestation mostly depended on tillage aiming to reduce
the weed seed bank, with depth and timing being crucial for
success. Herbicides were the most important for field infestation,
mechanical weeding for yield loss.

Optimize Pea Varieties and Management
With the help of the classification and regression trees,
optimal combinations of pea parameters and crop management
techniques were identified, depending on the performance goal,
the situation, the pea variety type, and the decision scale (see
examples in Figure 2 and Table 5, with the complete set of
branches in section F of the Supplementary Material). The
examples presented here focused on pea yield, and were chosen
to illustrate the impact of weeds, pea variety type, weed-control
strategy, and analysis scale.

Maximize Potential Yield in Spring Pea in
Herbicide-Based Systems
To optimize potential yield in spring pea in herbicide-based
cropping systems, the choice of pea parameters was crucial
(Table 5A). A set of common 29 rules described the pea varieties
of the three best tree branches, corresponding to respectively
the 6, 5, and 5% situations with the highest potential yield
among the 35 branches of the tree. For these best configurations,
plants photosynthesized well at low temperatures (low tPhoto2).
When unshaded, their width increased with increasing biomass
after emergence and during reproduction (high b_WMearly and
b_WMlate, low WMearly) but it was homogeneous during the
vegetative stage (low b_WMmid). Plants were stemmy before
reproduction (low LBRearly and LBRmid) but kept investing a
large proportion of biomass in leaves during reproduction (high
LBRlate) though the leaves were small and thick (low SLAlate).
Leaf distribution along plant height was uniform (RLHearly and
RLHmid close to 0.5, low b_RLHearly and b_RLHlate), and
plants were tall per unit biomass at all stages (large HMearly,
HMmid, and HMlate). Shaded plants compensated by investing
more biomass into leaves (large mu_LBRlate), with larger thinner
leaves (large mu_SLAearly) and became even taller per unit
biomass (large mu_HMmid). Growth duration needed to exceed
a minimum threshold (PeaFloweringTT), germination was early
(low g0, g50) and fast (large gb), leading to well-established
seedling (large LA0) (Table 5A). These advantages came at a
cost, being linked to less favorable features, such as a reduced
root system (low rateCyl), which was moreover sensitive to soil
compaction (low soilPen).

Many of these rules were respected by all the actual
pea varieties tested here, e.g., a low leaf biomass ratio after
emergence (LBRearly < 0.821 g/g) or a minimum time from
emergence to flowering (PeaFlwoeringTT ≥ 295◦Cdays). The

most discriminating rules were the seven that drove the
first split in the tree (i.e., order = 1 in the tree). They
concern diverse traits such as the ability to photosynthesize
at low temperatures (low tPhoto2), to keep a high biomass
ratio during reproduction (large LBRlate), or to compensate
shading by increasing plant height (large mu_HMmid). In the
end, only three varieties verified all 29 rules, i.e., Kayanne,
Virtual2, and Virtual 7.

The best two branches consisted of further, opposing 21
rules. Two virtual varieties corresponded to the best branch B1
(Virtual2 and Virtual7). The three branches moreover differed in
terms of pea management, with B1 and B2 requiring a narrower
interrow than B3. All three branches needed a high sowing
density and an early sowing date. Rotation and the management
of crops other than pea presented negligible effects.

What Changes in the Presence of Weeds?
When looking at weed-infested yield (Table 5B), the main rules
for spring-pea varieties in herbicide-based systems remained the
same for the three best branches corresponding to the 2.1% best
performances, except that the pea growth period needed to be
limited (low PeaFloweringTT). The latter rule cuts off part of
weed-seed reproduction and infestation of future crops. In the
best two branches, the emphasis was more on high leaf area than
for potential yield, to the detriment of root-system expansion.
The latter was closer to the soil surface, reducing available water
for weed seed germination and emergence. Another difference
was a slower crop emergence, which increased the efficiency
of pre- and post-sowing herbicides as early emerging weeds
would be more exposed to herbicide droplets. The varieties
corresponding to the three branches comprised the same three
varieties as for potential pea yield, with the additional Cameor
variety.

Compared to the weed-free branches, the optimal weed-
infested branches considerably differed in terms of rotation
and crop management. In pea, tillage and herbicides became
more important than sowing patterns. The best branch was
characterized by a high crop diversity. Herbicide options were
important but not in all crops: if stringent rules were applied
in pea (branch B1), none were needed in other crops, and vice
versa (B2 and B3).

