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The 21st century presents many challenges to mankind, including climate change, fast 
growing human population, and serious concerns over food security. Wheat is a leading 
cereal crop that largely fulfills the global food needs. Low temperature stress accompanied 
by nutrient-starved soils is badly disrupting the source–sink relationship of wheat, thus 
causing an acute decline in final yield and deteriorating the grain quality. This review paper 
aimed to understand how low temperature stress affects wheat source–sink organs (i.e., 
leaves, roots, and spikes) and how phosphorus application reliefs in alleviating its harmful 
consequences. Also, we discussed mitigation strategies to enhance wheat capacity to 
adapt to varying temperature extremes and made rational recommendations based on 
modern agronomic and breeding approaches. Therefore, this study is likely to establish 
a solid foundation for improving the tolerance to low temperature stress and to improve 
its phosphorus utilization efficiency in wheat.

Keywords: wheat, low temperature stress, source–sink damage, phosphorus, mitigation strategies

INTRODUCTION

To meet the dietary needs of 10 billion people by 2050, current food productivity will have 
to rise by 60% (Hickey et  al., 2019). Wheat (Triticum aestivum L.) is an important cereal 
crop consumed as a staple food across the globe (Muhammad et  al., 2021), which occupies 
about 220 million hectares of cropland worldwide (Erenstein et  al., 2021). As a vital source 
of plant protein, wheat is easy to be  processed into various types of food products, consumed 
by billions of people, playing an important role in reducing hunger (Subedi et  al., 2019; 
Wojtowicz et  al., 2020). According to the latest IPCC report, the global temperature rise is 
expected to reach or exceed 1.5°C by the end of the 21st century (IPCC, 2021). Global 
warming increases the instability of the climate system, and extreme low and high temperature 
events occur frequently (Chen et  al., 2019a). Low temperature stress (LTS) causes substantial 
decline in wheat yield in major wheat-growing regions of the world (e.g., Europe, China, the 
United  States, and Australia; Table  1).

Global warming conditions accelerate growth and development of wheat, resulting in significant 
advancement of the low-temperature-sensitive stage of wheat, thus increasing the risks of 
chilling stress (0 ~ 15°C) or freezing stress (<0°C; Ji et  al., 2017; Xue et  al., 2019; Liu et  al., 
2020a). Sub-zero temperatures induce extracellular ice, which severely damages the membranous 
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structures and dehydrates the cell (Roman-Figueroa et  al., 
2021). It stimulates the dry conditions in roots, leaves, and 
spikes (Aroca et  al., 2012), consequently shortens the plant 
height, and reduces leaf area and spike size (Valluru et  al., 
2012). LTS also induces photoinhibition by reducing plant 
capability to assimilate light energy (Mattila et  al., 2020). 
Generally, the imbalanced source–sink relationship deteriorates 
the wheat yield and quality by reducing root absorption capacity, 
declining photosynthetic activity, poor spike differentiation, and 
delayed grain filling under LTS (Li et  al., 2014; Zhang et  al., 
2019; Kul et  al., 2020).

Soil degradation also greatly interferes with wheat productivity 
(Alewell et  al., 2020; Raimondo et  al., 2020). Phosphorus (P) 
is an essential nutrient for wheat growth and development, 
and about 40% agricultural lands are deficient in P worldwide 
(Lynch, 2011; Rafiullah et  al., 2020). The deficiency of P not 
only limits the crop growth but also reduces the plant capacity 
to withstand adverse impacts of LTS (Gong et  al., 2020). In 
soil, P exists in both organic and inorganic form, while plants 
generally intake the inorganic phosphate (Pi: H2PO4− and 
HPO4

2−) through the adsorption process (Shen et  al., 2011). 
Inadequate P uptake inhibits the development of plant organs, 
resulting in more prone to the LTS, eventually lower down 
grain yield (Cong et  al., 2020; Oliverio et  al., 2020). Many 
studies described that P application enhanced the drought and 
salt tolerance in field crops (Bargaz et  al., 2016; Karimzadeh 
et al., 2021). Nevertheless, fewer studies depicted the relationships 
and interactions between LTS and P application (Cordell and 
Neset, 2014).

This review article abridged the damaging effects of LTS 
on wheat source–sink organs and highlighted the prominent 
breeding and agronomic approaches to enhance the wheat LTS 
tolerance and PUE by implying recommended crop husbandry 
practices. Further, various doable measures are proposed to 
conserve the subsoil phosphate resources, increase the availability 
of Pi to the roots, and to improve the PUE and LTS tolerance 

capacities in wheat. This review intended to open-up new 
research directions for crop stress resistance and mineral 
resource management.

WHEAT SOURCE–SINK ORGANS AND 
RISKS ASSOCIATED WITH LTS

LTS undermines the plant’ ability to smoothly acquire water 
and nutrients, resulting in chlorotic leaves, stunted growth, 
disrupted ROS metabolism, floret abortions, and poor seed 
setting. This section mainly discusses the damaging effects of 
LTS in wheat from morphological, physiological and molecular 
perspectives (Tables 2, 3).

Root Systems
Roots are considered vital plant organs, which are involved 
in active nutrient transport from soil to other plant parts (Kim 
et  al., 2020). The root growth is depicted as an ecologically 
regulated phenomenon (Buriro et  al., 2011; Kul et  al., 2020). 
Despite clearly visible detrimental effects of LTS in the 
aboveground portion of the plant, it also severely disrupts 
active functioning of root system (Kul et  al., 2020).

Morphological Alterations
Development patterns and morphological structures of roots 
are considerably affected by LTS (Shibasaki et al., 2009; Koevoets 
et  al., 2016). LTS restricts the active root growth, particularly 
upon continuous low temperature exposure, root surface area 
decreased, branching angle, and contact area narrowed (Nagel 
et  al., 2009). Lateral root formation slower down under LTS 
(≤10°C), and root volume decreased by 60% than that at 25°C 
(Nagel et  al., 2009). In an experimental investigation, spring 
wheat and winter wheat were subjected to LTS at 5°C; subsequently, 
root growth diminished by 60 and 75% as compared to control 

TABLE 1 | Effects of LTS on yield and typical events in major wheat producing countries.

