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The common method for evaluating the extent of grape disease is to classify the disease 
spots according to the area. The prerequisite for this operation is to accurately segment 
the disease spots. This paper presents an improved DeepLab v3+ deep learning network 
for the segmentation of grapevine leaf black rot spots. The ResNet101 network is used 
as the backbone network of DeepLab v3+, and a channel attention module is inserted 
into the residual module. Moreover, a feature fusion branch based on a feature pyramid 
network is added to the DeepLab v3+ encoder, which fuses feature maps of different 
levels. Test set TS1 from Plant Village and test set TS2 from an orchard field were used 
for testing to verify the segmentation performance of the method. In the test set TS1, the 
improved DeepLab v3+ had 0.848, 0.881, and 0.918 on the mean intersection over union 
(mIOU), recall, and F1-score evaluation indicators, respectively, which was 3.0, 2.3, and 
1.7% greater than the original DeepLab v3+. In the test set TS2, the improved DeepLab 
v3+ improved the evaluation indicators mIOU, recall, and F1-score by 3.3, 2.5, and 1.9%, 
respectively. The test results show that the improved DeepLab v3+ has better segmentation 
performance. It is more suitable for the segmentation of grape leaf black rot spots and 
can be used as an effective tool for grape disease grade assessment.

Keywords: grape black rot, semantic segmentation, DeepLab V3+ , channel attention, feature pyramid network

INTRODUCTION

Grapes are one of the most grown economic fruits in the world. Grapes are often used in 
the production of wine, fermented beverages, and raisins (Kole et  al., 2014). In the cultivation 
of grapes, the larger the area planted, the larger the scale of damage when a disease occurs 
as well as the greater the economic losses caused. Black rot, which is a fungal disease, is 
one of the most important grape diseases in the world (Molitor and Berkelmann-Loehnertz, 
2011). Black rot spots are black in color and have a small spot area compared to grape 
leaves. Generally, the assessment of black rot damage on grapes is done by judging the size 
of the spot on the leaves. This operation is currently performed mainly by hand. However, 
the manual assessment of spot size and leaf damage area is highly subjective, difficult to 
quantify, and inefficient. The use of computers and image processing techniques for the 
identification and segmentation of black rot spots on grapevine leaves can facilitate rapid and 
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accurate assessment of damage for targeted treatment, which 
is important for ensuring grapevine yield and growers’ 
economic incomes.

The methods of image segmentation have experienced three 
basic stages from classic segmentation methods, machine learning 
method, and deep learning method with the development of 
image processing and computer technology. These methods 
have been applied in agricultural disease detection. The classical 
image segmentation, such as threshold segmentation (Mehl 
et  al., 2002; Kim et  al., 2005), usually uses color and texture 
features (Samajpati and Degadwala, 2016) to separate the disease 
spots from the background. Chaudhary et al. (2012) transformed 
the RGB image into CIELAB, HIS, and YCbCr color space 
according to the different color features between the disease 
spots and leaf, respectively. Then the disease spots were segmented 
with threshold calculated by the OTSU method based on color 
features. Ma et  al. (2017) achieved segmentation of disease 
spots from the background by fusion features of the super 
red index, the H-component of HSV, and the b-component 
of color space for the greenhouse vegetable images with 97% 
accuracy. Jothiaruna et  al. (2019) proposed a method that 
integrated color features and region growing for the segmentation 
of leaves disease spots with an average segmentation accuracy 
of 87%. Sinha and Shekhawat (2020) segmented peacock disease 
spots on olive leaves according to the different textures of the 
leaves and spots, and the purpose of disease detection was 
realized. The classical image segmentation methods require 
high image quality, and the recognition result will be  poor 
or even invalid if the environmental conditions changed when 
the image acquiring. Therefore, the generality and robustness 
of those methods are unsatisfactory, and the accuracy in practical 
application is not guaranteed.

With the development of machine learning, many researchers 
began to try to apply it to disease spots segmentation to 
improve the accuracy and robustness of segmentation. Zhou 
et  al. (2014) inputted the color histogram of the image into 
the support vector machine (SVM) model to segment the 
Cercospora disease spots for sugar beet, and the average accuracy, 
recall, and F value were more than 0.87. Bai et  al. (2017) 
used a fuzzy C-means algorithm for segmentation of cucumber 
leaves spots disease in complex backgrounds, and the 
experimental results showed that the average error did not 
exceed 0.12%. Pan et  al. (2019) segmented pear blackspot 
disease in hyperspectral images using SVM with an overall 
accuracy of 97.5%. Singh (2019) applied a particle swarm 
optimization algorithm for the segmentation of downy mildew 
spots in sunflower leaves with an average accuracy of 98%. 
Appeltans et  al. (2021) removed soil pixels from hyperspectral 
images by linear discriminant analysis classification and used 
a logistic regression supervised machine learning classifier for 
pixel classification of leek leaves to segment the spots of leek 
white tip disease with an accuracy of 96.74%. Machine learning 
methods can achieve satisfactory segmentation results using 
small sample size, but these methods require multiple steps 
of image preprocessing and are relatively complex to execute. 
In addition, the machine learning-based segmentation methods 
are relatively weakly adapted to unstructured environments 

and need researchers to manually design feature extraction 
and classifiers, which makes the work more difficult.