Are Optimal Parameter Values the Same for Spring
vs. Winter Varieties?
The rules for winter pea in herbicide-based systems were
completely different (Table 5C) from the spring-pea rules.
Winter-pea rules concerned either a fast root-system extension
(large rateWidth and rateDepth) and a strong shading response
in terms of leaf-biomass increase (large mu_LBRmid) (branches
B1 and B2) or a slow root-system extension (low rateWidth
and rateDepth), leaving more above-ground biomass for light
interception (B3). The latter variety-type though only worked if
the weed flora consisted of the six harmful dicots that promote
the bee-food offer. The first branches corresponded to two actual
varieties (886-1 and DCG0449) and the last one to one actual
variety (Isard). Crop-management rules focused on tillage and
mechanical weeding, and the discrimination between branches
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TABLE 5 | Optimal combinations of pea parameters, pea management, and other-crop management, depending on the goal, situation, analysis scale, and pea variety type (complete results in section E.8 of the
Supplementary Material). The three best scenarios (branches B1, B2, and B3) identified with classification and regression trees applied to 400 cropping systems × 12 years × 10 weather repetitions per situation.
Indicator values were normed to [0, 1] with 0 the worst performance (i.e., lowest yield or highest yield loss) over all situations and 1 the best one (i.e., highest yield or lowest yield loss). In the case of multivariate
response variables, branches were ordered by increasing values of the minimum of the response variables (see section “Statistics”). A and C: rules were colored from green (100% of the parameter range of variation of
actual varieties consistent with the rule) to red (0% of the range covered) through white (50%).

A. Potential yield (without weeds) - Herbicides in pea - Years with spring pea (tree of 35 branches, leaf averages = [0.001, 0.58]).

Name Meaning Stage/Condition Unit Min, max in
actual pea
varieties

B 1 B 2 B 3 Rank in tree

N = 6% N = 5% N = 5%

M = 0.58 M = 0.53 M = 0.52

Pea parameters

tPhoto2 Temperature above which net photosynthesis is maximum ◦C 15, 27 <19.6 1

WMearly Plant width per above-ground plant biomass if no shading Post-emergence cm/g 4.3, 66.2 <32.1 1

b_WMearly Sensitivity of plant width to above-ground plant Post-emergence none 0.17, 0.79 ≥0.427 1

b_WMmid biomass (the larger b_WM, the more width with Vegetative none 0.21, 0.60 <0.434 4

b_WMlate biomass) Reproduction none 0.23, 0.43 ≥0.323 4

LBRearly Post-emergence g/g 0.72, 0.83 <0.821 4

LBRmid Leaf biomass ratio if no shading Vegetative g/g 0.75, 0.82 <0.805 4

LBRlate Reproduction g/g 0.27, 0.59 ≥0.45 1

SLAlate Specific Leaf Area SLA if no shading Reproduction cm2/g 58.6, 139 <108 4

RLHearly Relative leaf area height (relative plant height below which Post-emergence cm/cm 0.48, 0.62 <0.573 4

RLHmid 50% of leaf area are located) if no shading Vegetative cm/cm 0.44, 0.58 <0.536 4

b_RLHearly Unevenness of leaf area distribution along plant Post-emergence none 2.02,3.01 <2.97 4

b_RLHlate height (low values indicate a uniformly distributed leaf area) Reproduction none 1.94, 4.62 <3.15 1

HMearly Post-emergence cm/g 6.5, 25.5 ≥12.5 4

HMmid Plant height per above-ground plant biomass if no shading Vegetative cm/g 11.7, 22.1 ≥14.1 4

HMlate Reproduction cm/g 15.6, 50.4 ≥22.0 4

b_HMlate Sensitivity of plant height to above-ground plant biomass Reproduction none 0.12, 0.37 <0.321 4

mu_LBRlate Increase in leaf biomass ratio LBR if shaded Reproduction none −0.33, 0.12 ≥-0.09 1

mu_HMmid Increase in plant height per biomass HM if shaded Vegetative none −0.30, 0.61 ≥0.220 1

mu_SLAearly Increase in specific leaf area SLA if shaded Post-emergence none 0.04, 0.13 <0.112 4

PeaFloweringTT Time from plant emergence to flowering onset ◦C days 846, 4824 ≥295 2

g0 Time from germination triggering (sowing in moist soil, rain) to first germinated seed ◦C days 15, 24.9 <23.4 4

g50 Time from germination triggering to 50% germinated non-dormant seeds ◦C days 29, 32 <31.6 4

gb Shape parameter for germination progress (large gb = later and faster germination) none 2.18, 2.50 ≥2.29 4

