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Temperature is a significant parameter in agriculture since it controls seed germination

and plant growth. Global warming has resulted in an irregular rise in temperature

posing a serious threat to the agricultural production around the world. A slight

increase in temperature acts as stress and exert an overall negative impact on different

developmental stages including plant phenology, development, cellular activities, gene

expression, anatomical features, the functional and structural orientation of leaves, twigs,

roots, and shoots. These impacts ultimately decrease the biomass, affect reproductive

process, decrease flowering and fruiting and significant yield losses. Plants have inherent

mechanisms to cope with different stressors including heat which may vary depending

upon the type of plant species, duration and degree of the heat stress. Plants initially

adapt avoidance and then tolerance strategies to combat heat stress. The tolerance

pathway involves ion transporter, osmoprotectants, antioxidants, heat shock protein

which help the plants to survive under heat stress. To develop heat-tolerant plants

using above-mentioned strategies requires a lot of time, expertise, and resources. On

contrary, plant growth-promoting rhizobacteria (PGPRs) is a cost-effective, time-saving,

and user-friendly approach to support and enhance agricultural production under a range

of environmental conditions including stresses. PGPR produce and regulate various

phytohormones, enzymes, and metabolites that help plant to maintain growth under heat

stress. They form biofilm, decrease abscisic acid, stimulate root development, enhance

heat shock proteins, deamination of ACC enzyme, and nutrient availability especially

nitrogen and phosphorous. Despite extensive work done on plant heat stress tolerance

in general, very few comprehensive reviews are available on the subject especially the

role of microbes for plant heat tolerance. This article reviews the current studies on the

retaliation, adaptation, and tolerance to heat stress at the cellular, organellar, and whole

plant levels, explains different approaches, and sheds light on how microbes can help to

induce heat stress tolerance in plants.
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INTRODUCTION

Crop growth is the function of temperature, soil fertility, and
water status; all at optimum satisfaction. Temperature is the
key determining factor of the vegetation of a particular region
(Argosubekti, 2020) and a balance between optimal temperature
range and time of incidence is important to regulate plant growth.
A slight change/ deviation in the atmospheric temperature, can
disrupt normal biological, structural, and molecular processes
in plants, which ultimately results in stunted growth and
reduced yield (Argosubekti, 2020). Heat stress is an increase in
environmental temperature (above the upper limit of threshold)
for a certain period that can cause irreversible plant damage.
The level of crop adaptation and productivity affected by heat
stress, however, depends upon the temperatures and the phase
of plant development.

The onset of industrial revolution and massive mechanization
has shown a gradual increase in CO2 emissions (30–150%) and
greenhouse effect over the past 250 years (Friedlingstein et al.,
2010) leading to a persistent rise in temperature during the last
two centuries. The global land and ocean surface temperature
increased by around 0.85◦C from 1880 till 2012 and an annual
rise of at least 0.2◦C per decade is further anticipated (Change,
2014) while the greenhouse gases will further add 1.1–1.5◦C to
it. The National Aeronautics and Space Administration (NASA)
released a comparative data of average global temperature
from with a baseline of 1951–1980 (Figure 1) showing that
averagemonthly temperature has increased>1◦C during the past
decade (2000–2020) and >1.5◦C during the past 5 years (2015–
2020). With 1.5–2.0◦C change in the global mean temperature,
the possibility of suffering from record-breaking, high-impact
extreme climate disasters increase significantly, which ultimately
cause a significant yield reduction and food supply chain around
the globe (Chen et al., 2018; Kong et al., 2018). The IPCC
(Intergovernmental Panel on Climate Change) reports that the
world’s major staple crops and food production have a great
impact of climate change (Easterling et al., 2007; Porter et al.,
2014) where an increase of one Celsius atmospheric temperature
costs a decrease of 6% in crop yield (Asseng et al., 2015). In China,
heat stress in the last decade resulted in rice yield losses of 5.18
million tons (Tian et al., 2009) while in South-East Asia upto
14%. In wheat, about 7 million ha in developing countries and 36
million ha in the temperate region had been affected by heat stress
in 2001 (Reynolds et al., 2001) causing a yield reduction of 19
million tons (Lobell and Field, 2007) while USDA (United States
Department of Agriculture) reported ≈5.5% yield reduction in
wheat (Lobell et al., 2011).