With the improvement of computer hardware performance, 
deep learning has been developed rapidly (Lecun et  al., 2015). 
Common deep learning algorithms are full convolutional  
neural network algorithm (FCN; Long et  al., 2015), DeepLab 
(Chen et al., 2017), U-Net (Ronneberger et  al., 2015), V-Net 
(Milletari et  al., 2016), USE-Net (Rundo et  al., 2019), SegNet 
(Badrinarayanan et  al., 2017), etc. Lin et  al. (2019) designed 
a semantic segmentation model based on convolutional neural 
network (CNN) for pixel-level segmentation of cucumber leaves 
powdery mildew disease spots, which provided a valuable tool 
for cucumber breeders to assess the severity of powdery mildew. 
Jiang et al. (2020) combined deep learning and SVM to segment 
the leaves disease images of four rice species with an accuracy 
of 96.8%. Wang et  al. (2021) used DeepLab v3+ and U-Net 
methods to segment disease spots from cucumber leaves, and 
calculate their damage levels with an average accuracy of 
92.85%. Lin et  al. (2019) constructed a U-Net-based semantic 
segmentation model for cucumber powdery mildew spots 
segmentation with an average accuracy of 96.08%. Wspanialy 
and Moussa (2020) used U-Net neural network for segmentation 
of tomato leaves and spots in leaves with an average accuracy 
of 98% and then assessed the disease hazard level. Hu et  al. 
(2021) segmented tea leaves and disease spots using a CNN 
and assessed the damage level. Liang et al. (2019) used PD2SE-Net 
neural network to segment plant disease spots areas and assessed 
their damage levels with an overall accuracy of more than 
91%. The deep learning approach has all the work done by 
the CNN, which does not require too much pre-processing 
process or artificial selection of potential features compared 
to classical image processing methods and machine learning 
methods. The deep learning approach not only reduces the 
difficulty of plant leaves spots segmentation but also has higher 
accuracy and robustness.

Our group has developed a method to improve the recognition 
accuracy for grape leaf black rot by combine image enhancement 
technology and a deep learning network (Zhu et  al., 2021). 
It can recognize the disease spots and calculate the number, 
but cannot segment the disease spots from the background. 
To realize the spot segmentation of grape leaf black rot, this 
paper designs a CNN based on an improved DeepLab v3+.

MATERIALS AND METHODS

Dataset and Test Environment Setup
The open dataset Plant Village (Hughes and Salathe, 2016) 
was used to perform experiments in this work, which provides 
symptoms of 26 common diseases on leaves of 14 plant species 
with a total of 54,309 RGB images. We  selected 1,180 images 
of grape leaves infected with black rot as test subjects, and 
all these images were confirmed by researchers studying grape 
diseases. The selected images were taken in an indoor 
environment with a uniform gray background, and each image 
included only one frontal view of a grape leaf with 256 × 256 
pixels. The areas of disease spots were manually labeled by 
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LabelMe (Russell et  al., 2008) software. The average number 
of diseases present in an image was around 15, with more 
than 17,000 segmentation targets present in total. Before the 
experimental training, 1,180 data images were divided into 
training and test sets, and 1,072 images were selected for 
training the network and 108 images were selected as the test 
set for evaluating the network, which was named TS1. 
Furthermore, to increase the credibility of the model, a large 
number of images of grape leaves with disease spots from 
orchard sites were collected via the Internet. A total of 108 
images of grape leaves with black rot spots in natural 
environments were selected by researchers studying grape 
diseases for an extra test set, which was named TS2. During 
the process of network training, the training set was divided 
into two parts in the form of training and validation data. 
The division ratio of training and validation data was 9:1. The 
training data were used for model fitting, and the validation 
data were used to adjust the super parameters of the model 
and to preliminarily evaluate the ability of the model. The 
test set was used to evaluate the generalization ability of the 
final model. In this study, the number of epochs was 120, the 
input batch was four, the learning rate was 0.001, and the 
size of the input image was 512 × 512. The VOC 2007 dataset 
format was used for the dataset. The experiments were conducted 
on Windows 10 with the Pytorch deep learning framework. 
The test computer contained an 8 GB GPU GeForce GTX 
1070Ti and an AMD Ryzen 51600X Six-Core processor. Python 
language was used for programming.