LA0 Initial leaf area at emergence Emergence cm2 0.47, 3.98 ≥0.980 4

se_LA Standard-deviation of initial post-emergence leaf area Emergence cm2 0.39, 1.96 ≥0.554 4

rateCyl Depth at which the root system extension is maximal/root system depth cm/cm 0.07, 0.26 <0.196 4

soilPen Resistance to soil compaction (0 = none, 1 = total) cm/cm 0.82, 1.00 <0.969 4

max_width Maximum plant diameter cm 69, 132 ≥88.5 4

tPhoto1 Temperature at which photosynthesis starts ◦C 0.00, 1.10 ≥0.200 <0.200 7

baseTempDev Base temperature for development ◦C 0 ≥0.057 <0.0577 7

TTflo Duration of flowering stage ◦C days 400, 950 ≥570 <570 7

TTmat Duration of maturation ◦C days 490, 670 <621 ≥621 7

baseWP Base water potential for germination MPa −2.30 <−2.31 ≥−2.31 7

nonDormantMin Minimum proportion of non-dormant seeds seed/seed 1.00 <0.974 ≥0.974 7

g0 Time from germination triggering to first germinated seed ◦C days 15.0, 24.8 ≥16.3 <16.3 7
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TABLE 5 | (Continued)

A. Potential yield (without weeds) - Herbicides in pea - Years with spring pea (tree of 35 branches, leaf averages = [0.001, 0.58]).

Name Meaning Stage/Condition Unit Min, max in

actual pea

varieties

B 1 B 2 B 3 Rank in tree

N = 6% N = 5% N = 5%

M = 0.58 M = 0.53 M = 0.52

darknessReduction If seeds are in darkness seed/seed 1.00 ≥1.00 <1.00 7

reductionSurface Reduction in germination If seed is on soil surface seed/seed 0.54 ≥0.540 <0.540 7

reductionDepth With seed depth se·se−1
·cm−1 0.00059, 0.00091 ≥0.0006 <0.0006 7

shootDiameter Shoot diameter Pre-emergence mm 2.20 <2.18 ≥2.18 7

shootLength Maximum shoot length (heterotrophic growth) Pre-emergence mm 363, 437 <425 ≥425 7

rootLength Maximum root length (heterotrophic growth) Pre-emergence mm 54.8, 65.1 <61.5 ≥61.5 7

r50 Time until the seedling reaches 50% of rootLength Pre-emergence ◦C days 100, 122 <113 ≥113 7

rb Shape parameter for root growth (large rb = later and faster growth) Pre-emergence none 1.38 ≥1.42 <1.42 7

gamma Increase of seedling mortality with seed depth Pre-emergence sl·sl−1
·mm−1 0.34 ≥0.336 <0.336 7

C0surface Smallest surface clod causing seedling death Pre-emergence mm 36.3 ≥36.4 <36.4 7

LA0 Initial leaf area Emergence cm2 0.47, 3.98 ≥1.40 <1.40 7

se_LA Standard-deviation of leaf area Emergence cm2 0.39, 1.96 ≥0.665 <0.665 7

RGR Relative growth rate after emergence Emergence cm2/◦C day 0.009, 0.027 <0.0197 ≥0.0197 7

b_RLHmid Unevenness of leaf area distribution along plant height Vegetative none 1.99, 2.67 <2.47 ≥2.47 7

Varieties corresponding to these rules Virtual2

Virtual7

Kayanne Kayanne

Virtual2

Virtual7

Pea techniques

Sowing density seeds/m2 25, 115 ≥56.5 3

Sowing date 10 Jan, 15 Apr <13 Apr 5

Interrow width if row sowing cm 4, 52 <34.5 ≥34.5 6

B. Weed-infested yield - Herbicides in pea - Years with spring pea (tree of 71 branches, leaf averages = [0.01, 0.55]).

Branches B 1 B 2 B 3

N (prop of total) 0.1% 1.1% 0.9%

Mean [0,1] 0.55 0.53 0.53

Pea parameters

Main rules Same 7 first rules as in Table 5A (old plants keep their leaves, shading→ taller & leafier plants, max photosynthesis at lower temperatures, uniform leaf distribution

along plant height etc.)

