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Apple Valsa canker (AVC) with early incubation characteristics is a severe apple tree
disease, resulting in significant orchards yield loss. Early detection of the infected trees
is critical to prevent the disease from rapidly developing. Surface-enhanced Raman
Scattering (SERS) spectroscopy with simplifies detection procedures and improves
detection efficiency is a potential method for AVC detection. In this study, AVC
early infected detection was proposed by combining SERS spectroscopy with the
chemometrics methods and machine learning algorithms, and chemical distribution
imaging was successfully applied to the analysis of disease dynamics. Results
showed that the samples of healthy, early disease, and late disease sample datasets
demonstrated significant clustering effects. The adaptive iterative reweighted penalized
least squares (air-PLS) algorithm was used as the best baseline correction method to
eliminate the interference of baseline shifts. The BP-ANN, ELM, Random Forest, and LS-
SVM machine learning algorithms incorporating optimal spectral variables were utilized
to establish discriminative models to detect of the AVC disease stage. The accuracy of
these models was above 90%. SERS chemical imaging results showed that cellulose
and lignin were significantly reduced at the phloem disease-health junction under AVC
stress. These results suggested that SERS spectroscopy combined with chemical
imaging analysis for early detection of the AVC disease was feasible and promising. This
study provided a practical method for the rapidly diagnosing of apple orchard diseases.

Keywords: apple Valsa canker, early detection, Surface-Enhanced Raman Scattering, chemical imaging, machine
learning

Frontiers in Plant Science | www.frontiersin.org 1 March 2022 | Volume 13 | Article 802761

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.802761
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2022.802761
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.802761&domain=pdf&date_stamp=2022-03-04
https://www.frontiersin.org/articles/10.3389/fpls.2022.802761/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-802761 February 28, 2022 Time: 19:26 # 2

Fang et al. SERS for Apple Valsa Canker Detection

INTRODUCTION

Apple Valsa canker (AVC), caused by fungus Valsa mali, is a
severe apple tree disease resulting in serious economic losses
in Southeast Asia and China (Wang et al., 2011). Commonly,
AVC is mainly found by the characteristics of canker, infected
tissue softening, outflowed light brown water stain, sunken
or cracked on trunks at the early infected stage (Zang et al.,
2012). The fungal pathogen mainly infected the subcutaneous
phloem through the wounded bark tissue at the initial infected
stage. After infection, fungus hypha colonized the phloem
tissues, leading to severe tissue cell death (Suzaki, 2008).
What’s more, plant protection experts have proved that the
fungus Valsa mali can survive in weak and dead tissues of
the apple trees for more than 1 year before appearing visible
symptoms (Meng et al., 2019). For example, Zang et al. (2012)
found that more than 50% of apple orchards existed fungus
Valsa mali in symptomless apple tree tissues. However, when
visible symptoms appear, it is challenging to prevent AVC
from spreading throughout the orchard by conventional treating
methods such as spraying fungicides, manually removing the
diseased areas, and pruning the dead branches. Unfortunately,
there were no adequate methods for AVC treatment due to the
complicated pathogenic mechanism so far. Thus, early detection
of the infected trees is necessary to prevent the rapid development
of the disease in orchards.

There are various molecular biology methods, including
Enzyme-Linked ImmunoSorbent Assay (ELISA) and Polymerase
Chain Reaction (PCR), were developed for the isolation and
identification of pathogenic (Liu et al., 2015; Golhani et al., 2018).
ELISA kits have been widely utilized thanks to the low cost,
but are ineffective for detecting symptomless tissue (Fang and
Ramasamy, 2015), while PCR is an effective detection method.
Zang et al. (2012) developed a nested PCR assay to detect
the presence of Valsa mali in apple trees and achieved an
accuracy of 64.7%. However, DNA deriving from the woody plant
tissues contained PCR inhibiting compounds and could affect the
accuracy of PCR reaction (Martinelli et al., 2015). What’s worse,
a well-equipped laboratory and experienced personnel are also
required, which was not feasible for on-site detection using the
PCR (Okiro et al., 2019). Therefore, it is of great significance
to develop a fast, non-destructive and economical method for
accurate detection of AVC.