Segmentation Method of Grape Leaf Black 
Rot Spots
To improve the segmentation performance of grapevine leaf 
black rot spots, a deep learning network based on the DeepLab 
v3+ was constructed. It is the third version of DeepLab, with 
high segmentation effectiveness and speed. In the improved 
DeepLab v3+ network constructed in this paper, the residual 
part in the backbone network ResNet101 incorporates a plug-
and-play attention mechanism module. This improves the 
performance of various CNNs without increasing the complexity 
of the model. Moreover, a feature fusion branch based on a 
feature pyramid network (FPN) was added to the DeepLab 
v3+ encoder, which performs feature fusion on high-resolution 
and low-resolution feature maps. Finally, in the improved 
DeepLab v3+, one 4-fold up-sampling is replaced with two 
2-fold up-sampling. Furthermore, the continuity of pixels in 
the obtained images is stronger and the network segmentation 
effect is improved.

Channel Attention Module
The efficient channel attention (ECA; Wang et  al., 2020) module 
is a local cross-channel interaction strategy without dimensionality 
reduction, which can be  efficiently implemented via 
one-dimensional (1D) convolution. The ECA module is obtained 
by improving on Squeeze-and-Excitation (SE; Hu et  al., 2020), 
which is an effective channel attention learning method. It predicts 
a weight to be weighted for each output channel. The SE method 

first uses global average pooling (GAP) for each feature channel 
individually to reduce the two-dimensional feature channel to a 
real number. Then, two fully-connected layers capture the non-linear 
cross-channel interaction. Finally, a Sigmoid function generates 
the channel weights with a value between 0 and 1. This weight 
is added to the feature channel as a weight to generate the next 
level of input data. The characteristic of SE is to use the correlation 
between channels instead of the correlation in the spatial 
distribution. By controlling the magnitude of the weight, the 
important features are enhanced and the unimportant features 
are weakened so that the extracted features are more directional. 
Compared with SE, the improvement of ECA is that the GAP 
operation of feature channels does not reduce the dimensionality. 
Instead, it captures local cross-channel interaction information 
by considering each channel and its K nearest neighbors. The 
ECA module can be  used as a very lightweight plug-and-play 
module to improve the performance of various CNNs (Gao et al., 
2020; Wang et  al., 2020). Its implementation process is shown 
in Figure  1. The blue part uses GAP to aggregate convolutional 
features without performing dimensionality reduction operations. 
The ECA module can be  efficiently implemented via a 1D 
convolution of size k, where the size of the convolution kernel 
k represents the coverage of local cross-channel interaction, that 
is, how many neighbors near the channel participate in the 
attention prediction of this channel. Wang et  al. (2020) studied 
the k value of the CNN network with ResNet-101 as the backbone, 
and the k of the ECA module was set to 3, 5, 7, and 9 for 
training. The accuracy value was used to evaluate the effect of 
k. The experimental results showed that the accuracy was 78.47%, 
78.58%, 78.0%, and 78.57% corresponding to the k value of 3, 
5, 7, and 9, respectively. Therefore, k was set to 5  in this paper. 
The yellow part is the result of implementation via 1D convolution, 
and then the Sigmoid function can be  used to generate the 
channel weights to obtain the normalized weights between 0 
and 1. Finally, the original feature image X, whose matrix size 
is H × W × C, is multiplied by the weight generated by the Sigmoid 
function to obtain a new feature image X′, and the matrix size 
is H × W × C.

In this method, the backbone network of DeepLab v3+ is 
constructed using ResNet101, and an ECA module is inserted 
into the residual (Bottleneck; He et  al., 2016) module of 
ResNet101. This method can realize the adaptive adjustment 
of the convolution kernel size in the channel of each residual 
block. The purpose is to improve the segmentation effect of 
the model. Figure 2 shows a schematic diagram of the insertion 
of ECA in the residual module of ResNet101.

Feature Fusion Branching Based on a FPN
In the process of learning image features by CNNs, the resolution 
of the image is gradually reduced due to the deep convolution 
operation, resulting in low-resolution deep features at the output. 
In this way, there will be  recognition errors for objects with 
a relatively small proportion of pixels in the image. The accuracy 
of multi-scale detection can be  improved if the features at 
different levels of the network training process can be combined. 
An FPN (Lin et  al., 2017) is a method that can fuse the 
feature maps of different layers. Feature maps that can reflect 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yuan et al. Deep-Learning for Disease Spot Segmentation

Frontiers in Plant Science | www.frontiersin.org 4 February 2022 | Volume 13 | Article 795410

semantic information at different scales can be obtained through 
the fusion of FPNs. The feature fusion process of feature 
pyramids is shown in Figure  3. As shown, the left side is the 
feature maps of three different layers, whose resolutions become 
smaller from the bottom to the top. The middle part is the 
FPN, which can up-sample the deep-level features to convert 
them to the size of the shallow-level feature map and then 
fuses them with the shallow-level features. The right side is 
the feature map obtained after the FPN, which contains not 
only the deep level features but also the features of different 
levels. Here, the feature maps generated by Block3 and Block2 in 
the backbone network ResNet101 of DeepLab v3+ were fused. 
The feature map sizes of Block3 and Block2 were 1/16 and 
1/8, and the number of channels was 1,024 and 512. In the 
FPN, the feature maps in Block3 and Block2 were subjected 
to 1 × 1 convolutional dimension reduction. The number of 
feature map channels in Block3 was changed from 1,024 to 
256, and the number of feature map channels in Block2 was 
changed from 512 to 256. Then, the feature map of Block3 
was up-sampled by a factor of 2 to change the size of the 
feature map from 1/16 to 1/8. Finally, the feature maps of 
Block3 and Block2 were combined to obtain the fused feature 
maps. The fused feature map has richer semantic and spatial 
information because it contains features from both levels, which 
can improve the segmentation effect of DeepLab v3+ network.