Agricultural and global food production is one of the
most fragile sectors of society prone to climate uncertainty
and changes (Meinke et al., 2006). Detailed multi-locational
field analyses have shown that heat and drought stress are
more closely linked. Increased heat imposes the drought stress
hence, both stresses should be considered together rather than
dealing individually. Zia et al. (2021) highlighted the impact of
drought along with possible eco-friendly strategies to improve
plant growth under drought stress, but the eco-friendly heat-
stress management strategies is urgently needed. The plants are

substantially affected by high day, low night or high air and
surface temperatures. Each cultivar has a temperature optima
(threshold) for a significant vegetative and reproductive growth
(Zinn et al., 2010; Hatfield and Prueger, 2015) while growth
ceases above or below the threshold (Kaushal et al., 2016). The
lower threshold temperatures may vary from plant to plant, but
is usually lower for most of the tropical, temperate, and cold
season crops (Miller et al., 2001). Exposure to high temperature,
e.g., 35◦C significantly decreases pollen viability (Dupuis and
Dumas, 1990), replication of amyloplast and cell division and
growth rate ultimately decreasing the size and the total number
of the grains (Commuri and Jones, 2001; Rangan et al., 2014).
Table 1 describes in detail the growth destructive temperatures
of different crops. The higher degree of heat stress (45◦C or
above) disrupts cellular homeostasis, induces extreme growth
retardation, and severely affects the biological activity of proteins
due to aggregation or misfolding rendering cells unable to defend
themselves (Sarkar et al., 2013; Reddy et al., 2016). The deposition
of improper-folded proteins may be permanent that alter the
functioning of the cells.

The heat stress causes direct and indirect damage to multiple
plant functions resulting in morphophysiological changes,
hampering different growth phases and metabolic processes (Wu
et al., 2018) and ultimately yield reduction (Mcclung and Davis,
2010; Grant et al., 2011). The detail the impact of heat stress
on various plant functions at multiple levels has been described
in Figure 2. The direct effect includes; protein denaturation
and misfolding, increased membrane fluidity, the inactivation
of chloroplast and mitochondrial enzymes, inhibition of protein
synthesis and degradation, and loss of membrane integrity
(Howarth, 2005). Indirect impact includes the changes in the
pathogen behavior and disease pattern. Each pathogen has
an optimum temperature for its replication and virulence
(Velásquez et al., 2018), e.g., Globodera pallida nematode infect
potato at 15◦C (Jones et al., 2017), papaya ringspot virus (PRSV)
infect papaya at 26–31◦C (Mangrauthia et al., 2009). It has been
predicted that many diseases will migrate into new geographical
areas as temperatures rise, where they will encounter new
hosts (Etterson and Shaw, 2001), cause severe and frequent
epidemics (Ma et al., 2015), improve their survival under heat
or desiccation, or become dormant for many years (Turkensteen
et al., 2000; Ritchie et al., 2013). Change in the temperature also
changes the pathogen behavior (Roberts et al., 2018), e.g., new
pathogen strains adapted to high temperatures are being reported
which are more active, more virulent, and widely transmitted
worldwide (Hovmøller et al., 2008; Milus et al., 2009), e.g.,
Phytophthora infestans (cause late blight in potato and tomato)
(Mariette et al., 2016) and Puccinia striiformis (rust fungus in
wheat). Even pathogens can cause an outbreak by transient
variations in temperature, e.g., soybean rust can be developed
even after 1-h of exposure at 37◦C, although, the optimum
temperature for disease development is 12–25◦C (Bonde et al.,
2012).

Plant endophytic bacteria have a symbiotic relationship
with their host plant, dwelling within it for the bulk of
their life cycle and having the capacity to colonize the
plant’s interior tissues via penetrating the seed and root.
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FIGURE 1 | Average global temperatures from 1850 to 2025 compared to a baseline average from 1850 to 1900 (A) source: Berkeley Earth (2019); and monthly

global mean temperature 1851–2020 compared to 1850–1900 averages (B) source: Visual Capitalists (2019).