Nation Year Regions
LTS intensity/
Frequency

Yield losses Typical events References

United States 1955–2010 Kansas State 41 times 8 bushels /acre in an 
annual yield loss

LTS damaged nearly 
half of Kansas wheat, 
resulting in an average 
yield reduction of 31% 
in the spring of 1981.

Holman et al., 2011

Australia 1999–2007 Queensland and 
northern New South 
Wales

Extreme LTS reached 
−6°C or below

10% yield reductions 
and $73 million 
economic losses in 
an average year

18 frosts in the winter 
of 2000–2002, with 
the lowest 
temperature to 
−8.8°C in 2001, 
resulted in severe 
universal damage.

Frederiks et al., 2004, 
2008

China 2000–2008 Shandong province 8 times during this 
9-year period

More than 10% of the 
wheat planting area 
(total area more than 
2.92 million ha) was 
damaged in five 
growing seasons

Severe frost occurred 
frequently in (Taishan 
area) central 
Shandong province, 
with the frequency of 
up to 70%.

Wang et al., 2011;  
Ji et al., 2017
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at 25°C, respectively (Equiza, 2001). Similar results were found 
in rice, where root length and biomass significantly decreased 
by 51% under LTS exposure (Hsu and Hsu, 2019; Kul et al., 2020).

Imbalanced Biochemical Relations
The active absorption capacity of root systems is vital for 
maintaining an adequate root–shoot ratio and optimum crop 
productivity (Equiza, 2001). Sub-optimal conditions disrupt the 
root water uptake, causing water scarcity in the stem that 
leads to drought stress; and in the meantime, decreased root 
absorption capacity and hydraulic conductivity are anticipated 
with decreased leaf transpiration rate under low temperature 
and drought conditions (Aroca et  al., 2012). Subsequently, 
drought-induced imbalanced water relations decline the nutrient 
intake and restrict its transport, ultimately reducing wheat plant 
growth and development (Nezhadahmadi et  al., 2013; Hussain 
et  al., 2018). In an experiment, rice seedlings were subjected 
to LTS, which led to increased electrolyte leakage, elevated 
release of hydrogen peroxide and malondialdehyde contents 
that severely damaged root cells (Hsu and Hsu, 2019). Moreover, 
LTS also influences the soil’s physio-chemical characteristics 
that affect the soil microbial activity; later, followed by poor 
plant–nutrient relations (Yan et  al., 2003).

Molecular Expressions and Regulation
LTS hinders the biosynthesis of auxins (IAA) by suppressing 
the gene expression of ARR1/12 and the gene expression of 
PIN1/3/7 that reduces the rootward flow of IAA; subsequently 
decreased accumulation of IAA in root cells restricts the active 
cell division of root’s meristematic tissues (Zhu et  al., 2015). 
Thus, poor IAA accumulation is a primary reason for the 
reduced branching of lateral roots. Sub-optimal conditions give 
rise to imbalanced osmotic potential, which greatly inhibits 
active osmoregulation and triggers osmotic and oxidative stress 
(Sawant et  al., 2021). The molecular expression of TaSnRK2.7 
is considered a multifunctional regulatory factor involved in 
carbohydrate metabolism and reducing osmotic potential in 
wheat plants under sub-optimal temperature conditions  
(Zhang et  al., 2011). Likewise, other factors, such as 
phytohormone regulation, expression of PIP-Aquaporins, rate 
of evapotranspiration, and osmotic balance, are thought to 
be  vital for alleviating oxidative stress and active uptake of 
water and nutrients by roots under low temperature conditions 
(Aroca et  al., 2012; Balliu et  al., 2021).

It is briefly concluded that LTS causes a significant reduction 
in root surface area and lateral branching; subsequently, it 
interrupts the water and nutrient relations that limits the plant’s 

TABLE 2 | Morphological traits of source-sink organs of wheat, influenced by LTS.

Plant organs Effect Growth stage
LTS intensity and 
duration

LTS induced alterations References

Root Root growth inhibited 
and root contact area 
reduced

Seedling stage (the first leaf 
expanded fully)

2 to 5°C (10 h)

Control: 25°C

Root relative growth rate ↓ Equiza, 2001

Seedling stage 10°C (7 d)

Control: 20 and 30°C

Root length ↓

Fresh and dry root weight ↓

Buriro et al., 2011

Root surface area ↓

Branching angle ↓

Lateral roots formation ↓

Nagel et al., 2009; 

Muhammad et al., 2021

Leaf Wilting and yellowing, 
leaf area decreased

Approximately seven leaves 
stage

−5°C (1,3 d after LTS)

Control: 0 d after LTS

Leaf dehydration 

Wilting and drooping 

Han et al., 2013

Initial seedling stage 4°C (42 d)

Control: 4°C

Leaf number ↓

Flag leaf area ↓

Leaf biomass ↓

*Specific leaf area ↓

Valluru et al., 2012

Seedling stage (three-leaf 
stage)

2 to 5°C (10 h)

Control: 25°C

Leaf area ↓

Leaf thickness ↑

Equiza, 2001

Spike Spike growth inhibited 
and grain yield 
decreased

Six leaf stage, or jointing 
stage

−3°C (24, 30, and 48 h)

Control: 24°C/16°C,  
day/night

Discoloration and 
degeneration

Spike length ↓

Koo et al., 2008

Jointing and booting 
stages

Mean temperature: 
−6 ~ 2°C (2,4 and 6 d)

Control: 6°C

Grain length (L) and  
width (W) ↓

The grain L/W ratio ↑

Grain appearance quality ↓

*SNPP, GNPP and grain 
weight ↓

Grain yield and harvest 
index ↓

Liu et al., 2019a,b

*Specific leaf area, expressed as leaf area/fresh weight or as leaf area/dry weight; SNPP, spike number per plant; GNPP, grain number per plant (Here, ↓ indicates a decrease and  
↑ indicates an increase).