Reported studies have demonstrated that advanced non-
invasive measuring technologies, such as RGB image processing
(Cruz et al., 2019; Hu et al., 2020), dielectric spectrum (Khaled
et al., 2018), laser scanning (Khairunniza and Vong, 2014),
and spectroscopic methods (Ranulfi et al., 2016; Dou et al.,
2021) have a massive amount of potential for diagnosing tree
diseases. Among them, the spectroscopy technique is powerful
for quality and safety inspection due to the character of simplicity,
rapidity, and affordability, which makes it indispensable in
tree disease detection. Raman spectroscopy (RS) is a non-
invasive, rapid, and high throughput spectroscopic technique
(Farber et al., 2020; Huang et al., 2020; Zhao et al., 2021).
Raman shift is only related to the vibration frequency of
the molecular functional group, but not to the incident light.

Therefore, each sample’s the Raman “fingerprint” of each sample
is unique (Fang et al., 2021). Significantly, RS could provide
essential information related to the biochemical composition of
the tree tissue cell, such as protein, polysaccharide, and lipid.
Neither symptomatic nor asymptomatic trees, these biochemical
compositions are significantly different between diseased and
healthy tissue. These compositions changes can be reflected
in Raman shifts or intensity changes of specific Raman bands
assigned to those molecules. Therefore, RS provides an accessible
way to identify subtle changes in the molecular compounds,
which offers theoretical evidence for detecting tree diseases.
Vallejo et al. (2016) investigated the application of RS combined
with statistical analysis for detecting citrus Huanglongbing (HLB)
infection in the field, and a good result was obtained with an
overall classification accuracy of about 89.2%. Sanchez et al.
(2019b) readily distinguished between healthy and early-HLB
citrus trees using a handheld Raman system and achieved an
accuracy of 94%. In their following study, Sanchez et al. (2019a)
demonstrated that utilizing a handheld Raman spectrometer in
combined with chemometric analyses enabled the detection and
identification of the secondary disease on HLB-infected orange
trees. Those researches indicated that the RS technique combined
with chemometrics methods could detect diseased trees.

However, RS is frequently interfered by fluorescence caused
by chromophores in plant tissue, and compositional changes
under disease stress may lead to Raman band broadening or
drift (Mukherjee et al., 2017; Petrov, 2017). This drawback may
lead to significant deviations in the biochemical composition
analysis of RS data. Surface enhanced Raman scattering (SERS)
spectroscopy, based on the improvement of traditional RS,
uses certain metallic nano-substrates such as gold or silver
nanoparticles (AgNPs) to enhance signals under low laser
powers, which maximizes fluorescence suppression. Meanwhile,
the Raman system combined with the micro-imaging technology
allows for scanning micron-scale Raman collection points (e.g.,
one-micron pixel) (Li X. L. et al., 2019), which offers chemical
information on the constituents at a high spatial resolution
in situ. Qin et al. (2011) developed a Raman chemical imaging
system to visualize the internal distribution of lycopene in
postharvest tomatoes and established a Raman chemical image
to visualize the spatial distribution of lycopene at different stages
of maturity. Yang et al. (2018) used a Raman imaging system to
detect the spatial distribution of chemical components in maize
seeds. These studies manifested that Raman chemical imaging has
great potential in the visualizing of plant tissue components.

Therefore, this study aimed to develop a fast, non-invasive,
and in situ diagnosis method for detecting AVC at early infection
stages using SERS combined with micro-imaging technology.
The main objectives are to: (1) Optimize experimental conditions
(i.e., laser intensity and exposure time) for obtaining valid
SERS micro-imaging data, including Synthesis and SERS
AgNPs characterization; (2) Establish optimal discriminative
models for detecting AVC in early infection stages based on
machine learning algorithms; (3) Generate micro-distribution
maps of cellulose and lignin at the disease-health junction of
the tree phloem tissues to reveal the dynamic development
characteristics of the disease.
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MATERIALS AND METHODS

Fungal Culture and Sample Inoculation
The fungus Valsa mali stored at −80◦C in an ultra-low
temperature refrigerator were inoculated onto potato dextrose
agar (PDA) medium. The 2-year-old apple branches (Malus
domestica cv. Fuji) were collected from the Economic Tree
Garden of Northwest A&F University. The selected branches
were pruned into 15 cm segments, and the surface of the branches
was disinfected with 75% alcohol for 15 min. Then, they were
cleaned with sterile water three times until there was no odor.
The ends of the branches were sealed with a wet skimmed cotton
to keep them fresh, followed by punching holes in the branches
with a hole puncher (hole diameter 5 mm). The activated Valsa
mali fungus was inoculated on the wounds of apple branches with
two points on each branch. After inoculation, the branches were
transferred to a 25◦C incubator for further incubation.