These endophytic microbiomes fixed the atmospheric nitrogen,
produced phytohormones, solubilized the inorganic phosphorus,
zinc, potassium and calcium, produced exopolysaccharides
and iron chelating siderophore compounds under heat stress
condition which ultimately enhance the plant growth (Hakim
et al., 2021). On the other hand, there are also some
beneficial fungi, i.e., arbuscular mycorrhiza fungi (AMF) that
is also help plants under heat stress condition. These AMF
form symbiotic relationship with plant roots and improve
photosynthetic process, increase nutrients uptake, secondary

metabolites accumulation, regulate the oxidative defense system,
and maintain the osmotic balance in plants (Begum et al., 2019).
Plant genetic engineering and maker assisted selection breeding
and multiple approaches have been published multiple reviews
on heat stress and their management which are costly and time
consuming. On the other hand, PGPR is cost-effective, eco-
friendly, and ecologically safe solution to induce heat stress
tolerance. So, current review will give a quick rundown of the
current knowledge about the methods and pathways that PGPR
use to promote tolerance in plants under heat stress. It will also
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TABLE 1 | Growth destructive temperature of different crops.

Plants Exposure time Destructive temperature (◦C) References

Cereal crops

(Triticum aestivum) Wheat 10–15min 45–50 CIMMYT, 2020

(Zea mays) Maize, Corn 10 49–51 Argosubekti, 2020

(Oryza sativa) Rice 10–15min 38–45 Sarsu, 2018

Cash crops

(Gossypium hirsutum) Cotton 30min 40–45 Cotton Info, 2018

(Saccharum officinarum) Sugarcane 20min 50–55 Damayanti and Putra, 2010

Oilseed crops

(Brassica napus) Rapeseed 10min 49–50 Argosubekti, 2020

(Brassica juncea) Mustard 7 days 40–45 Argosubekti, 2020

Vegetables

(Solanum tuberosum) Potato 1 h 42.5 Argosubekti, 2020

(Allium cepa) onion – 30–35 Ikeda et al., 2019

(Cucurbita pepo) Squash 10min 49–51 Argosubekti, 2020

Fruits

(Citrus aurantium) Sour orange 15–30min 50.5 Argosubekti, 2020

(Vitis vinifera) Grape – 65 Argosubekti, 2020

(Solanum lycopersicum) Tomato fruits – 45 Argosubekti, 2020

discuss the heat stress response factors and genes and how PGPR
regulate the expression of such genes to modify plant response
under heat stress.

PLANT RESPONSE TO HIGH
TEMPERATURE

The response of plants toward heat stress varies with the degree
and duration and the plant’s developmental stage (Ruelland
and Zachowski, 2010). These heat stress disorders may be
recurrent or persistent in nature or both, therefore, plants
have evolved different mechanisms to cope with them (Bäurle,
2016). The heat stress response (HSR) is an evolutionarily
conserved mechanism that describes the plant’s adaptation
and induction of thermotolerance by either by activating the
defense mechanisms to stop the disruption at the transcriptomic
level in the cell or by the activation of heat shock proteins
(HSPs), epigenetic pathways, and DNA methylation (Lämke and
Bäurle, 2017). Table 2 describes few major effects of heat stress
on plants.