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Xu et al. Cold Stress in Wheat and Phosphorus Regulation

Frontiers in Plant Science | www.frontiersin.org 4 February 2022 | Volume 13 | Article 807844

capacity to explore more water and mineral resources. There 
have been few studies that investigated root activity and its 
molecular expressions under LTS.

Leaves
Plant leaves are known as food factories because they play an 
essential role in the process of photosynthesis (PS) and dry 

matter production. LTS not only instigates root dehydration 
but leaves as well.

Morphological Alterations
Dehydration conditions accompanied by LTS, accelerates the outer 
membrane destruction, electrolyte leakage in leaf cells, leading 
to chlorosis, wilting, and eventually necrosis (Dikilitas et al., 2021). 

TABLE 3 | Physiological and biochemical traits of source-sink organs of wheat, influenced by LTS.

Plant organs Effect Growth stage
Low temperature and 
duration

LTS induced alterations References

Root Root absorption ability 
decreased

Seedling stage (15 d 
after sowing)

4 ± 1°C (for 14 d); then 
returned to 20°C

Protein in spring wheat root ↓ 

Protein in winter wheat root ↑

Karimzadeh, 2000

Poor plant-nutrient  
relationships

Root activity ↓

Root hydraulic conductivity ↓

*IAA accumulation ↓

*MDA and H2O2 content ↑

Electrolyte leakage ↑

Aroca et al., 2012; 
Zörb et al., 2014; Zhu 
et al., 2015; Hsu and 
Hsu, 2019

Leaf Leaf cell structure 
destroyed, and 
photosynthesis inhibited

Seedling stage (1 week 
old)

4°C (0–7 d)

Control: 22°C

Photosynthetic electron 
transport ↓

Photosynthetic apparatus 
activities ↓

Chlorophyll fluorescence 
parameter ↓

Venzhik et al., 2011

Jointing stage 4.8°C (7 d), 14 d recover, 
then 5.7°C (5 d)

Control: 10°C and 14.1°C

Chlorophyll concentration ↓

*Pn and stomatal  
conductance ↓ 

Chlorophyll fluorescence 
parameter ↓

Antioxidant enzyme activities ↑

Li et al., 2014

Jointing stage −10 to −3°C (8 h)

Control: ambient 
temperature

The proportion of leaf pigment 
changed

Leaf sponge structure damaged

Chlorophyll contents ↓

Photosynthesis levels ↓

Wang et al., 2016b

The anther connective 
tissue formation phase

−13 to 0°C (2 h)

Control: 4°C

Membrane lipid peroxidation

Relative electrolyte leakage  
rates ↑

Signal transduction proteins ↑

Han et al., 2013

Spike Flower abortion and grain 
filling blocked

Booting stage (the 
young spikes reached 
the meiosis stage)

4°C (60 h) in 2016 and 
5°C/2, 0, −2°C day/night 
(24 h) in 2017

Control: ambient 
temperature

Spikelet development inhibited

Floret growth delayed

*SS and invertase activity ↓

Sucrose content ↑

*SPS activity ↑

*ABA ↑

Zhang et al., 2019

Fertilization breakdown

Starch depletion

*Cell wall bound AI activity ↓

Oliver et al., 2010; 
Thakur et al., 2010

Jointing and booting 
stages

Mean temperature: 
−6 ~ 2°C (2,4 and 6 d)

Control: 6°C

Grain nutritional quality ↓

Grain processing quality ↓

Liu et al., 2019b

*IAA, auxins; MDA, malondialdehyde; H2O2: hydrogen peroxide; Pn, net photosynthetic rate; SS, soluble sugars; SPS, sucrose phosphate synthase; ABA, abscisic acid; AI, acid 

invertase (Here, ↓ indicates a decrease and ↑ indicates an increase).
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Besides, LTS shrinks the leaf area, reduces chlorophyll 
concentration, alters leaf pigment ratio, and damages the leaf 
sponge structure (Chinnusamy et al., 2007; Wang et al., 2016b; 
Zhang et al., 2021b). These morphological changes in leaf area, 
size, and color are the first visible symptoms of LTS induced 
damage, and the degree of damage is determined by intensity 
and duration of LTS (Valluru et  al., 2012; Keramidas et  al., 
2020). In an experimental investigation, wheat plants are exposed 
to −5°C for 3 d, leaf wilting starts after 1 d and are wholly 
drooped after 3 d (Han et  al., 2013). Fuller et  al. (2007) 
documented that wheat exposure to −3°C for 2 h directly 
damages the flag leaves, and the damage magnitude intensifies 
if the temperature drops to −5°C. It is reported that the leaf 
area index of winter wheat reduced by 43.8% on exposure to 
below 0°C for 24 h duration, as compared to control (mean 
temperature: 11°C) treatment (Liu et  al., 2019a).

Imbalanced Physiological and Biochemical 
Relations
A plant cell under cold stress experiences severe physiological 
and biochemical disturbances, which exhibits in leaf chlorosis, 
wilting, and even necrosis (Ruelland and Zachowski, 2010; 
Muhammad et al., 2021). The primary sources of wheat grain 
production are PS and biomass accumulations; these 
physiological processes are highly vulnerable to LTS (Sharma 
et  al., 2019; Zhang et  al., 2020). LTS adversely affects the 
chloroplast development, chlorophyll biosynthesis, electron 
transport chain, photophosphorylation, Rubisco efficiency, 
and carbohydrates transport, resulting in a declining rate of 
PS and biomass accumulation (Venzhik et  al., 2011; Li et  al., 
2014). Phosphate cycling and photophosphorylation are 
restricted because LTS inhibits starch and sucrose biosynthesis, 
resulting in feedback-limited PS (Savitch et  al., 2010). Xu 
et  al. (2013) revealed that excessive soluble carbohydrate 
accumulation inhibits PS and photosynthetic electron transport 
efficiency by downregulating the level of photosynthetic carbon 
reduction cycle enzymes. A study has documented an 18% 
decrease in PS when wheat seedlings were exposed to a low 
temperature (4°C) in a controlled chamber for 7 d (Cvetkovic 
et al., 2017). Frost burning of flag leaves resulted in complete 
restriction of photosynthetic activity (Nevyl and Battaglia, 
2021). In cold-sensitive cultivars, photosynthetic activity is 
more susceptible to cold stress than in cold-tolerant cultivars 
(Yamori et  al., 2009).