Synthesis and Surface-Enhanced Raman
Scattering Silver Nanoparticles
Characterization
In the present research, AgNPs were synthesized by using the
Lee–Meisel method. The synthesis steps were as follows: AgNO3
(36 mg) was dissolved in 200 ml of ultrapure water and boiled
quickly. A solution of 1 wt.% trisodium citrate (6 mL) was
charged to the reaction solution and was held on boiling for
25 min accompanied by stirring at 200 rpm. After cooling to
room temperature, we pour the AgNPs solution into a centrifuge
tube and store it away from light. The chemical reaction equation
is as follows:

4Ag++C6H5O7Na3+ 2H2O = 4Ag +C6H5O7H3+ 3Na+ + O2

Subsequently, the prepared AgNPs were characterized to verify
their validity. The morphology of the AgNPs was measured by
Tecnai G2 transmission electron microscopy (FEI Inc., Hillsboro,
OR, United States). The UV-Vis absorption spectra of the
AgNPs were measured using Lambda 35 Spectrophotometer
(PerkinElmer Inc., Waltham, MA, United States). The Raman
spectra of the AgNPs were collected by DXR3xi Raman micro-
imaging spectrometer (Thermo Fisher Scientific Inc., Waltham,
MA, United States).

Surface-Enhanced Raman Scattering
Spectroscopy Acquisition
First, branches were removed from the incubator, and the
inoculation points on the phloem were scraped with a knife as the
samples. Each sample placed on a glass slide was dripped with the
AgNPs. Then, each sample was placed on the automatic stage and
aligned with a Raman laser using a 10x/0.25 NA magnification
objective lens for SERS imaging collection using a DXR3xi Raman
micro-imaging system (Thermo Fisher Scientific Inc., Waltham,
MA, United States). Specific parameters were to: the excitation
wavelength was 785 nm; the collected spectral range was 300–
3,000 shift/cm−1; the laser intensity was 2.6 mW; the exposure
time was 0.00285 s (350 Hz); the number of scanning was 40.

For spectral imaging in the x and y directions, the samples
were scanned point by point in 2 µm steps. It should be noted
that no destructive effects of the laser on the samples were
observed. Routinely, before starting the Raman measurements,
the calibration procedure that came with the instrument was
executed automatically. At this time, the software interface
displayed “Performing automatic X axis calibration.” The data
acquisition software OMNICxi v1.6 was used to adjust the
acquisition parameters.

Spectral Data Processing and Analysis
Spectra Preprocessing
Background noises and baselines were generated during the
acquisition of the SERS spectra, which seriously impaired the
interpretability of the spectra. Meanwhile, these noises and
baselines would also reduce the simplicity and robustness of
the calibration model built on these spectra. Therefore, selecting
the optimal pretreatment method was necessary to improve
the spectral quality. In this study, spectral curves were first
extracted for each pixel point of the imaging data before spectra
preprocessing. Then, the spectral data were preprocessed with
three algorithms to eliminate noise and correct the baseline
background. These three algorithms include the multiple spectral
baseline correction (MSBC), the asymmetric least squares (AsLS),
and the adaptive iterative reweighted penalized least squares
(air-PLS). Subsequently, the advantages and disadvantages of
the three algorithms were compared using the correlation
analysis method.

The AsLS method, proposed by Eilers (2003, 2004), is a
classical baseline correction algorithm that combined a smoother
with the asymmetric weighting of deviations from the smoothed
trend to form an effective baseline estimation method. The MSBC
method, proposed by Peng et al. (2010), is an improved approach
based on the AsLS algorithm. The MSBC method learns baselines
that perform well on the corresponding spectra and then “co-
regularize” the selection by correcting inconsistencies between
the spectra. Air-PLS is an improvement approach based on the
weighting of the original model by the weighted least squares
method. The light environment is automatically subtracted by
meaning the iterative regression, and the background is deducted
(Baek et al., 2015).

Optimal Variables Selection and Dimension
Reduction
Multivariate calibration methods in chemometrics aim to
construct relationships between variables and properties of
interest to make a classification model. However, with the
redundant spectral variables, data usually included some
noise and unnecessary information, which rendering unreliable
predictive properties. Therefore, optimal variables selection and
dimension reduction have been used to address these problems.