Improved DeepLab v3+ Network Structure
The improved DeepLab v3+ network consists of two parts, 
an encoder and decoder (Chen et  al., 2018), which shows 

in Figure 4. The encoder part trains the network, progressively 
obtains the feature maps, and captures higher-level semantic 
information. The decoder part semantically projects the 
features learned by the encoder part into the pixel space 
to achieve pixel segmentation. In the encoder, the backbone 
network is constructed using ResNet101 and the ECA module 
is inserted in its residual module. Moreover, to enhance 
the semantic information of the feature map, the feature 
maps of Block2 and Block3 of the ResNet101 network are 
fused. Atrous Spatial Pyramid Pooling (ASPP; Chen et  al., 
2018) is connected behind the ResNet101 backbone network. 
Dilated convolution with different sampling rates can 
be  sampled in parallel by ASPP, which is equivalent to 
capturing the context of images at multiple scales. Dilated 
convolution (Yu et  al., 2017) adds atrous to the convolution 
map during the convolution operation to expand the reception 
field so that each convolution output can contain a larger 
range of information. In addition to the convolution kernel, 
the dilated convolution also has a hyper-parameter dilation 
rate. It refers to the number of intervals between the 
convolution kernel during convolution mapping, that is, the 
number of atrous inserted. Figure  5 shows the execution 
process of convolution. Here, Figure  5A is the standard 
convolution process and Figure  5B is the process of 
dilated convolution.

The encoder module has three outputs. The first is the 
low-level feature (LF) output by Block1  in the backbone 
network. The second is the fusion feature (FF) of Block2 and 
Block3 output by the FPN. The last one is the high-level 

FIGURE 1 | Efficient channel attention module.
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feature (HF) output by the ASPP module after 1 × 1 convolution. 
High-level feature output concatenates to FF after it has 
undergone 2-fold up-sampling, and then the second 2-fold 
up-sampling is performed. The result of this operation is 
concatenated to the LF, which has been convoluted by 1 × 1 
convolution. A 3 × 3 convolution is performed after the above 
operation, and then a single four-fold up-sampling is performed. 

Then, the dense classification of pixels is obtained, which is 
image segmentation.

Parameters Setting of Improved DeepLab 
v3+ Network
The stochastic gradient descent method was applied to the 
end-to-end training of the deep learning network, and the 

FIGURE 2 | Application of the ECA module in residuals.

FIGURE 3 | Feature pyramid execution process.
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loss function was set to Dice_Loss as shown in Equation (1). 
The weight decay rate was set to 0.001, and the kinetic energy 
factor was set to 0.8. The initial learning rate was set to 0.001, 
the learning rate decay mode was exponential decay, and the 
Batch_size was set to 4. The maximum iteration period (Epochs) 
was set to 120, and the network input size was set to 512 × 512. 
The data set was stored in the format of the VOC 2007 data 
set, and pre-trained model weights were loaded in the experiment 
to speed up the convergence of the model.

 
Dice Loss FP FN

FP TP FN
_ =

+
+ +2   

(1)

where TP represents the true positives, indicating that the 
black rot area of grape leaves automatically segmented by the 

model overlaps with the real disease area; FP represents the 
false positives, indicating that the model misidentified the 
background area as a black rot spot area and segmented it; 
TN represents the true negatives, indicating that the model 
identified the real background area as the background area; 
and FN represents the false negatives, indicating that the 
model misidentified the real black rot area as the 
background area.

Evaluation Indicators
In this study, to evaluate the performance of the improved 
DeepLab v3+ network segmentation, the mean intersection 
over union (mIOU), the dice coefficient (Dice), the pixel 
accuracy (ACC), precision (P), recall (R), and F1-score were 
selected as evaluation metrics.

FIGURE 4 | Improved DeepLab v3+ network structure.

A B

FIGURE 5 | Convolution execution process. (A) Standard convolution work process, (B) The dilated convolution work process.
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The mIOU is a common evaluation metric in semantic 
segmentation methods. In semantic segmentation, the predicted 
and true regions are obtained by pixel operation, and Equation 
(2) is as follows:

 

mIOU
p

p p p

ii=
+ −=

= =

∑
∑ ∑

1

2
0

1

0

1

0

1
i

j
ij

j
ji ii

  

(2)

where pij denotes the number of pixels that originally belonged 
to class i but are predicted to be class j, pii denotes the number 
of pixels whose true label is class i predicted to be  class i, 
and pji denotes the number of pixels that originally belonged 
to class j but are predicted to be  class i. In this study, the 
pixels in each image were classified into two classes: black rot 
spots and background.