ROS is an important indicator for plants to respond to 
LTS, and its dynamic balance maintains the cell stability and 
normal plant growth (Sharma et  al., 2012). LTS instigates the 
ROS imbalance by reducing molecular oxygen and producing 
ROS, and this imbalance is extremely damaging to metabolic 
processes (Muhammad et  al., 2021). With the increase of low 
temperature frequency, intensity, and duration, extreme LTS 
occurred that led to excessive accumulation of ROS and 
membrane lipid peroxidation and subsequently caused significant 
damage to the chloroplast structure, photosynthetic apparatus, 
and accelerated the leaf senescence (Huang et  al., 2019; Liu 
et  al., 2020b).

Molecular Expressions and Regulation
Environmental variations enforced crop plants to evolve diverse 
adaptation approaches (Chong et  al., 2021). The accumulation 
of soluble sugars, several amino acids, and the expression of 
antifreeze proteins (PS and electron transfer related protein) 
in wheat leaves contribute in maintenance of cell turgidity 
through osmotic balance and the increased capacity of frost 
tolerance (Markovskaya et al., 2010; Yang et al., 2011; Xu et al., 
2013). Many transcriptional studies of Arabidopsis thaliana and 
wheat shows that LTS significantly inhibits the expression of 
PS-related genes (Gulick et  al., 2005; Gan et  al., 2019); in 
which C-repeat/dehydration-responsive element binding 
transcription factors mediates low temperature signal transduction 
pathway (Arshad et  al., 2016; Jiang et  al., 2020). Abscisic acid 
(ABA) regulation genes, such as TaMYB33, are involved in 
the production of antioxidants, which are beneficial to ROS 
scavenging, proline accumulation, and osmotic balance (Qin 
et  al., 2012). Likewise, in another experimental study, TaSAG3 
and TaSAG5 have expressed naturally in wheat leaf senescence; 
followed by low temperature treatment exhibited stable 
expressions for TaSAG5 and highly instable expressions for 
TaSAG3 at a low level (Zhao et  al., 2012). At this point, ROS 
transforms from second messengers to cell killers. The mechanism 
of how abiotic stress affects plant redox states is not clear yet, 
needs more experimental studies to explore (Huang et al., 2019).

In brief, LTS has drastic impacts on leaf morphology and 
interior cell structure. Excessive production of ROS disrupts 
the photosynthetic activity by hindering active electron transfer 
and accelerated leaf senescence. The decrease of leaf area and 
net photosynthetic rate resulted in the decrease of assimilates 
and other photosynthetic products.

Spikes
LTS hinders the wheat growth at all stages, from seedling to 
maturity, but the intensity of the damage varies (Muhammad 
et  al., 2021). Many experimental studies established that wheat 
is more sensitive to LTS at the reproductive stage than vegetative, 
particularly its susceptibility higher from heading to anthesis, 
that leads to significant yield losses (Barlow et al., 2015; Zhang 
et  al., 2021d). The top spikelets are considered more sensitive 
to LTS, followed by the basal and central spikelets (Liu et  al., 
2020a). The negative effects of LTS not only depends on intensity 
and duration of LTS but also on crop cultivars and soil fertility 
(Soares et  al., 2019).

Morpho-Physiological Impairments and Molecular 
Expressions Associated With LTS
The negative impacts of LTS on spike development are well 
documented; most crucial growth period, associated with LTS, 
begins after pollen development enters meiosis phase prior to 
anthesis (Slafer et al., 2001). LTS results in short statured spikes, 
reduced number of spikelets, pollination failure, poor grain 
filling, and inadequate seed setting (Liu et  al., 2019a). Wheat 
plant’s upper spikelets turns pale yellow or partially dies on 
exposure to LTS at booting stage (Kodra et  al., 2011; Sanghera 
et  al., 2011). Dehydration accompanied by LTS results in 
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abnormal pollen and ovule development, leading to pollen 
inactivation, floret sterility, and eventually cause abortion (Ali 
and Malik, 2021). Denatured spikelets, reduced assimilate 
transport, decreased dry matter accumulation, and poor grain 
yield are all consequences of LTS (Whaley et  al., 2004).

LTS interrupts the balance of source–sink relationship by 
limiting key physiological process of sucrose accumulation to 
wheat spikes (Zhang et  al., 2019). LTS induced excessive ROS 
production limits the photosynthetic activity as well as respiration 
activity that subsequently leads to oxidative damage to sink 
organs (i.e., spike; anther’s desiccation). In previous studies, 
LTS induced short statured spikes were attributed to the 
overexpression of miRNA156 (Liu et  al., 2017). Furthermore, 
LTS induced ABA pathway affects the sucrose metabolism and 
related gene expressions in spikelets, subsequently delaying 
floret and spikelet development (Zhang et al., 2019). The similar 
trends were found in rice (Oryza sativa L.) in which acid 
invertase (AI) activity was inhibited under LTS, and the quantity 
of sucrose transportation to the pollen grains and tapetum 
severely decreased, thus leading to pollen abortion (Oliver 
et  al., 2007). However, it is not clear whether the frost damage 
in wheat at anthesis is due to the lack of acclimation expressions 
or the insufficient environmental stimulus to upregulate the 
acclimation genes (Fuller et  al., 2007). Recently, a research 
finding revealed that wheat spike development under cold 
conditions in early spring was accelerated due to increased 
ABA contents and the upregulation of encoding PP2Cs, SnRK2s, 
and bZIP transcription factors (Yu et  al., 2021).