Morphological Response During Early and
Reproductive Growth
Of all the growth phases, seed germination is the most adversely
affected phase by heat stress, but, the response varies in different
crops or even within varieties (Sita et al., 2017). The germination
is significantly reduced above 45◦C because of denaturation
and embryonic cells (Cheng et al., 2009), along with severe
impact on seedlings potency, the development of radicle and
plumule, and seedling growth (Toh et al., 2008; Sita et al.,
2017). At later stage, the effect varies with the time, length,

and severity of stress (Fahad et al., 2016) but mainly heat
stress decreases the cell water contents, the cell size, the plant
size, growth and biomass, net assimilation rate (NAR) and
relative growth rate (RGR) (Ashraf and Hafeez, 2004; Wahid
and Close, 2007). Other visual symptoms include leaves and
twigs scorching, growth inhibition, damaged leaves, early leaf
senescence, discoloration of fruits/plants (Vollenweider and
Günthardt-Goerg, 2005), reduced number of floret and spikes
(Prasad et al., 2006; Fahad et al., 2016), decrease in the inter-
nodal length (Siddiqui et al., 2015; Gray and Brady, 2016), plant
height, total biomass, and the number of panicles (Modarresi
et al., 2010). At the reproductive stage, one degree rise in
temperature is detrimental because it degenerates mitochondria
and proteins, loss of seed mass, quality, viability and vigor
(Nahar, 2013; Balla et al., 2019).

Physiological Responses
Water and Nutrient Uptake
The heat usually correlates with water because it cause
dehydration in plant tissues especially in tropical and subtropical
ecosystems (Giri, 2013; Giri et al., 2017). High temperature is
lethal under both insufficient (Giri et al., 2017) or sufficient
soil water because it affect the water conductivity and root
permeability (Giri, 2013) which ultimately restrict the water and
nutrients supply to the plant causing starvation and reduced
growth (Wahid et al., 2007; Huang et al., 2016). The exact
basis of the crop nutrient relationships under heat is not clearly
known but overall, it lowers the photosynthesis and water
viscosity and the activity of enzymes, e.g., nitrate reductase that
is involved in the breakdown of nutrients, recycling, absorption,
and accessibility to the plants (Kumarathunge et al., 2019).
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TABLE 2 | Effect of heat stress on different stages of plant growth in major cereals.

Plants Developing stage Temperature Major effect References

(Triticum aestivum) Wheat 60 days after sowing 30/25◦C day/night Reduce leaf size, elongation

of booting stage, heading

stage,

pollination process.

Djanaguiraman et al., 2010

Maturity and Grain filling 37/28◦C (day/night), 20 days Rahman et al., 2009

Decrease the number of

spikelets and reduce

final yield. Early maturation

and grain filling.

Decreased grain weight.

Vegetative stage 25–42.5◦C Reduce CO2 concentration

within plants.

Djanaguiraman et al., 2011

(Oryza sativa) Rice Panicle stage Above 33◦C, 10 days Reduced the rates of pollen

and spikelet fertility.

Hurkman et al., 2009

Reproductive stage 32◦C (night temperature) Enhance pollen sterility,

decrease grain size and

weight which leading to

yield reduction.

Suwa et al., 2010

(Zea mays) Maize, Corn Reproductive stage 35/27◦C (day/night), 14 days Suppress the production of

cellulose and hemicellulose

which leading to a reduction

in photosynthate supply in

plants

Yin et al., 2010

During pre-anthesis and silking onwards 33–40◦C, 15 days Decrease plant growth and

ear formation rate.

Zhang et al., 2013
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FIGURE 2 | Heat stress responses and adaptation mechanisms in plants at different levels.

Photosynthesis
Photosynthesis is among the most thermosensitive pathways
in plants which is adversely affected due to the heat-induced
reduced water contents, numbers of leaves, premature senescence
and cell death (Hu et al., 2020). The major impact is the heat-
induced injury to the photosynthetic machinery, i.e., stroma
and thylakoid lamellae (Kmiecik et al., 2016; Sun and Guo,
2016). This disruption inhibits the thylakoid activity and
the functional efficiency of photosystem II (Morales et al.,
2003). Other plant processes that hamper photosynthesis under
thermal stress include the reduction of photosynthetic pigments
(Marchand et al., 2005), leaf moisture, transpiration rate, low
CO2 concentration and supply to photosystem due to stomatal
closure (Ashraf and Hafeez, 2004), reduction of amino acids,
rubisco binding proteins (Li et al., 2018), carbohydrate depletion
and plant malnutrition due to reduced activity of ADP-glucose
pyro-phosphorylase, sucrose phosphate synthase, and invertase
(Djanaguiraman et al., 2009). The reduction in chlorophyll
pigment is linked with the activity of thylakoid membranes, lipid
peroxidation of chloroplast, and reduced photochemistry (Fv/Fm
ratio) of photosystem II, which ultimately reduce the overall
photosynthesis in crop plants (Mohammed and Tarpley, 2010).