Principal component analysis (PCA) can replace the original
variables with a few principal components with significant
deviation to reduce the original high-dimensional variable space
(Dong et al., 2014). In addition, competitive adaptive reweighted
sampling (CARS) and random frog (RFrog) algorithms were
combined to select the optimal variables associated with the
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predicted properties and exclude the interference of unrelated
variables. The CARS algorithm used exponentially decreasing
function (EDF) as a selection strategy to select critical variables
based on adaptive reweighted sampling competitively (Li et al.,
2009; Li Q. Q. et al., 2019). The RFrog algorithm calculated the
selection probability of each variable by moving across trans-
dimensions between models, enabling the search for the optimal
variable (Li et al., 2012).

Classification Models
BP artificial neural network (BP-ANN) (Zhang et al., 2018)
is the most classical and successful neural network commonly
utilized for non-linear fitting and pattern recognition. BP-
ANN is a one-way multi-layer feedforward network composed
of an input, hidden, and output layer. The learning process
is composed of forwarding propagation of signals and back-
propagation of errors.

The random forest (RForest) is a widely used machine
learning algorithm, which has been successfully applied to pattern
recognition (Lussier et al., 2020), and the choice appropriate
number of decision trees is crucial in RForest. When the test data
entered the classifier, each decision tree classified the data. Finally,
the class with the most classification results from all decision trees
was taken as the result.

The least squares support vector machine (LS-SVM) is a
machine learning method that emerged from the statistical
learning theory. LS-SVM divides the data samples into multi
classes by determining a hyperplane in the input space,
maximizing the separation between the classes (Lucay et al.,
2020). Its vital parameter indexes are the kernel function and the
corresponding parameters of this function.

Extreme learning machine (ELM) is one of the practical
training algorithms for single-layer feedforward neural networks
(Qiu et al., 2015). ELM has a faster training and better
generalization performance than traditional machine learning
algorithms and could overcome issues such as the local
minimum, inappropriate learning rate, and overfitting (Wu
et al., 2021). Therefore, it is widely used in the condition of
classification and regression.

In summary, Figure 1 demonstrated Key steps for detecting
apple Valsa canker at an early stage based on SERS spectroscopy
combined with chemical imaging analysis. All procedures were
written in MATLAB R2018b (The MathWorks, Natick, MA,
United States) and ran on a personal computer with an Intel Core
i5-9400F CPU, 16GB RAM, and a Windows 10 operating system.

RESULTS AND DISCUSSION

Phenotypic Development of Healthy and
Inoculated Branch
Figure 2a demonstrated the strains of the fungus Valsa mali
on the PDA medium. The junctions of diseased and healthy
tissues in the inoculated branch samples were assessed visually
in the early stage of AVC disease. The bark surface of inoculated
branch samples showed no visible symptoms during the first
7 days. However, the phloem inside the bark appeared with

early infection symptoms. Figure 2b demonstrated the dynamic
process of the diseased phloem in the first 7 days. The healthy
phloem (the first 3 days) had a smooth surface and displayed
tender green. The diseased phloem became rough and showed
pale brown when the symptoms of mild infection were visible on
the 5th day. Subsequently, the diseased phloem appeared dark
brown, and the tissue was rotten on the 7th day. The infected
area of the diseased phloem, centered on the inoculation site,
was continuously extended outward with time. Most notably,
the infection symptoms remained in the phloem and did not
appear on the bark surface in the first 7 days. The phloem
regions were manually labeled as healthy, disease-1 (the disease-
health intersection), and disease-2 (late-disease) according to the
infection progression of the pathogen. The purpose of dividing
the region into three categories is to simulated the time-series
dynamic process of pathogen infection (i.e., pathogen infection
spread outward around the center point). In Figure 2c, the
disease-health intersection of the diseased phloem was presented
using optical microscopy. It can be observed that the healthy
tissue appeared green with intact cellular tissue structure; The
disease-1 tissue appeared dark brown, and the infected tissue
outflowed light brown water stain; The disease-2 tissue was
mainly characterized by canker and softened tissue.

Surface-Enhanced Raman Scattering
Silver Nanoparticles and Its
Characterization
The microstructure, UV-Vis spectrum, and Raman spectrum of
AgNPs were analyzed to investigate the enhancement effects of
the synthesized AgNPs. Figure 3A is the transmission electron
microscopy (TEM) image of AgNPs, Figure 3B displays the UV-
Vis spectra, and Figure 3C shows the Raman spectra.