Grain Yield and Quality Losses Associated With 
LTS
Worldwide, researchers are working hard to improve the wheat’s 
yield, quality, and adaptability to various environmental 
conditions (Osman et al., 2016; Fleitas et al., 2020). The adverse 
effects of LTS on yield of wheat plants before heading stage 
can be  compensated by the development of newly formed 
tillers (Frederiks et  al., 2012), whereas yield damage caused 
by late spring coldness to wheat tillers and newly formed 
spikes cannot be  rectified. This is due to reduction in grain 
number per plant (GNPP), spike number per plant (SNPP), 
and grains number per spike (GNPP = SNPP × GNPS; Liu 
et al., 2020a). The yield of two cultivars (with varying temperature 
tolerance capacity) decreased by 4.6 and 13.9% under LTS 
(2°C/0°C, day/night) at jointing stage for 24 h, respectively; 
and the damages to tillers and spikes are the main reason for 
reduction in grain yield per plant (GYPP; Li et  al., 2015). 
The grain yield per plant of spring wheat and semi-winter 
wheat decreased between 4.6–56.4% and 3.1–44.6% under LTS 
(the mean temperature in the range of −1 to 3°C) at jointing 
stage, respectively, while decreased by 13.9–85.2% and 3.2–85.9% 
under LTS at booting stage, respectively (Liu et  al., 2019b).

LTS considerably deteriorates the grain quality. Study has 
shown that sub-optimal temperature conditions have a 
detrimental impacts on assimilate accumulation during grain 
filling, leading to deterioration of grain quality and quantity 
(Yang and Zhang, 2006). Since LTS inhibited both the absorption 
and distribution of beneficial nutrient elements, nitrogen (N) 

compounds and non-structural carbohydrates did not reach 
spikes (Zhang et al., 2021a). Additionally, the decreased canopy 
temperature resulted in reduced starch and protein accumulation, 
followed by deformed grain appearance (grain length and size; 
Liu et  al., 2019b).

In summary, LTS limits the normal spike development, 
which causes severe reduction in grain yield and quality. The 
effects of LTS on yield loss at early growth stages (vegetative: 
emergence, tillering, etc.) are not as detrimental as those of 
later growth stages (reproductive: booting, grain filling, etc.). 
The impact of LTS on wheat spikes varies with varying 
temperature intensity and duration, growth phases, and cultivars.

LTS RISKS IN WHEAT UNDER 
P-STARVED SOIL CONDITIONS AND 
ROLE OF P

It is evident from various experimental investigations that 
optimum mineral nutrition is vital in combating abiotic stresses, 
that is, LTS, salinity stress, and drought stress (Waraich et  al., 
2011; Bouain et  al., 2019). P as an essential plant nutrient, 
not only take part in various metabolic activities (i.e., PS, 
carbohydrates accumulation, assimilate transportation and 
distribution, and electron transport), but also vital in 
strengthening the plant’s adaptability to the external 
environmental factors via taking part in various biological 
pathways (i.e., signal transduction, energy kinetics, enzymatic 
catalysis; Soetan et  al., 2009). In general, P absorption is 
primarily affected by temperature change; therefore, in cold 
weather conditions, P application could significantly increase 
wheat growth and development. In this section, we  discussed 
how deficient soil conditions coupled with LTS adversely affect 
the active growth of source–sink organs in wheat.

Soil P Starvation and Effects on Wheat 
Plant
Fertilizer consumptions have been steadily increasing since the 
green revolution, but wheat productivity has remained stagnant 
in last decade. Since use of different fertilizer application 
methods and varying soil nutrients supplying capacities, there 
were large variations noted in wheat nutrient use efficiencies 
(Jat and Gerard, 2014). In modern-day crop cultivation, P is 
an integral part of plant metabolism, ranked second essential 
nutrient after N (Nedelciu et  al., 2020). It is expected that 
global P demand will exceed the supply in 2045 (Nedelciu 
et  al., 2020). Despite the high input of chemical fertilizer, 
global P shortage is intensified by soil erosion (Alewell et  al., 
2020). Nowadays, about 50% of agricultural lands across the 
world are facing P deficiency, which is becoming a serious 
threat to crop production (Lynch, 2011). To meet the food 
demands of increasing population, it requires effective measures 
to prevent fertile agricultural lands from P starvation.

It is known that many abiotic factors are simultaneously 
influencing the depletion of soil mineral resources, and there 
is already a shortage of available phosphate in soil  
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(Lynch, 2011). P is relatively easy to be  fixed in the soil and 
becomes immovable. The P-deficient soil accelerates the increase 
in sucrose transport through phloem toward roots, where Pi 
transporters cause outward efflux and cause secretions of organic 
phosphatic acids (Hammond and White, 2007). The P deficiency 
symptoms are clearly visible in wheat plants: short stature, 
slender stems/peduncles, yellowish spots on leaves, delayed 
flowering, poor grain filling, and late maturity (Gross et  al., 
2021). It further hinders the primary root growth (Linkohr 
et  al., 2002). Moreover, P deficiency directly influences the 
normal functioning of biochemical and physiological activities, 
that is, disrupted cell division and protein nucleation (Linkohr 
et  al., 2002; Péret et  al., 2011).

Nevertheless, plants have tendency to improve the uptake 
and utilization of P by changing root system architecture (RSA) 
and inducing the expression of P starvation response genes 
(Baek et al., 2017; Cho et al., 2021). It is verified from research 
investigations that protein expression of TaPHT2; 1 is a significant 
factor in P signaling, and its upregulated expression under 
P-deficient conditions is beneficial in increasing Pi concentration 
in chloroplasts, enhancing photosynthetic capacity, and P 
accumulation in wheat plants (Guo et  al., 2013; Aziz et  al., 
2014; De et  al., 2019).

Role of P in Alleviating the Risks of LTS to 
Wheat
The optimal dose of P is needed in wheat plants to enhance 
primary root growth, improve water–nutrient relations and 
osmotic stress tolerance, and enhance photosynthetic activity 
facilitated by increased leaf chlorophyll content and dry matter 
accumulation (Figure  1). These traits are critical in defining 
the production quantity and quality in wheat. In this section, 
we briefly discussed the role of P in low temperature resistance 
in combination with the source–sink pools of wheat.