Main difference with Table 5A Shorter growth period: PeaFloweringTT in [190.1, 670.3]

Root parameters 6 (vs. 2 in Table 5A) slowing down root-system extension and limiting it to superficial layers

Potential plant morphology High leaf area and leaf biomass (vs. tall plants irrespective of biomass in Table 5A)

Germination parameters & pre- and post-emergent growth 3 (vs. 5 in Tables 5A–B1) slowing down emergence and early growth

Germination parameters & pre-emergent growth Similar to Tables 5A–B1 (susceptible to depth and compaction)

Temperature, phenology No rules (other than PeaFloweringTT) in contrast to Table 5A

Varieties corresponding to these rules (in bold, same as for Table 5A) Virtual7 Cameor Virtual2 Virtual7 Cameor Kayanne Virtual2 Virtual7
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TABLE 5 | (Continued)

B. Weed-infested yield - Herbicides in pea - Years with spring pea (tree of 71 branches, leaf averages = [0.01, 0.55]).

Branches B 1 B 2 B 3

Pea techniques

Time from last tillage to sowing ≥81 day <21 days 21-46 day

Sowing date <10 March <10 March

Herbicides with >50% efficiency on dicots <2.5 ops/year

Herbicide efficiency on dicots ≥93%

Herbicide spectrum (% species killed at >90%) ≥50%

Rotation

Rotation≥3.5 years

Pea frequency <0.29 No Wheat before Pea

Wheat frequency<0.29

Other-crop techniques

Average over rotation
Max tillage depth ≥12 cm

<0.29 rolling ops/year

Wheat
Systemic herbicides ≥ 0.5/year Variety in {Caphorn, Orvantis, Virtual1, V2, V4, V5, V6, V8, V9}

Sowing < 12 Oct 1st herbicide < 64 days after sowing

Barley Sowing < 20 Jun

C. Weed-infested yield - Herbicides in pea - Years with winter pea [tree of 94 branches, leaf averages = (0.03,0.67)].

Name Meaning Unit Min, max in actual pea varieties B 1 B 2 B 3 Rank in tree

0.1% 0.1% 0.9%

M = 0.67 M = 0.56 M = 0.50

Pea parameters

rateWidth Speed of root system width extension
mm/day under optimal temperature

4.04, 6.00 ≥4.12 <4.12 1

rateDepth Speed of root system depth extension 10.5, 15.3 ≥11.2 <11.2 1

mu_LBRmid Increase in leaf biomass ratio LBR if shaded (vegetative stage) none –0.30, 0.01 ≥−0.13 3

Varieties corresponding to these rules 886-1 DCG0449 Virtual6 Isard

Pea techniques

Time from last tillage to crop sowing days 0, 127 <24.2 ≥24.2 4

Other-crop techniques

Mean depth of mechanical weeding in rotation cm 0, 5 ≥3.4 5

Mean tractor speed during mechanical weeding in Wheat km/h ≥13.75 5

Mouldboard ploughing April–October in Wheat yes or no 0, 1 yes 3

Time from last mechanical weeding to Oilseed rape harvest days <19 6

Situation

Initial weed seed bank is 6 harmful dicots promoting bee food No No Yes 2

(Continued)
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TABLE 5 | (Continued)

D. Weed-infested yield - No herbicides in pea - Years with spring pea [tree of 39 branches, leaf averages = (0.01, 0.63)].

Branches B 1 B 2 B 3

N (prop of total) 0.7% 2.1% 4.0%

Mean [0,1] 0.63 0.56 0.51

Pea parameters

Main rules Same 7 first rules as in Table 5B (old plants keep their leaves, shading taller & leafier plants, max photosynthesis at
lower temperatures, uniform leaf distribution along plant height etc.

Main difference with Table 5B

Minimum growth period: PeaFloweringTT ≥198◦C days (which is much lower than all actual varieties)

Early & fast germination, tall & top-heavy
plants, shading taller, narrower &

top-heavier plants

Varieties corresponding to these rules (in bold, same as in Table 5B) Cameor Kayanne Virtual2 Virtual7 Kayanne Virtual2

Pea techniques(in bold, same techniques as in Table 5B)

Time from last tillage to crop sowing <82 days

Sowing date <6 April

Mechanically weeded field area <52% ≥52%

Other-crop techniques: Type (number of rules) (in bold, same techniques as in Table 5B)

Wheat Manure (2), Sowing (2), Rolling (1), Tillage
(5), Mechanical weeding (3)

Manure (2), Sowing (2), Rolling (1), Tillage
(5), Mechanical weeding (4), Variety (1)

Manure (1), Variety (2)

Oilseed rape Ploughing (1), Sowing (2) Ploughing (3), Sowing (3), Tillage (3),
Rolling (1), Mechanical weeding (1),

Harvest (1)

Mechanical weeding (1)

Average over rotation Tillage (2), Mechanical weeding (2),
Manure (1), Crop-residue shredding (1)

Tillage (2), Mechanical weeding (4),
Manure (1), Crop-residue shredding (2)

Mechanical weeding (1)

E. Weed-infested yield - No tillage in pea - Years with spring pea [tree of 23 branches, leaf averages = (0.01,0.54)].

Branches B 1 B 2 B 3

N (prop of total) 1.6% 1.2% 0.6%

Mean [0,1] 0.54 0.49 0.46

Pea parameters

Main rules Same 7 first rules as in Table 5B (old plants keep their leaves, shading taller & leafier plants, max photosynthesis at lower temperatures, uniform
leaf distribution along plant height etc.)