The Dice value is usually used to calculate the similarity 
of two samples, and the value range is (0,1). A Dice value 
close to 1 indicates a high set similarity, that is, the target is 
better segmented from the background; while a Dice value 
close to 0 indicates that the target cannot be effectively segmented 
from the background. The dice value equation is as follows:

 
Dice TP

FP TP FN
=

+ +
2
2  

(3)

The ACC is the ratio of the number of correctly predicted 
pixels to the total number of pixels in the category, and its 
equation is as follows:

 
ACC TP TN

TP FN FP TN
=

+
+ + +   

(4)

The P, R, and F1-score were calculated by the following  
equation:

 

P TP
TP FP

R TP
TP FN

F score P R
P R

=
+

=
+

− = ×
+













 1 2

·

  

(5)

Comparison of the Effects of Different 
Improvements of DeepLab v3+
To verify the effectiveness of the neural network constructed 
in this paper for grape leaf spot segmentation, eight sets of 
comparison experiments with different improvements were 
designed. These eight different improvements were named from 
Imp1 to Imp8, as shown in Table 1. In Imp1, the three dilated 
convolutions of the ASPP model of the original DeepLab v3+ 
network were modified to four dilated convolutions, and their 
dilated rate sizes were 4, 8, 12, and 16, respectively. Theoretically, 
the increase of dilated convolutions and the change of dilated 

rate sizes will improve the fusion effect of semantic features. 
In Imp2, the ResNet 101, backbone of the DeepLab v3+, was 
replaced with Wide ResNet (Zagoruyko and Komodakis, 2016), 
which can improve the network segmentation performance by 
changing the width of the network without changing the network 
depth. The residual module of the backbone ResNet101 was 
inserted into the ECA module in Imp3, and the ECA model 
can adaptively adjust the convolutional kernel size in each 
channel of the residual block, which can improve the segmentation 
effect of the network. The coding side of the DeepLab v3+ 
network was added with a feature fusion branch based on the 
FPN in Imp4. The FPN can fuse different levels of feature 
maps and can obtain feature maps that can reflect semantic 
information at different scales. In imp5, the ASPP part of 
DeepLab v3+ was combined with DenseNet (Yang et al., 2018) 
to form DenseASPP, and the new module had a larger receiver 
field and more densely sampled points. Imp1, Imp3, and Imp4 
were combined as Imp6. Imp3 and Imp5 were combined as 
Imp7. Imp3 and Imp4 were combined as Imp8, which is the 
improvement method used in this paper.

RESULTS

The Segmentation Results of Improved 
DeepLab v3+ for Grape Leaves Black Rot
The training dataset with annotation information was fed into 
the improved DeepLab v3+ network for training. The network 
was trained for 120 epochs, which required around 8.3 h. During 
the training process, the training model was saved once every 
1 epoch, and a total of 120 completed models were saved. 
The convergence of the model can be  reflected by the loss 
values generated during the training process. Figure  6 shows 
the changes in the loss values of the training data and validation 
data in the training set during the training process. The training 
loss and validation loss gradually converged to stability during 
the training process, and the final training loss and validation 
loss values stabilized at 0.132.

TABLE 1 | Different DeepLab v3+ improvement methods.

Improvement methods Improvement content

Imp1 Modify the three dilated convolutions of ASPP in 
the original network to four dilated convolutions 
with a dilated rate size of 4, 8, 12, and 16, 
respectively

Imp2 Replace the ResNet backbone in the original 
network with wider ResNet

Imp3 Insert the ECA module in the residual module of 
the backbone ResNet101

Imp4 A feature fusion branch based on an FPN is added 
to the coding side of the original network

Imp5 Combine the ASPP part of the original network 
with DenseNet to form DenseASPP

Imp6 Imp1 + Imp3 + Imp4
Imp7 Imp3 + Imp5
Imp8 Imp3 + Imp4
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TABLE 2 | Statistics of the segmentation results of the test set TS1 by the before and after improved DeepLab v3+.

Algorithm
Evaluation indicators

mIOU ACC Dice P R F1-score

DeepLab v3+ 0.823 0.984 0.903 0.949 0.861 0.903
DeepLab v3+ 
(improved)

0.848 0.987 0.918 0.957 0.881 0.918

To verify the performance of the model, the optimal model 
at the end of training was selected to be used for segmentation 
trials on test set TS1. The statistical results of the experiment 
before and after improved DeepLab v3+ are shown in Table 2. 
As can be  seen from Table  2, the improved DeepLab v3+ 
outperforms the pre-improvement DeepLab v3+ in all evaluation 
metrics. In particular, it improved 3.0, 2.3, and 1.7% in mIOU, 
R, and F1-score, respectively. The effects of the segmentation 
are shown in Figure  7.