Root Systems
Many studies have focused on the aboveground part and ignored 
the belowground part (roots) of plants, but root systems play 
a vital role in mitigating the adverse effects of LTS (Ambroise 
et  al., 2020). Beneficial microorganisms and mineral nutrients 
are helpful to improve the cold tolerance of wheat roots (Zhou 
et  al., 2021). Although P is relatively easy to be  fixed in the 
soil and becomes immovable, but soil microbial activities are 
critical in converting insoluble phosphates into soluble 
phosphates, phosphate solubilizing bacteria (PSB) play a key 
role in this process (Tabassum et  al., 2017; Chatterjee et  al., 
2021). The P fertilization is recommended to alleviate the 
negative impacts of LTS and rectify the deficiency symptoms 
in wheat. It also enhances the belowground microbial activity 
which is mutually beneficial for healthy root growth and 
development. Increased microbial activity excites soil temperature 
to a certain extent that contributes in alleviating the adverse 
impacts of LTS.

Further, P plays an important role in regulating root system 
responses to drought stress (Jin et  al., 2015; Attarzadeh et  al., 
2020), because P application prevents crop plants from oxidative 

stress and improve chloroplast structure, while excessive P 
application trigger ROS toxicity (Shibli et al., 2006; Noor et al., 
2021). Combined with N and potassium (K), P application 
promotes the secondary root growth, proliferation of growing 
root tips, and root hair differentiation; subsequently root surface 
area increased that supports in active nutrient–water uptake 
(Gahoonia et  al., 1999).

An efficient RSA is vital for adequate utilization of mineral 
and water resources under LTS. Dynamically developed RSA 
favors the active uptake of available phosphate and other mineral 
nutrients for the optimal growth of aboveground plant organs 
(Shen et  al., 2011; Dijkstra et  al., 2016). Adequate P supply 
accelerates root growth and its spread in deeper soil layers 
(Jin et  al., 2015). It is reported that beneficial relationship 
between arbuscular mycorrhizal fungi (AMF) promote P uptake 
and utilization. AMF is vital in stabilizing soil aggregates and 
regulating the non-nutritional functioning in field crops that 
enhance the LTS tolerance by preventing membrane lipid 
peroxidation (Zhu et  al., 2010; Latef and He, 2011; Gerz et  al., 
2018). Similarly, strigolactones (SLs) secretions from root play 
a significant role in active N and P uptake by establishing 
the symbiotic relationship between plants and soil microbes, 
and it is also crucial in tolerating various biotic and abiotic 
stresses (Halouzka et  al., 2020; Jamil et  al., 2020). According 
to De et  al. (2019), two wheat cultivars with different PUEs 
on fertilization exhibited 60 and 80% increases, respectively, 
while their PUEs varies by 17% upon no fertilization; this 
increase in PUE is due to SLs-induced regulation of PHO2 activity.

In brief, application of P not only improves the soil P 
deficiency, but also improves the RSA of wheat that is key 
factor in active nutrient uptake and mitigating biotic and abiotic 
stresses. In addition, AMF, PSB, and SLs promote the active 
P absorption from soil.

Leaves
Leaves are considered as primary source organs of the plant. 
Several environmental factors negatively influence leaf functioning 
and hinder optimal crop growth (Gong et  al., 2020). PS is 
the key physiological process that mainly takes place in the 
leaf. P fertilization is essential for the development of healthy 
wheat leaf and maintains the normal PS process (Sharma et al., 
2019). LTS repercussions (i.e., membrane impairment, imbalanced 
osmoregulation, and excessive ROS production) substantially 
reduced the rate of PS. In this aspect, P fertilization is a 
handy tactic in alleviating the negative impacts of LTS.

The optimal dose of P is not only helpful in sustaining 
membrane stability and increasing leaf surface area, but also 
enhances the leaf chlorophyll and carotenoid contents; 
subsequently, it increases the rate of PS, enhances the dry 
matter production, improves the stomatal conductivity and 
improved the plant–water relations (Waraich et  al., 2011; 
Shirmohammadi et al., 2020). Optimal allocation of P in plants 
can prolong and improve the P utilization in PS (Veneklaas 
et  al., 2012). It has been reported that foliar application of 
plant growth regulators (i.e., SLs, salicylic acid, and ABA) 
significantly enhanced the activities of antioxidant enzymes, 
which facilitates in preventing membrane peroxidation under 
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drought and LTS (Sun et  al., 2009; Ma et  al., 2017; Saleem 
et  al., 2021). Accumulation of fructans in cereal crops upon 
experiencing low temperature environmental conditions is 
another preventive approach in maintaining membrane stability 
(Livingston et  al., 2009). In a field experiment, combined P 
(200 mg P2O5 kg−1 soil) and molybdenum fertilizer at the 
tillering stage of winter wheat upshots the leaf soluble sugars 
contents by 9.7% and reduced the malondialdehyde content 
by 28.4% (Nie et  al., 2015). In addition, P application under 
abiotic stress also increases the uptake and utilization of N, 
increases the concentration of soluble sugar and Pi in plants, 
and high Pi availability for carbon assimilation maximizes 
leaves photosynthetic activity (Jin et  al., 2015).

P supply relieved the symptoms of LTS through modulating 
the activities of antioxidant enzymes and maintaining the regular 
osmotic homeostasis in leaves. Normal morphology and 
physiology of wheat leaves can maintain the sustainability of 
PS, the vital ingredient for plant growth and total 
biomass production.

Spikes
Wheat spikes are known as the primary sink pool of wheat, 
which accumulates the maximum number of photosynthates. 