Main difference with Table 5B Higher minimum growth period: PeaFlowering TT ≥329◦C days (which is still much lower than all actual varieties)

Other No other rules (vs. 25 other rules for Tables 5B–B2, 9 further rules for Tables 5B–B1)

Varieties corresponding to these rules (In bold, same as in Table 5B) Cameor Kayanne Virtual2 Virtual7

Pea techniques (in bold, same techniques as in Table 5B)

Sowing density ≥107 seeds/m2 <107 seeds/m2

Other-crop techniques: Type (number of rules) (in bold, same techniques as in Table 5B)

Wheat Variety (1) Variety (1), Ploughing (2), Tillage (3),
Mechanical weeding (3), Irrigation (2)

Variety (1)

Oilseed rape Sowing (2), Tillage (1), Rolling (1) Tillage (1)

Average over rotation Herbicides (1) Herbicides (2) Herbicides (2), Tillage (3), Ploughing (1),
Mechanical weeding (2), Irrigation (1),

Crop-residue shredding (1)
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B1 and B2 was based on the delay between the last tillage
operation and pea sowing.

What Changes in Herbicide-Free Pea Crops?
The weed-infested yield was higher for unsprayed than for
sprayed spring pea, ranging from 0.51 to 0.63 (with 1 = the best
weed-infested yield observed for pea in all simulations) for the
6.8% best-unsprayed spring-pea crops (Table 5D) compared to
0.53–0.55 for the 2.1% best-sprayed ones (Table 5B). Two main
strategies were identified for unsprayed spring pea (Table 5D).
Branch B1 and B2 had few pea-variety rules which were the
same as the main rules in sprayed pea. To be successful, these
few rules had to be combined with a great many constraints
for crop management, mainly in the three most frequent crops
(pea, wheat, oilseed rape). Conversely, branch B3 mainly focused
on mechanical weeding but compensated with additional pea-
variety rules, ensuring early crop establishment (in contrast to
sprayed systems where this reduced herbicide efficiency), a better
light interception by the crop, and more shading of weeds.

What Changes in Untilled Pea Crops?
In untilled spring pea, only the main usual 7–8 variety rules
were useful (Table 5E). This resulted in a lower weed-infested
yield (0.46–0.54 for the 3.4% best-untilled systems) than in
either sprayed (Table 5B) or unsprayed pea (Table 5E). The
best branch B1 was based on high-density pea and needed few
other management rules, except on wheat varieties and herbicides
at the rotation scale. But, the other two branches, with their
lower pea densities, needed many other management rules, either
at the rotation scale or specifically for the two most frequent
crops, wheat, and oilseed rape. In all three branches, herbicide
rules were crucial.

Do Rotation-Scale Analyses Lead to the Same
Conclusions?
If the performance was analyzed at the rotation scale, the
pea-parameter rules did not change, here is the example of
continuously untilled cropping systems (Table 5F) compared to
untilled pea and analysis focusing on pea yield only. The main
difference concerned herbicides: these became even more crucial
at the scale of the no-till system and/or in the two most frequent
crops than when analyzing untilled pea.

To Which Extent Ideal Varieties Can Help to Reach
Multi-Performance?
When more goals were included in the approach, e.g., reduced
herbicide use and improved bee-food offer in addition to yield-
loss control, the focus shifted from pea parameters to crop
management throughout the rotation (particularly herbicide
options, details in section F of the Supplementary Material).
Because of the trade-off between biodiversity promotion and
harmfulness control, no optimal branches reconciling all
these goals could be identified. The best options improved
yield (normed yield = 0.38–0.53) and reduced herbicide use
(normed = 0.78–1, note that 1 corresponds to zero use) but bee
food offer remained stubbornly low (normed = 0.07–0.15). Even
the branch with the best bee food, this offer remained low (0.22)
and came with a high price in terms of pea yield (0.1).
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Conclusion
In conclusion, the main pea-parameter rules were the same for all
performance goals, management strategies, and analyses scales,
stressing the importance of early field occupation and shade
response aiming to increase plant height and leaf area. However,
further different rules were useful for individual goals, strategies,
and scales. Some variety features only fitted to particular systems
(e.g., delayed pea emergence is only advantageous in case of
spraying and disastrous in unsprayed systems). Fewer parameter
rules usually had to be compensated by more management
rules. Similarly, if one of the two main weed-control levers,
herbicide or tillage, was eliminated, further pea-parameter and/or
management rules were needed.