In Figure 3A, it could be seen that the morphological character
of AgNPs was very uniform in a monodisperse spherical shape.
In addition, the average diameter of AgNPs was about 50 nm. As
shown in Figure 3B, only one UV-Vis characteristic absorption
peak (at 410 nm) corresponding to the single plasmon resonance
mode was observed, and the half-peak breadth was only 90 nm.
These features further indicated that the shape and size of the
synthesized AgNPs were very uniform. In Figure 3C, the Raman
spectrum had a faint signal, suggesting that the synthesized
AgNPs themselves had no strong Raman characteristic peaks
and did not have an interferential effect on experimental results.
Therefore, the synthesized AgNPs were suitable as SERS substrate
to detect branch samples in this research.

Overview of Surface-Enhanced Raman
Scattering Spectra
Spectral imaging is capable of acquiring the spectra from a
specified point at the sample surface. By adjusting the x, y
position, acquisitions of the spectra from multiple points on the
sample surface can be performed, assembling a spectral image
of the sample. Figure 4 clearly showed the spectrum of healthy
tissue samples, with and without AgNPs, respectively. Raman
spectra peaks of healthy samples without AgNPs did not appear.
The SERS characteristic peaks of healthy samples were obvious,
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FIGURE 1 | Key steps for detecting apple Valsa canker at early stage based on SERS combined with chemical imaging analysis. There were four main steps in the
experiment: step 1, preparation of the samples; step 2, data acquisition; step 3, data processing; step 4, discriminant and analysis.

which further proved that AgNPs were effective. Figure 5 showed
the micro-spectral image of diseased phloem through pointwise
scanning by Raman micro-imaging system. The spectral data
were obtained by splitting each pixel point of the spectral image.
All the original SERS spectra were also shown in Figure 5.
The pathogenic mechanism of AVC remains poorly understood
(Wang et al., 2021). On the one hand, cell wall degrading enzymes
(e.g., pectinases) played an important role in the infection process
(Yin et al., 2013). On the other hand, studies have shown that
phloridzin in apple tissues can be degraded by AVC, and the
metabolites have toxic effects on apple tissue cells (Feng et al.,
2020). These researches explained why the vibration band of
disease-2 is weaker than the health spectrum.

There was an obvious baseline offset in the disease-1 and
disease-2 even after dropwise addition of the AgNPs to suppress
fluorescence. Therefore, the MSBC, AsLS, and air-PLS algorithms
were adopted to eliminate the disturbances of the baseline offset.
The parameters for these methods were manually set to obtain
the best result. For the MSBC algorithm, the parameters were set
to λ = 150, µ = 8 × 107, and ρ = 0. For AsLS algorithm, the
parameters were set to λ = 5,000, and ρ = 0.0001. For the air-
PLS algorithm, the parameters were set to λ = 150, and ρ = 0.01.
The corrected spectra and the predicted fluorescence baselines
were plotted in Figures 6A–C. As shown in Figure 6, the curved
baselines were well-fitted and subtracted by the three algorithms.
The corrected spectra showed that the baselines were pulled
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FIGURE 2 | Phenotypic development of healthy and inoculated branch. (a) The strains of the fungus Valsa mali on PDA medium. (b) The dynamic process of the
diseased phloem in the first 7 days. (c) Optical micrograph of the disease-health junction.

FIGURE 3 | SERS AgNPs and its characterization. (A) Transmission electron microscopy image of AgNPs. (B) The UV-Vis spectra of AgNPs. (C) Raman spectrum
of AgNPs.

FIGURE 4 | The spectrum of healthy tissue samples, with and without AgNPs, respectively. (A) Raman spectra peaks of healthy samples without AgNPs did not
appeared. (B) The SERS characteristic peaks of healthy samples were obvious, which further proved that AgNPs was effective.

back to zero absorbance, the peak locations remained unchanged,
and the peak shapes were more prominent, which indicated the
effectiveness of the baseline correction methods.

As shown in Figure 6, many SERS peaks can be clearly
observed. In detail, the peaks at 319, 957, 1,026, 1,165, 1,242,
and 1,325 cm−1 were indicators of cellulose, corresponding to
C-C-C or C-O-C skeletal bending (Szymanska et al., 2011), C-C

or C-O stretching vibration (Beć et al., 2020), C-C or C-O
stretching vibration (Beć et al., 2020), H-C-C or H-C-O skeletal
bending (Edwards et al., 1997), C = O stretching vibration (Beć
et al., 2020), and C-H bending vibration (Edwards et al., 1997),
respectively. The peaks at 625, 731, 1,599, and 2,939 cm−1

were indicators of lignin, corresponding to skeletal bending
(Agarwal et al., 2011), skeletal bending (Agarwal et al., 2011), C-C
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FIGURE 5 | The sketch represents the basic principle of the spectral data cube and shows the raw spectra and spectral imaging of three types of samples.