Figure  8 shows the segmentation results of DeepLab v3+ 
before and after improvement applied to black rot spots of 
grape leaves in test set TS1. Figure  8A shows the original 
image, Figure 8B shows the manually labeled and segmented 
image, Figure 8C shows the segmentation results of DeepLab 
v3+ before improvement, and Figure  8D shows the 
segmentation results of DeepLab v3+ after improvement. The 
blue markers in Figure  8 indicate the small spots targeted 
in the original image that were not identified and segmented 
by the original network model but were correctly segmented 
by the improved network model. The yellow markers indicate 
that the semantic segmentation network correctly identified 
and segmented some small spots in the original image even 
though they were not manually labeled and segmented due 

to human oversight. This also demonstrates that the use of 
deep learning methods can reduce subjective errors caused 
by manual segmentation. The red markers indicate that the 
leaf edges were misidentified as spots and segmented by the 
network model due to shadows. This indicates that there is 
a requirement for background conditions for disease spot 
recognition using deep learning. Furthermore, Figure 8 shows 
that although the improved network model could segment 
the spots at the same location, the improved network model 
was more accurate and the segmented spots overlapped more 
with the actual spots.

Experiments with the Plant Village dataset demonstrated 
that the improved DeepLab v3+, which incorporates an 
attention mechanisms and feature pyramids, could improve 
the segmentation of black rot spots on grape leaves. An 
additional dataset, TS2, with 108 images from photos taken 
in different orchard fields was used for testing to verify 
the effectiveness of the method in an orchard field setting. 
The TS2 dataset was tested experimentally using the DeepLab 
v3+ network before and after the improvement. Figure  9 
shows the experimental results of the DeepLab v3+ algorithm 
before and after the improvement on TS2. Figure  9A is 
the original image, Figure  9B is the unimproved DeepLab 

FIGURE 6 | Improved DeepLab v3+ training results.
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v3+ segmentation result, and Figure  9C is the improved 
DeepLab v3+ segmentation result. To show the network 
segmentation effect before and after the improvement, 
different colors are marked in Figures  9B,C. The yellow 
markers show that the improved network was more 
comprehensive in terms of the segmentation effect. The 
red markers show that the improved network was more 
accurate in segmentation. The blue markers show that the 
improved network was less affected by the background 
under the interference of complex background. The 
experimental results show that the improved DeepLab v3+ 
network performed better than the unimproved DeepLab 
v3+ network. Moreover, comparing the experimental 
segmentation effects shows that the improved DeepLab v3+ 
network can be  applied to an actual orchard situation.

The statistical results of DeepLab v3+ before and after 
the improvement are shown in Table  3 for test set TS2. 

Table  3 shows that the improved DeepLab v3+ did not 
segment as well as TS1 for grape leaf black rot spots in a 
natural environment. This is because the images in TS1 
were indoor environments, and the grape leaves were tiled 
with a single and simple background. In contrast, there 
were negative effects, such as overlapping leaves, gaps formed 
by shading, and lighting in the orchard field environment, 
which caused interference for accurate segmentation. 
Moreover, for large and dense spot areas, the network model 
would segment the dense spot areas as a whole; thus 
incorrectly classifying some backgrounds as spot areas. 
However, segmentation using the improved DeepLab v3+ 
still outperformed the one before the improvement, especially 
reaching scores of 0.756, 0.734, and 0.805  in mIOU, R, and 
F1-score, respectively, which were 3.3, 2.5, and 1.9% higher 
than those before improvement. This indicates that the 
proposed method improves the segmentation performance 

FIGURE 7 | Segmentation effects of the improved DeepLab v3+ on the test set TS1 image. The “a” column is the original image, the “b” column is the labeled 
mask, the “c” column is the segmentation result of the model, and the “d” column is the disease spot extraction result.
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of DeepLab v3+, and its ubiquity and adaptability for 
application in a real environment are better compared with 
the unimproved network model.

Comparison of the Effects of Different 
Improvements of DeepLab v3+
For the above eight DeepLab v3+ improvement methods, the 
same training set was used for training, and the performances 
were tested with the test set TS1. To compare the results of 
different improvement methods, the parameters of the network, 
such as the learning rate, epoch, and batch size, were kept 
consistent during the experiments. The test results are shown 
in Table  4, where the four parameters mIOU, ACC, Dice, P, 
R, F1-score, and Pt are used for comparison. The Pt is the 
storage space occupied by the weight file generated after network 
training. Table  4 shows that the performance indicators of 
the unimproved DeepLab v3+ on the test set TS1 were 0.823, 
0.984, and 0.811 for mIOU, ACC, and Dice, respectively. 