DISCUSSION

What Is New?
In the present paper, we combined detailed experimental
measurements characterizing varieties with a simulation study
to test actual and virtual varieties in virtual field networks
in the example of pea, in order to identify ideotypes of
varieties and cropping systems for agroecological weed
management. This approach was inspired by our previous
paper (Colbach et al., 2019) focusing on inter-species instead
of intra-species differences, where we already discussed
the novelty of this approach as well as its advantages and
limits, in terms of variability of investigated situations,
use of parameters reflecting intrinsic plant properties
that vary little with the environment, and lower risk of
confusion effects.

Here, we went several steps further to (1) include all
species parameters instead of focusing on plant morphology
and shading response, (2) shift from the species to the
variety scale, and to (3) identify relevant crop parameters
and, particularly, parameter combinations not only for a given
production goal but also for contrasting cropping-system types.
The present study differed in another key point: it not only
aimed to determine ideotypes of varieties but also (4) ideotypes
of crop management plans and cropping systems. Working
at the cropping-system scale is particularly novel. Though
ecophysiologists design ideotypes for different agronomic and
pedoclimatic conditions and they even use sowing strategies
(e.g., density, interrow width) to achieve ideal plant morphology
via morphological plasticity, they usually disregard multiannual
effects (Martre et al., 2015).

In terms of methodology, we shifted from real-
life cropping systems and crops in our previous paper
(Colbach et al., 2019) to virtual (randomized) systems and
varieties in the present study, to explore a larger range of
parameters/techniques and their combinations. The Latin
Hypercube Sampling (LHS) plan for the simulation plan
was particularly appropriate for this objective, as it was
shown here to both decorrelate management variables (thus
reducing the risk of confusing effects) and respect biological
correlations among variety characteristics (thus avoiding
biological nonsense).

The conclusion of our previous study comparing different
species was very similar (Colbach et al., 2019). In addition
to “generalist winners” (resulting from the main 7–8 rules
identified in all spring-pea cases of Table 5), the present
study also searched for ideotypes fine-tuned to individual
situations (e.g., with or without herbicides) and variety
types (spring vs. winter). Though the main parameter
rules remained the same, the “specialized winners” greatly
varied, in terms of relevant parameters and parameter
combinations, parameter thresholds, and impacts on crop
yield and weed (dis)services. Notably, combinations of minor
parameters could be more efficient than a single optimum
dominant one, particularly if combined with adapted crop
management. This makes work more difficult, both for
crop breeders (who need to produce contrasting varieties)
and farmers (who need to identify the best variety for their
production context).

Are the Results Consistent With Previous
Studies?
Our results are conditional on the prediction quality of FLORSYS
which was shown to be adequate in a previous study (section
“Domain of Validity”). In our previous simulation study,
we further checked the consistency of simulated yield loss
regarding weed and crop species and parameters, concluding
that the species rankings and features identified as relevant were
consistent with the literature (Colbach et al., 2019). Here, we
specifically searched the literature for pea studies (Table 6).
Generally, both our experimental and simulation results agree
with the few literature reports on pea.

There were some discrepancies. For instance, the DCG0449
had a potential yield as high as the best spring pea variety
in our study whereas field observations report that winter-Hr
varieties such as DCG0449 present the lowest yield potential
among all pea variety types because of their late maturity
which exposes them to end-of-cycle stresses and by a higher
susceptibility to diseases and lodging (Lecomte et al., in prep).
Conversely, Enduro performed badly here in contrast to field
studies which report yield similar to that of the other winter-
hr variety, Isard. Our study showed that the genotypes were
highly contrasted between and within pea types, and that
seasonality (winter vs. spring and Hr vs. hr), leaf morphology
(leafy vs. afila), and usage (protein vs. forage) are insufficient to
characterize them.

As in field studies, the present simulation study demonstrated
the effect of pea parameters on yield and competitiveness
against weeds. However, it is difficult to compare these field
reports to our pea parameters which were chosen to be
independent of location (e.g., plant height per unit biomass in
unstressed conditions) whereas most field-measured variables
(e.g., plant height) are also the result of environmental
conditions. Some mental arithmetic is needed to conclude how
far our results are consistent with field reports (Table 6).
Some appear contradictory at first glance, such as the higher
yields and lower yield losses reported by Jacob et al. (2017).
However, their weed infestation was much lower than ours,
demonstrated by their lower weed seed production. Despite
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TABLE 6 | Consistency of present results compared to literature reports.