FIGURE 6 | Spectral baseline correction. (A) Baseline correction using MSBC. (B) Baseline correction using AsLS. (C) Baseline correction using air-PLS. The blue
line represents the original spectrum, the red line represents the estimated baseline, and the yellow line represents the corrected spectrum.

aromatic ring (Agarwal, 2006), and C-H asymmetric stretching
vibration (Gierlinger and Schwanninger, 2007), respectively.
The assignment of characteristic wavenumbers was presented
in Table 1.

Selecting Optimal Preprocessing Method
The correlation analysis method was adopted to select the best
preprocessing algorithms. The correlation between the corrected
variables was plotted in Figure 7. Significantly, the regions close
to the line y = x had a correlation coefficient of 1, indicating that
the original spectra were greatly disturbed by the baseline offset.
This high degree of collinearity would cause adverse effects on
classification analysis. Comparing Figures 7B–D with Figure 7A,
the regions with a high degree of collinearity have a noticeable
decrease, and most of the spectral variables had low correlation
with others except in the spectral ranges of 300–400, 640–880,
and 1,490–1,970 cm−1. In addition, the proportion of pixel

points with values greater than 0.6 to the total pixel points was
calculated, and the proportions were 0.35, 0.09, 0.24, and 0.07,
respectively. The AsLS method failed to effectively fit the baseline
at 1,200–1,600 cm−1, resulting in a relatively poor result of
baseline correction. This result indicated that the MSBC and air-
PLS baseline offset elimination strategies could greatly reduce the
high correlation levels among spectral variables, and especially,
the air-PLS algorithm had the best elimination effect. Therefore,
the spectra corrected by the air-PLS algorithm were used for
further analysis.

Clustering Visualization by Principal
Component Analysis
As an unsupervised learning strategy, PCA was often used to
demonstrate the clustering effect based on the samples’ similarity
of samples in the feature space. In the present research, PCA was
performed on the raw spectra of the total sample set to visualize
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TABLE 1 | Assignment of characteristic wavenumbers.

Wavenumber Assignment Biological
components

References

319 C-C-C or C-O-C
skeletal bending

Cellulose Szymanska et al. (2011)

625 Skeletal bending Lignin Agarwal et al. (2011)

731 Skeletal bending Lignin Agarwal et al. (2011)

957 C-C or C-O stretching
vibration

Cellulose Beć et al. (2020)

1,026 C-C or C-O stretching
vibration

Cellulose Beć et al. (2020)

1,165 H-C-C or H-C-O
skeletal bending

Cellulose Edwards et al. (1997)

1,242 C = O stretching
vibration

Cellulose Beć et al. (2020)

1,325 C-H bending vibration Cellulose Edwards et al. (1997)

1,599 C-C aromatic ring Lignin Agarwal (2006)

2,939 C-H asymmetric
stretching vibration

Lignin Gierlinger and
Schwanninger (2007)

the distribution of healthy, disease-1, and disease-2 samples.
The score scatters plot of clustering analysis were shown in
Figure 8. PC1, PC2, and PC3 provided 51.74, 15.01, and 11.56%
of the variations among samples, respectively. The cumulative
contribution of the first three PCs achieved 78.31%. Figure 8

demonstrated that the healthy, disease-1, and disease-2 samples
had obvious clustering effects. Therefore, the three types of
samples had distinct spectral characteristics.

Optimal Variables Selection
There were 1,401 variables in the SERS spectra. However, spectral
data contained many non-critical variables, which might reduce
the accuracy and stability of subsequent discriminant models.
Therefore, selecting optimal variables was essential for better
choices of discriminant models. In the present research, two
strategies were used to select characteristic variables: algorithm
selection (CARS combined with RFrog) and manual selection.

Important variables were extracted from the total 1,401
spectral variables in the full range of 300–3,000 cm−1, as shown in
Figure 9. The selected optimal variable subsets were set to subset-
1 and subset-2, respectively. In the algorithm selection method,
10 wavenumbers at 448, 536, 667, 1,165, 1,211, 1,312, 1,314, 1,412,
1,707, and 2,951 cm−1 in the subset-1 were identified. In the
manual selection method, 10 wavenumbers at 319, 625, 731, 957,
1,026, 1,165, 1,325, 1,460, 1,570, and 2,939 cm−1 in the subset-2
were identified.