Reduction of chlorophyll may be due to the reduced (about 60–
90%) biosynthesis under high or low temperature, or increased
chlorophyll-pigments degradation, or an accumulative effect of
the two (Hemantaranjan et al., 2014).

Oxidative Damage
Heat exposure stimulates oxidative stress due to the generation
of activated, extremely reactive, and toxic oxygen species. The
reaction of reactive oxygen species (ROS) includes supper oxide
radical (O−

2 ) singlet oxygen (O2), hydroxide ions (hydroxyl)
radical (OH−), and hydrogen peroxide (H2O2) (Marutani et al.,
2012; Suzuki et al., 2012). ROS causes lipid membrane to lose the
ability to regulate substance exchange across the cell membrane
(Suzuki et al., 2012). Oxidative stress enhance peroxidation and
further damage the proteins, lipids, carbohydrates, and DNA
contributing to premature aging (Savicka and Škute, 2010).
Continuous thermal stress increases the ROS deposition in the
plasma membranes with cell membrane depolarization, which
leads to the activation of the RBOHD enzyme (respiratory burst
oxidase homolog protein-D) that produces ROS and initiates
programmed cell death signal (Mittler et al., 2011). The elevated
temperature raises the O2 content in the root by 68%, and leaf
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malondialdehyde (MDA) content by 27% at the early and 58% at
later stages (Medina et al., 2021). Though, the plant has a special
mechanism to avoid unnecessary reactive oxygen species (ROS)
by the production of specific antioxidants.

Respiration
Heat stress affects mitochondrial functions by influencing
respiration. The respiration often rises with increasing
temperature, but at a certain duration of photoperiod, the
respiration process declines due to damage to the respiratory
system (Prasad et al., 2008; Rasmusson et al., 2020). In the
heat-prone varieties under heat stress (35/25◦C day/night) the
respiration rate in the flag leaf of wheat was considerably higher
compared to that of the control (23/18◦C day/night) (Akter and
Islam, 2017). The solubility of O2 and CO2 as well as Rubisco’s
kinetics, loss of respiratory carbon due to heat enhances the ROS
and reduces ATP production and respiration in plants (Cossani
and Reynolds, 2012).

Crop Yield Response
HS induces significant yield reduction mainly due to decrease
in the number, size and quality of grain, starch synthesis
and accumulation, protein concentration, pod, fiber content,
and breakdown of the Ca content (van Es, 2020). HS usually
accelerates the rate of grain-filling but shortens the grain-filling
time leading to significant decrease in grain length, width, and
weight, grain quality (Högy et al., 2013; Lamaoui et al., 2018)
reduced accumulation of storage compounds (Hurkman et al.,
2013) and increased male sterility (Suwa et al., 2010). HS also
increase proteinogenic amino acid and maltose content and
decrease the concentrations of starch, sugars, raffinose, sucrose
and lipids (Vasseur et al., 2011). A slight increase in temperature
(1–1.5◦C) reduces the harvest index and yield up to 10% in
different crops (Table 3) (Tubiello et al., 2007; Ahamed et al.,
2010; Hatfield et al., 2011). Heat-susceptible cultivars show more
yield losses compared with thermo-tolerant cultivars (Ahamed
et al., 2010; Hussain et al., 2019).