Literature Our results

A. What increases pea competitiveness against weeds?

Plant height, early branching and early leaf area development (McDonald, 2003;
Spies et al., 2017), plant height (wheat, Andrew et al., 2015)

Plant height per unit biomass, specific leaf area, leaf biomass ratio

Spring variety with their faster leaf growth (Crozat, 2010) and taller heights Spring vs. winter varieties, taller varieties (i.e., Kayanne)

Early vigor (wheat, Andrew et al., 2015) Early emergence and large early leaf area (winter pea and/or unsprayed pea)

Trade-off between yield potential and weed competition (wheat, Andrew et al.,
2015)

Low correlation between potential (weed-free) vs. weed-infested yield or yield
loss due to weeds

No effect of pea leaf-type on yield loss (McDonald, 2003) No effect of afila feature

No effect of maturity on yield loss, variable effect of maturity (McDonald, 2003) No effect on yield loss of earliness of flowering, once a minimum vegetative
growth duration is ensured, no effect of flowering earliness

B. Other observations

Higher susceptibility of spring peas to early limiting factors (plant losses,
drought. . .:) (Lecomte et al.)

Variety parameters are more important for spring vs. winter pea, higher
variability in performance in spring pea

Potential yield and instability of hr-winter pea > spring pea > Hr-winter pea
(Lecomte et al.)

Same ranking with two exceptions: winter-hr Enduro was as bad as winter-Hr
pea; winter-Hr DCG0449 was as good as spring pea

Some afila genotypes are competitive (Spies et al., 2017) and present rapid soil
cover

afila vs. Leafy character was irrelevant

Shading response for specific leaf area (mu_SLA) averaged over 8 varieties at pod
filling ∼ 0.45 (estimated from Akhter et al., 2009)

mu_SLA at BBCH = 9 for our 7 varieties in [0.45; 0.83], see Figure 1I

Leaf biomass ratio (LBR) at pod filling in [0.10; 0.19] (estimated from Akhter et al.,
2009)

LBR for our 7 varieties in [0; 0.60] at BBCH = 9–10, see Figure 1

Shading response for leaf biomass ratio (LBR) at pod filling in [−0.28; 0.47]
(estimated from Akhter et al., 2009)

mu_LBR at BBCH = 9 for our 7 varieties in [−0.35; 0.14], see Figure 1I

Weed-infested pea yield in [3.1; 4.6] t/ha, yield loss in [4; 43]%, weed seed
production in [0.7; 1.2] t/ha, pea yield (t/ha) = 6.5 – 0.0028 weed yield (t/ha)
(calculated from Jacob et al., 2017)

Potential and weed-infested yield of actual pea varieties in [1.9; 7.2] t/ha and [0;
5.9] t/ha respectively, yield loss in [−33; 99]%, weed seed production in [0; 8.5]
t/ha, pea yield (t/ha) = 2.7 – 0.0025 weed yield (t/ha) (section D.5 of the
Supplementary Material)Potential and weed-infested pea yield in [2.5; 2.1] t/ha and [0.01; 1.7] t/ha,

respectively, yield loss in [−66; 97]% (McDonald, 2003)

these differences, the slope linking pea yield and weed
seed production was very similar in their experiments and
our simulations. Moreover, other field observations reported
lower pea yields, and yield loss ranges similar to ours
(McDonald, 2003).

Implications for Farmers and Crop
Breeders
The identification of the parameters relevant for yield and weed
control is a major stepping-stone toward decision support for
farmers. The take-home message for pea varieties in the present
study was the importance of early field occupation and shade
response, though the exact features (nature and values of relevant
parameters) depend on the targeted weed impacts. The next
step will screen the existing pea varieties and identify those
similar to the ideotypes. However, many of the parameters
used here are not routinely measured during breeding (Zhao
et al., 2006) and are estimated in controlled conditions (e.g.,
Gardarin et al., 2010) or on individual plants in garden plots
as in section “Parameterizing Contrasting Pea Varieties.” This
would mean retesting all varieties with the help of, e.g., high-
throughput phenotyping platforms (Jeudy et al., 2016; Brichet
et al., 2017).

The actual pea varieties tested here were not very good
at controlling weeds. As at the species scale (Colbach et al.,

2019), we found again that varieties or parameters that
increase potential yield are not necessarily those that minimize
weed-caused yield loss. This is often explained by a trade-
off between community performance and competitiveness
(Denison et al., 2003). But, even though this is a frequently
reported antagonism (Sardana et al., 2017), it is not inevitable
as shown by recent varietal improvement in rice (Mahajan
et al., 2014, 2015). The low weed-control ability of the
current pea varieties probably reflects past breeding history
where the focus was on potential yield or disease resistance
rather than competitiveness against weeds (Tayeh et al.,
2015). The present results (particularly the pea-parameter
rankings in section E of the Supplementary Material)
are a starting point to guide crop breeders toward more
competitive pea varieties.