Discriminant Models Establishment
Before establishing discriminant models, SERS spectral data were
divided into a calibration set and a prediction set at the ratio

FIGURE 7 | The correlation between the corrected variables was plotted. (A) High correlations were found among original spectral variables. (B) Correlations were
noticeably declined using MSBC. (C) Correlations were noticeably declined using AsLS. (D) Correlations were noticeably declined using air-PLS. However, the
air-PLS algorithm has the best elimination effect.
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FIGURE 8 | Score plots of first three PCs from PCA on spectral data of the
three types of samples.

FIGURE 9 | The characteristic variables for early disease detection of the AVC
disease. Two strategies were used to select characteristic variables: algorithm
selection (subset-1) and manual selection (subset-2).

of 3:1. Generally, the independent variable (x) represented the
spectral matrix of samples, and labeled grades (y) stood for
the AVC infection severities. Therefore, the labels for healthy,
disease-1, and disease-2 were 1, 2, and 3, respectively. BP-
ANN, ELM, RForest, and LS-SVM models were established using
four variable matrices (x) to classify the healthy, disease-1, and
disease-2 samples. These four variable matrices (x) included the
full SERS spectra, the subset-1, the subset-2, and the predicted
fluorescence baselines.

After formula calculation and experience screening, the
learning rate of the BP-ANN model was set uniformly to 0.1, and
the number of neurons in the hidden layers were 10, 3, 3, and
10, respectively. The number of neurons in the hidden layer of
the ELM model was determined by comparing the performances
of the ELM model using different numbers of neurons from 1 to
100 with a step of 1. The ELM with 34 neurons was selected as
the optimal model. The number of decision trees in the RForest

model was determined by comparing the model performances
using different numbers of decision trees from 1 to 500 with a
step of 1. The RForest with 100 decision trees was selected as
the optimal model. The LS-SVM model used RBF as the kernel
function, and the optimal penalty coefficient (c) and the kernel
function parameter gamma (g) were obtained by a grid search
procedure. Finally, the best-c was 379, and the best-g was 45.

The discriminant accuracy of the models was presented in
Table 2. There were significant differences in the classification
results of the four models on the full spectra dataset. The
classical BP-ANN model learned complex relationships between
data, thus improving the analytical performance (such as high
sensitivity and specificity) of classification. However, the BP-
ANN model had the regrettable tendency to train toward a
local optimal rather than a global optimal (Lussier et al., 2020).
This also explained why the BP-ANN model had the lowest
classification accuracy on the full spectra dataset compared to
the other three models. As opposed to the BP-ANN model, the
LS-SVM model was deterministic and its solution was global
and unique. As a result, the classification accuracy of the LS-
SVM model improved significantly compared to the BP-ANN
model. In the present case of the RForest model, each tree selected
features maximize the separation of the dataset into three classes.
The output of each decision tree was then pooled, leading to the
final optimal classification result. Therefore, the RForest model
also exhibited excellent analytical performance comparable to
the LS-SVM model.

Compared with the full spectra dataset, over 99% of non-
critical input variables (10 vs. 1401) were removed in subset-1
and subset-2. Meanwhile, the classification accuracy of the subset
models was not decreased significantly, which demonstrated
the superiority of the optimal variable selection strategies.
Generally, the fluorescence baselines reduced the simplicity
and robustness of a calibration model built on the raw
spectra. The existing studies by other scholars had removed
the fluorescence baseline from the raw data. However, the
classification accuracy of the models based on the fluorescence
dataset was surprisingly excellent in the present research. When
infesting the phloem tissue, fungus Valsa mali produced various
chemical substances such as protocatechuic acid, isocoumarin,
and phlorizin. Although these chemical substances produced
fluorescence interference, the baseline reflected the chemical
composition and content information. Thus, the fluorescence
baseline became available as valid information. This innovative
discovery will guide our subsequent research.

TABLE 2 | The discriminant accuracy of the models.

Models Discriminant accuracy (%) Running
time (s)

Full SERS
spectra

Subset-1 The subset-2 Predicted
fluorescence

baselines

BP-ANN 86.22 93.17 92.42 91.80 0.28

ELM 92.36 85.35 88.93 95.39 0.01

RForest 98.46 96.67 95.87 99.57 0.15

LS-SVM 98.86 94.49 95.48 98.04 0.91

Frontiers in Plant Science | www.frontiersin.org 9 March 2022 | Volume 13 | Article 802761

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-802761 February 28, 2022 Time: 19:26 # 10

Fang et al. SERS for Apple Valsa Canker Detection

FIGURE 10 | Chemical distribution images of phloem samples based on SERS spectroscopy. (a–c) The optical micrographs of the phloem tissues taken from the
branches of three trees. (d–f) The chemical imaging results based on the cellulose signature peak at 300–550 cm−1. (g–i) The chemical imaging results based on
the lignin signature peak at 1,600 cm−1.