Table  5 shows that, compared with the DeepLab v3+ network 
before improvement, the scores of mIOU, ACC, and Dice 
were higher for the other six of the eight improved methods, 
except for Imp1 and Imp2. Compared with the DeepLab v3+ 
before improvement, Imp3 and Imp4 were 1.6% and 1.3% 
higher in mIOU and 0.5% and 1.3% higher in Dice, respectively. 
This indicates that fusing ECA or adding FPN in DeepLab 
v3+ network could improve the segmentation performance of 
the model. Although the improved method of Imp5 had 
improved mIOU and Dice by 1.4% and 1%, respectively. The 
Pt generated by this method required more memory space 
than that of Imp3 and Imp4. Moreover, Imp6 is a fusion of 
Imp1, Imp2, and Imp3, but its mIOU and Dice were lower 
than Imp3 and Imp4. This shows that the additional change 
of the dilated rate of the dilated convolution did not improve 
the performance of the network, which was consistent with 
the test results of Imp1. Besides, Imp7 is a fusion of Imp3 
and Imp5, because fusing ECA in Imp3 alone or modifying 
ASPP to DenseASPP in Imp5 alone could improve network 

A B C D

FIGURE 8 | A comparison of network training results before and after DeepLab v3+ improvement. (A) The original image, (B) the manually labeled and segmented 
image, (C) the DeepLab v3+ segmentation results, (D) the improved DeepLab v3+ segmentation results.
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performance. Thus, Imp7 scored higher in mIOU than Imp3 
and Imp5, and the Dice value was in line with Imp5 and 
higher than Imp3. However, the introduction of DenseASPP 
led to a larger computation within the network and its obtained 
weight file was relatively large, which was consistent with the 
performance of Imp5. The final improved method adopted in 
this paper was Imp8, which fuses Imp3 and Imp4 and adds 
both ECA and FPN in the DeepLab v3+ network. Here, Imp8 
scored 0.848, 0.987, 0.918, 0.957, 0.881, and 0.918 for mIOU, 

ACC, Dice, P, R, and F1-score, respectively, after the same 
test set test, and it received the highest scores among all eight 
methods. Moreover, its weight file occupied 241,553 kb of space, 
which was in the middle level among the eight improved 
methods. This indicates that the Imp8 method used in this 
paper has a better overall performance compared to other 
improvement methods.

A comparison of the training performance of the 
unimproved DeepLab v3+ and the improved network using 

A

B

C

FIGURE 9 | A comparison of segmentation results of test set TS2 images before and after improvement of DeepLab v3+. (A) The original figure, (B) the 
segmentation results of DeepLab v3+ without improvement, (C) the segmentation results of the improved DeepLab v3+.

TABLE 3 | Statistics of the segmentation results of test set TS2 images before and after DeepLab v3+ improvement.

Algorithm
Evaluation indicators

mIOU ACC Dice P R F1-score

DeepLab v3+ 0.732 0.874 0.845 0.916 0.785 0.845
DeepLab v3+ (improved) 0.756 0.889 0.861 0.925 0.805 0.861
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the Imp8 method is shown in Figure  10. The training set 
loss curves are shown in Figure  10A, where the red curve 
is before improvement and the blue curve is after 
improvement. When training until the model converged, 
the value of the red curve was about 0.17 and the value 
of the blue curve is about 0.132, which indicates that the 
improved model fit better on the training set than before 
improvement. Figure  10B shows the validation set loss 
curves, where the red curve is before improvement and 
the blue curve is after improvement. When training until 
the model converged, the value of the red curve was about 
0.16, while the value of the blue curve was about 0.13, 
which indicates that the generalization ability of the model 
after the improvement was better than that before the 
improvement. Therefore, the improved DeepLab v3+ always 
converged faster and had better model fitting ability than 
the pre-improvement one whether on the training set or 
the validation set.

DISCUSSION

Effect Comparison Between Detection and 
Segmentation for Disease Spots
The grape leaf black rot disease spots can be  recognized in 
the previous research of our group, and the spots were 
accurately segmented from the background in this paper. 
The effect of disease spots detection and segmentation for 
test set TS1 is compared in Figure  11. Figure  11A shows 

TABLE 4 | Comparison of the test results of different improvement methods of DeepLab v3+.

Type
Evaluation indicators

mIOU ACC Dice P R F1-score Pt (kb)

Imp1 0.812 0.982 0.896 0.945 0.852 0.896 572,794
Imp2 0.818 0.982 0.900 0.947 0.857 0.900 554,101
Imp3 0.839 0.985 0.912 0.954 0.874 0.912 232,841
Imp4 0.836 0.987 0.911 0.953 0.872 0.911 241,541
Imp5 0.837 0.986 0.911 0.954 0.873 0.911 310,161
Imp6 0.833 0.986 0.909 0.952 0.869 0.909 241,533
Imp7 0.841 0.986 0.914 0.955 0.876 0.914 310,173
Imp8 0.848 0.987 0.918 0.957 0.881 0.918 241,553

TABLE 5 | Detection statistics results of the two methods for the grape leaves in Figure 11.