LTS induce deformities in spike shape and appearance and 
badly influences SNPP, GNPP, spike length, and 1,000-grain 
weight. These basic agronomic parameters are key components 
of the final wheat yield (Chen et  al., 2019b). P deficiency 
combined with LTS causes a drastic reduction in the number 
of spikes and productive tillers (El Mazlouzi et  al., 2020a). 
Application of P under LTS maintains the source–sink balance 
through promoting photosynthetic activity and improving grain 
filling rate (Engels et  al., 2012; Zangani et  al., 2021). The 
vegetative organs (i.e., leaves, stems, and roots) in wheat used 
as P reserves, which later was transported to harvest organs 
(i.e., spikes), after anthesis, to promote grain filling and ripening, 
as P deposition in the grains was mainly brought through 
remobilization of internal P sources stored before anthesis (El 
Mazlouzi et  al., 2020b). The transport and accumulation of 
starch and protein to ear improves wheat quality (Kizilgeci, 
2019). This enhanced relocation and accumulation of P from 
source organs to sink organs supported through Pi transporters, 
H+-ATPase, phospholipids, and carbon-metabolism gene 
expressions (Aziz et  al., 2014). Therefore, it is important to 
supplement sufficient P at the vegetative growth stage to safeguard 
optimal spike and grain development and stress tolerance 
in wheat.

FIGURE 1 | LTS tolerance mechanism by optimizing P application in wheat. Optimizing P application improves soil–plant nutrient relationships, maintains source-
sink balance and membrane stability, relieves dehydration and oxidative stress, and enhances crop stress resistance and productivity in wheat. And root surface 
area and root activity increase in roots; functional leaf area, PS and photoproduct increase in leaves; flower abortion decreases, but pollen activity, grain yield and 
quality increase in spikes by P application, respectively. AMF: arbuscular mycorrhizal fungi, ATP: adenosine triphosphate [Here, ↓ indicates a decrease and  
↑ indicates an increase/improvement].

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Xu et al. Cold Stress in Wheat and Phosphorus Regulation

Frontiers in Plant Science | www.frontiersin.org 9 February 2022 | Volume 13 | Article 807844

It is described that P fertilization significantly increased the 
spike length, spike number, grains per spike, and 1,000-grain 
weight, which directly influenced the wheat yield (Saqib et  al., 
2015; Arshad et al., 2016). In a field trial of wheat broadcasted 
phosphate fertilizer at the rate of 90 kg P2O5 ha−1, substantial 
increase was noted in plant height, spike length, GNPP, 1000-
grain weight, P concentration, P uptake, and GYPP by 12.8, 
7.7, 13.7, 22.4, 24.0, 85.5, and 60.6%, respectively, as compared 
to control treatment with no P application (Shafi et  al., 2020). 
Moreover, increased accumulation of SS was also observed in 
various reproductive organs; augmented sugar contents improved 
the pollen activity, which significantly prevented the floret 
abortion and spike damage under temperature stress (Zhang 
et  al., 2017).

Currently, little research is being conducted on the role of 
P fertilization in sustaining source–sink balance and plant–
nutrient relations for LTS. Although its actual mechanism is 
not fully explored yet, a comprehensive and systematic approach 
study is required to unleash the role of P in the alleviation 
of risks anticipated with LTS.

STRATEGIES TO MITIGATE THE 
EFFECTS OF LTS ON WHEAT AND  
P REGULATION

To strengthen the wheat’s capacity in combating the negative 
effects of LTS, a number of integrated management approaches 
are being implemented. It includes modern crop breeding 
techniques (gene mapping, inducing LTS-tolerant genes, omics, 
etc.), improved crop husbandry practices (seed enhancements, 
fertilizer management, adequate sowing techniques, timely 
sowing irrigation management, etc.), and crop modeling 
approaches (for optimizing the resources and estimating the 
risks of temperature variability). In this section, we  briefly 
discussed the above-mentioned crop management strategies 
with regard to improved P regulation.

Utilizing Modern Breeding Techniques and 
Tools for Developing P-Efficient and 
Temperature Resilient Cultivars
Every year, breeders work hard to create cultivars that are better 
adapted to changing climates. The ongoing research work on 
wheat LTS tolerance mechanism needs to be  combined with 
modern breeding techniques (i.e., fast breeding, space breeding, 
and CRISPR-Cas9) for the development of efficient and temperature 
resilient crop varieties (Hristov et  al., 2007; Zhao et  al., 2020; 
Li et  al., 2021). For efficient utilization of P, more research is 
needed into the genetic and molecular mechanisms related to LTS.

To develop a new variety, traditional breeding techniques 
take more than 10 years, which are not enough to meet the 
present problems of climatic fluctuations and nutrient deficient 
soil conditions (Muhammad et al., 2021). The current complex 
ecological system and abnormal climatic variations posing a 
severe threat to normal crop growth that restraining the efficiency 
of existing crop cultivars for longer duration. Therefore, in 

future, along with opting genotypic marker-assisted and high 
flux phenotypic selection techniques (Mickelbart et  al., 2015; 
Younis et  al., 2020), employing crop simulation models (e.g., 
CERES-Wheat and DSAT) for predicting the lifespan of particular 
cultivars in different climatic zones is quite useful (Koç, 2020).

Genome-wide association studies (GWAS) thought to 
be  pragmatic in identifying the genetic factors controlling the 
phenotypic variability of PUE in wheat (Bin Safdar et  al., 2021). 
In the meantime, GWAS is useful in understanding the genetic 
basis of LTS tolerance and in developing LTS-resistant wheat 
cultivars. GWAS-based research reported that PHO2 and zinc 
finger transcription factors are involved in many functional and 
regulatory processes in plants, such as P homeostasis and ROS 
metabolism (Devaiah et  al., 2007; De et  al., 2019). Later, the 
identified genes sources subjected to the site-specific by CRISPR-Cas9 
analysis for promoting the development of the efficient P utilization 
and improved LTS-resistant wheat varieties (Doudna and 
Charpentier, 2014). The response of different wheat genotypes to 
LTS and P nutrient was significantly varies, and so, the effective 
combination of LTS-tolerant and P-efficient genotypes is good 
way to develop LTS-resistant cultivars; then later followed by 
domestication of newly developed P-efficient and LTS-tolerant 
wheat cultivars (Wang et  al., 2016a). Recently, a new wheat-
Thinopyrum intermedium introgression line with tolerance to P 
deficiency was identified, which provides, which really a new 
insight into wheat germplasm resources and aids in developing 
high P-efficient-stress tolerant cultivars (Zhang et  al., 2021c).