However, the above three methods mainly focused on
feature extraction, optimal parameters, and optimal variables
selection without considering the model runtime, which was also
crucial for intelligent online detection, were not investigated.
Furthermore, the intelligent online detection would be an
important research direction in plant disease detection fields. The
ELM model randomly generated the hidden node parameters
and then analytically determined the output weights instead of
iterative tuning (Huang et al., 2006). Thus, the ELM model
runs quickly and lends itself to real application scenarios,
which is very important for intelligent online detection. As
seen in Table 2, the ELM model ran as fast as 0.01 s, far
better than the other three methods. The LS-SVM model first
used the grid search method to select the best-c and best-g,
severely delaying the discriminatory efficiency and making the
run time as high as 0.91 s. Therefore, the ELM algorithm can
be considered as the detection model in the subsequent online
detection study.

Chemical Imaging Analysis of the
Disease-Health Junction
The SERS micro-spectral image data cube of each phloem
sample was processed by the air-PLS algorithm to eliminate
fluorescence baseline, and the parameter values were consistent
with section “Overview of Surface-Enhanced Raman Scattering
Spectra.” Then the processed micro-spectral cube in a pixel-wise
manner generated chemical distribution images in Figure 10. The
symmetric tensile vibration at 1,600 cm−1 in lignin was identified
as the characteristic peak of lignin components, while the bands
at 300–550 cm−1 were contributed by cellulose. Therefore, these
images were constructed based on the cellulose signature peak at
300–550 cm−1 and lignin signature peak at 1,600 cm−1.

Due to the fact that cell walls were probed in phloem
tissues, the spectra collected did not contain any intracellular
signals. Figures 10a–c showed the optical micrographs of the
phloem tissues taken from the branches of three trees. The
chemical imaging results based on the cellulose signature peak
at 300–550 cm−1 were shown in Figures 10d–f. The redder-
colored the pixels, the stronger the spectral signals of the
chemical component. Meanwhile, the bluer-colored the pixels,

the weaker the spectral signals. It can be noticed that the SERS
signal at the healthy tissue exhibited high intensity with red,
bright yellow, and green pixel colors. The diseased phloem
tissue exhibited low intensity with blue and green pixel colors,
and the disease-health junction exhibited green pixel colors.
These differences in SERS imaging of different regions can be
attributed to differences in cell wall components. The chemical
imaging results based on the lignin signature peak at 1,600 cm−1

were shown in Figures 10g–i, showing a similar pattern as
the cellulose distribution. The different regions of the phloem
tissue shown a distinct distribution of cellulose and lignin, and
the observations here were in good agreement with optical
micrographs. The results suggested that cellulose and lignin
in the cell walls of infected tissues reduced significantly. It
also confirmed previous research (Ke et al., 2013) that cell
wall degrading enzymes were considered to play an important
role in fungal infection. Therefore, Raman microimaging was
capable of detecting AVC at early infection stages. It is worth
noting that Raman microimaging can visualize the intensity
and distribution of components of the cell walls in situ
through cytological observations. Meanwhile, this rapid and
non-invasive chemical imaging strategy is superior to the other
methods, such as the reagent staining method and transmission
electron microscopy.

CONCLUSION

In this study, SERS spectroscopy combined with chemometric
methods was applied for early detection of the AVC disease.
Firstly, three spectral preprocessing algorithms were compared,
and the air-PLS algorithm was considered effective in removing
the spectra fluorescence background. Thereafter, PCA provided
a good clustering effect to visualize the distribution of samples
in three classes. Two strategies selected optimal variables to
develop machine learning models for detecting AVC disease,
and these models exhibited excellent analytical performance.
Meanwhile, the classification accuracy of the models based on the
fluorescence dataset was surprisingly excellent, which was a great
inspiration. Besides, this study proposed a new strategy for SERS
chemical imaging of the diseased apple phloem tissues using
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a non-destructive, label-free method. This chemical imaging
provided the spatiotemporal dynamic characteristics of changes
in the cellulose and lignin of the phloem disease-health junction
under fungus stress, which would be helpful in the early AVC
detection and analysis of disease dynamics.
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