Leaf

Number of real disease spots Pixels of real disease spots

Actual number
Detected by the 

detection method
Detected by the 

segmentation method
Actual pixels

Segmented by the 
detection method

Segmented by the 
segmentation method

Left 18 16 18 2,301 / 2,237
Middle 17 10 16 2,328 / 2,228
Right 14 12 12 2,132 / 2,066

The disease spots were manually segmented using LabelMe and then the number of pixels was counted by a self-developed python program. All these operations were carried out 
under the guidance and supervision of the grape disease specialist.

A

B

FIGURE 10 | Comparison of the training results of the network before and after 
the improvement of DeepLab v3+. (A) The training set, (B) the validation set.
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the result of detection using the previous recognition method 
(Zhu et  al., 2021), the number and location of the disease 
spots can be  recognized, but cannot be  segmented from the 
background. Figure  11B shows the result of segmentation 
using the method in this paper. The disease spots are not 
only recognized but also segment from the background 
according to their contour shape. Table 5 shows the detection 
statistics results of the two methods for the grape leaves in 
Figure  11. As shown in Table  5, the segmentation method 
not only recognizes the number of disease spots but also 
obtains the number of pixels of spots. In addition, the 
segmentation method also detects and segments some tiny 
spots, which shows that this method is also better than the 
previous methods in recognition performance.

Comparison of Different Segmentation 
Algorithms
In this paper, DeepLab v3+ was chosen as the base algorithm 
to be  improved for the segmentation of grape leaf black 
rot spots. This choice was based on the comparison of 
three common current mainstream deep learning segmentation 
algorithms. Pyramid Scene Parsing Network (PSP Net; Zhao 
et  al., 2017) and U-Net are the other two common deep 
learning segmentation methods besides DeepLab v3+. PSPNet 
consists of a ResNet backbone that imposes a dilated 
convolution and a pyramid pooling module, which can mine 

global contextual information for fast network training. 
U-Net is an FCN with a simple structure, which can obtain 
very accurate segmentation results using few training images 
and is widely used in medical image analysis.

In this study, these three semantic segmentation networks 
were trained using the same dataset, and segmentation 
experiments of black rot spots were conducted on the test 
set TS1. Figure  12 shows the segmentation results of three 
different networks. As shown, PSPNet could segment the 
black rot spots, but the network performed poorly for the 
segmentation of connected spots, and it mistakenly segmented 
the leaf part between two spots. The segmentation effect of 
U-net was better than PSPNet, which could separate the 
lesion area independently, but the segmentation was not fine 
enough. Improved DeepLab v3+ was better than the other 
two methods.

Table  6 shows the experimental statistical results of the 
different segmentation methods. In terms of ACC, there 
was no significant difference between the three methods, 
but in the mIOU metric, improved DeepLab v3+ was 10.6 
and 4.4% higher than PSPNet and U-net, respectively. In 
terms of the R value, improved DeepLab v3+ was 8.2 and 
3.4% higher than PSPNet and U-net, respectively. The 
experimental results showed that the improved DeepLab v3+ 
had better segmentation performance compared with PSPNet 
and U-net, and the improved DeepLab v3+ could further 
improve the segmentation performance of black rot spots 
on grape leaves.

A

B

FIGURE 11 | The effect comparison between detection and segmentation on diseased spot. (A) The results of disease spots detection, (B) the results of disease 
spots segmentation.
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A

B

C

D

FIGURE 12 | Comparison of the segmentation results of different segmentation algorithms on the test set TS1 images. (A) The original image, (B) the PSP Net 
segmentation and extraction results, (C) the U-Net segmentation and extraction results, (D) improved DeepLab v3+ segmentation and extraction results.

TABLE 6 | Statistical segmentation results of different segmentation algorithms on the test set TS1 images.

Algorithm
Evaluation indicators

mIOU ACC Dice P R F1-score

PSP Net 0.767 0.972 0.868 0.929 0.814 0.868
U-Net 0.812 0.98 0.896 0.945 0.852 0.896
DeepLab v3+ 
(improved)

0.848 0.987 0.918 0.957 0.881 0.918
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CONCLUSION

This paper proposes an improved DeepLab v3+ network model 
for the segmentation of black rot spots on grape leaves. This 
method inserts the ECA module into the residual module of 
the original DeepLab v3+ backbone network. Moreover, a feature 
fusion branch based on a FPN is added at the encoder end. 
One 4-fold up-sampling to two 2-fold up-sampling are modified 
in the original network. To verify the performance of the 
improved network model, two test sets based on Plant Village 
and an orchard field environment were constructed for 
experiments. The experimental results showed that the improved 
DeepLab v3+ network model exhibited better performance on 
both test sets than before improvement, and the improved model 
could be  applied to the segmentation of black rot spots on 
grapes in real production environments. This approach can not 
only provide an effective tool for classifying grape disease extent 
classes but also be  applied to the evaluation of other plant leaf 
and fruit diseases. In future work, we  will attempt to combine 
super-resolution image enhancement with this approach to further 
improve the effect of small target recognition and segmentation.
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