Optimizing P Management and Crop 
Husbandry Practices
Only breeding high P-efficient cultivars is not enough to counter 
low temperature repercussions, but it is also crucial to implement 
optimal crop husbandry practices. According to the sustainable 
development goals of the United Nations, P management is a 
crucial element in determining final grain yield (Griggs et  al., 
2014; Rafiullah et al., 2020). Therefore, it is needed to pay attention 
to the adequate fertilizer application, appropriate timing, and 
suitable method of fertilization. During the vegetative stage of 
wheat, P absorption rate is maximum and healthy source organs 
are needed to combat the negative impacts of LTS at sensitive 
reproductive (jointing and booting) stages; therefore, adequate 
P supply must be  ensured before anthesis (Liu et  al., 2020a).

Improved PUE by Implying Appropriate Method 
of P Fertilization
There are many P application methods, including broadcasting, 
top dressing, fertigation, foliar application, and P-amendments 
of biochar. The efficiency of each application method varies. Foliar 
application of potassium dihydrogen phosphate effectively combat 
the LTS at critical jointing and booting stages and enhanced the 
final wheat yield (Rafiullah et  al., 2020). Drip fertigation of 
phosphate fertilizer allows nutrients to reach the root zone directly 
and improve the P concentration in plant tissue and PUE (Mikkelsen, 
1989). Biochar is an emerging soil amendment approach; biochar 
as P-amendment significantly increased the source of soil 
organophosphorus, improved the soil quality, and enhanced the 
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efficiency of plant nutrient uptake (Manolikaki et al., 2016). Biochar 
amendments enables the mobilization soil P through altering soil 
pH and supporting AMF in developing symbiotic relationships 
with plant roots (Shen et  al., 2016). Combined applications of 
organic and inorganic fertilizers play a similar role in ensuring 
P availability for sustainable crop production (Yadav et al., 2021).

Measures to Improve Bioavailability of 
Phosphorus and LTS Tolerance
Conservation agricultural practices are very handy in improving 
soil health and ensuring bioavailability of essential nutrients 
in soil (Yang et  al., 2020). In South Asia, farmers have already 
started implementing conservation farming practices, such as 
reduced tillage and residue retention (Jat and Gerard, 2014). 
After paddy harvesting, the incorporation of straw residues is 
an important tillage practice, termed as straw retention. Straw 
residues are rich in organic carbon, mineral nutrients, and 
rich biochar amendment for next wheat crop (Arif et al., 2017). 
Alternatively, inoculation of PSB and mutually beneficial AMF 
associations effectively improve the bioavailability of phosphate. 
Further, it promotes active plant growth and minimize the 
negative implications of stress by establishing a positive 
relationship with soil mineral nutrients (Khan et  al., 2009; 
Etesami et  al., 2021). It is known that PSB plays a vital role 
in reducing soil pH, solubilizing Pi, and chelating P from iron 
and aluminum oxides (Khan et  al., 2009). And bioavailability 
of P and soil P-nutrition greatly enhanced by inoculating PSB 
combined with application of organic manures (Adnan et  al., 
2017). Further, applying Silicon (Si) fertilizers (Na2SiO3) stimulates 
the wheat root exudation and changed the soil pH, as a result 
improved the Pi availability in rhizosphere; subsequently, upon 
Si-fertilization the upregulating expression of Pi transporters 
(TaPHT1.1 and TaPHT1.2) significantly increases the P uptake 
(Kostic et  al., 2017).

The organic combination of P management strategies and 
modern cultivation practices is equally important to treasure 
the soil resources and maintain plant health under adverse 
environmental conditions. Enhanced P management does not 
mean more P fertilizer application but efficient utilization of 
mineral resources with regard to the potential of agricultural 
productivity and ecological stability (Alewell et  al., 2020).

CONCLUSION AND PROSPECTS

Low temperature is one of the major abiotic factors that limits 
the wheat productivity under global climate change. In this 
review, we  summarized the damaging impacts of LTS to wheat 
source–sink organs with respect to morphological, physiological, 
and molecular attributes (Tables 2, 3). Recently, under the 
continuous efforts of scientists around the world, great progress 
has been made in the research on the damaging mechanism 
of low temperature in wheat. LTS decreases the active leaf 
area and photosynthetic capacity, severely inhibits the expression 
of PS-related genes, resulting in reduced production of assimilates 
(Gan et al., 2019). LTS induced ABA pathways affect the sucrose 
metabolism and related gene expressions in spikelets, 

subsequently, sucrose transportation significantly diminished, 
thus leading to pollen abortion (Zhang et  al., 2019).

As an essential plant nutrient, P can increase soil AP contents 
and improve the soil–plant nutrient and source–sink relationship, 
that resulted in enhanced LTS tolerance through reducing 
oxidative stress and increasing pollen activity. To enhance the 
PUE and cold tolerance of wheat, the crop husbandry practices, 
such as top dressing, mulched drip irrigation, deep application, 
and foliar spraying, should be  opted according to different 
climatic zones (Li et al., 2019; Bindraban et al., 2020; Rafiullah 
et  al., 2020). Further, it is needed to adopt conservation 
agricultural practices, especially application of P activators that 
promote the release of phosphate from soil particles (Zhu et al., 
2018). Despite the ongoing developments in research field, 
some aspects still needs to be  explored further and requires 
prospective studies, that is, stress sensing and signaling, molecular 
studies of the P regulation mechanism, the use of efficient 
breeding technologies, reducing gap between research and 
applied sectors through bridging research institutes and farmer 
communities (Zhang et  al., 2021a). Hence, for better 
understanding of the stress responses, laboratory experiments 
should be  combined with field experiments, and wheat plants 
should be  focused than model plants (Dresselhaus and 
Huckelhoven, 2018; Hussain et  al., 2018). Apart from this, 
breeding P-efficient and LTS-tolerant cultivars are also a pragmatic 
approach for future dealings with LTS and nutrient scarce soil 
conditions. Multidisciplinary cooperation is essential to build 
a platform for cooperative research concerning macro and 
micronutrient utilization and confronting abiotic stresses, thus 
mitigating the looming global P and food crisis.
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