Some features identified here are not consistent with current
breeding trends. For instance, a longer crop growth duration
tended to improve pea performance here whereas breeding
programs currently aim to shorten the pea crop cycle in order
to escape to limiting factors of the end of the crop cycle
(high temperatures, water deficit), especially for spring and
Hr-winter peas, whose cycle is positioned later than hr-winter
peas. This points to one of the limits of the present study,
which considered water to be non-limiting after plant emergence.
Conversely, the present results do not question the current
preference for afila varieties, which perform better with respect
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to diseases and lodging, as this parameter was not relevant here
for weed regulation.

From Theory to Practice: What Remains
to Be Done?
The pea-parameter rankings of section E of the
Supplementary Material and the optimal parameter-
value × technique combinations of section F of the
Supplementary Material are a first essential step for decision
support to both crop breeders and farmers, proposing varieties
for agroecological weed management depending on the
cropping-system type and performance goal. Or, vice-versa,
rules for adapting crop management to a given variety that was
chosen, for instance, for protein content rather than for weed
control. For practical use, the parameter rankings and decision
trees must be transformed into an actual decision support
system, which must be specified with future users, notably
concerning the way these results should be visually represented
in a graphical user interface.

“Packaging” is not the only issue. As mentioned in section
“Implications for Farmers and Crop Breeders,” neither the here-
tested virtual varieties nor the identified optimal parameter-
value × technique combinations scored highly when attempting
to achieve both high potential yield and high yield loss control
(and even worse when adding other goals). Possibly, we simply
missed the “winning” varieties as we only assessed seven actual
and 10 virtual ones. To specifically search for these winners, if
they exist, or to build a set of trade-off solutions that would be
used by stakeholders to choose a compromise according to their
constraints, optimization algorithms could be used (Press et al.,
2007; Venter, 2010).

Another limitation of the applicability of the present results is
that many of our parameters are difficult to measure (particularly
those related to plant morphology and shading response) and
are not routinely measured by plant breeders (Zhao et al., 2006).
A solution would be to link our parameters (which are usually
measured in controlled conditions and/or isolated plants) to
routinely measured features and, if necessary, propose additional
measurements that are easily carried out on dense canopies
in field trials during varietal selection and testing. The same
approach was already used at the species scale to estimate many
of FLORSYS’ most difficult parameters (e.g., Gardarin et al., 2012;
Colbach et al., 2020b) but has not yet been attempted at the
within-species scale. Recent advances in artificial intelligence
and image analysis will also be helpful, such as the correlation
established recently between destructive measurements of above-
ground biomass and contactless measurements of leaf area
(Gée et al., 2021). New techniques for image segmentation
(artificial convolutional neural networks) will also be crucial to
discriminate different species (Bateman et al., 2020).

The present study focused on crop-weed competition for the
light which is generally the main resource for which crops and
weeds compete in conventional cropping systems (Wilson and
Tilman, 1993; Perry et al., 2003). But with the current limitation
of nitrogen fertilizer for environmental reasons (Swarbreck et al.,
2019), crop-weed competition for nitrogen will become more

prevalent. Moreover, as a nitrogen-fixating legume crop, pea
will have a major advantage over weeds, at least in temperate
cropping systems where there are no Fabaceae weeds. Such a
study will soon be possible with the recent introduction of crop-
weed competition for nitrogen into FLORSYS (Moreau et al.,
2021).

Finally, the present simulation study was run in a single
region, albeit with different weather series and weed floras. As
variety performance has been shown to vary among regions and
years (McDonald, 2003; Jacob et al., 2017), our study must now
be repeated in other pedoclimates to adapt the selection and
farming guidelines. These will probably vary, as they do here
among cropping systems.

CONCLUSION

The present sensitivity analysis of pea production and biological
weed regulation to pea variety and crop management identified
the key parameters that drive potential yield and competitivity
against weeds in pea, depending on variety type and cropping
system. These are pointers for selecting pea varieties in
agroecological cropping systems aiming to regulate weeds
by biological interactions. We also produced rules to guide
farmers (1) to choose the best pea variety, depending on the
production goal and the cropping system, and (2) to adapt
crop management to a given pea variety and production goal.
The present methodology can be applied to identify ideotypes
for weed management in other crops or even crop mixtures.
Further research is needed to resolve the trade-off between pea
parameters that promote potential yield and those driving weed
suppression and to link model parameters to variables routinely
measured during crop breeding.
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