PLANT HEAT-ADAPTATION STRATEGIES

Plant HS adaptation involves a variety of strategies and various
processes including basal heat tolerance (BHT), acquired heat
tolerance (AHT), and avoidance (Fitter and Hay, 2012; Bäurle,
2016). BHT is the natural capacity of plants to tolerate heat
while AHT (also called priming or acclimation), is acquired
tolerance via short pre-exposure to heat (Yeh et al., 2012). A
sudden heat exposure results in short-term reaction, i.e., leaves
orientation, osmotic modification, evaporation, and adjustments
in cell membrane structure (Bäurle, 2016; Zhongming and Wei,
2021) whereas, under long-term exposure, multiple adaptation
mechanisms work synergistically to minimize the impact of heat
stress. Heat tolerance involves the activation of some important
immunity pathways, including ions transporters, proteins late
embryogenesis abundant (LEA), phytohormones, antioxidant-
resistance, and factors implicated in transduction signaling
and transcriptional control (Li, 2020; Li et al., 2021). AHT is
distinguished between short-term acquired tolerance (SAT) and

long-term acquired tolerance (LAT) and establish a molecular
stress memory state that protect themselves from acute heat
damage and death (Sani et al., 2013). The stress-sensitive feature
is characterized by an early signal that can be in the form
of anionic and osmotic effects or alterations in membrane
fluidity which restore homeostasis and sustain defective proteins
and membranes (Kumarathunge et al., 2019). Plants HS
avoidance includes long-lasting developmental morphological
and physiological adaptations or short-lived accommodation
strategies (Figure 2), e.g., intensive transpiration from leaves
prevents damage by lowering the temperature of the leaves by
6◦C or even 10–15◦C than the normal temperature (Fitter and
Hay, 2012; Li, 2020). Other plant varieties have special features
that enable them to escape from warm conditions, e.g., having
heat-sensitive buds, leaf abscission, annual desert buds, and by
completing the entire regenerative period during the winter
(Fitter and Hay, 2012). These adaptations are correlated to each
other and increases the net process of photosynthesis at HS
(especially for C4 and CAMplants) (Sarieva et al., 2010; Li, 2020).

Antioxidant System
Plants have evolved a series of detoxification systems to fight
against oxidative damage. These systems include peroxidase
(POX), ascorbate peroxidase (APX), glutathione reductase (GR),
superoxide dismutase (SOD), and catalase (CAT) which show
mitigating effects against different kinds of stress including HS
(Suzuki et al., 2012; Caverzan et al., 2016). These antioxidants
prevent the excessive free radicals and repair the damage effects
that function as a catalyst to change the dismutation reaction
from SOD anion to H2O2 and O2 molecules. They also affect
other physiological phenomena including biosynthesis of lignin,
enzyme catabolism, defense against injury and insect/pathogen
attack, and physiological damage caused by temperature stress
(Wani et al., 2016; Devireddy et al., 2021).

Production of Metabolites and Hormones
The production of a wide range of metabolites of low
molecular mass including soluble carbohydrates, amino acids,
variety of sugars, and sugar alcohols and phenolics have been
linked to stabilization of cellular membranes, protection of
protein structures, maintenance of the cell water balance,
and buffering of the cellular redox potential under abiotic
stress in plants (Kumarathunge et al., 2019). Accumulation of
different osmoprotectants (e.g., proline, glycine betaine, etc.) and
carotenoids (e.g., xanthophlls, terpenoids, etc.) under extreme
temperature participate directly in the osmotic adjustment and
show positive correlation with more negative leaf osmotic
potential and production of protective pigments (Wani et al.,
2016; Li et al., 2021). Glycine betaine maintains the activity of
Rubisco by preventing its thermal inactivation (Devireddy et al.,
2021). Sucrose and other carbohydrates act as antioxidant (Lang-
Mladek et al., 2010; Devireddy et al., 2021) as well as regulate
carbon allocation and sugar signaling consequently protecting
the pollen viability. Plant growth regulators are also involved in
enhancing plants’ ability to tolerate stress, e.g., ABA, SA, IAA or
CK (Ding et al., 2010; Hsu et al., 2010; Devireddy et al., 2021).
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TABLE 3 | Yield losses reported in different crops due to heat stress.

Plants Yield loss (%age) References

Cereal crops

(Triticum aestivum) Wheat 18–30 Balla et al., 2011; Djanaguiraman et al., 2020; Dubey et al., 2020

(Zea mays) Maize, Corn 42

(Oryza sativa) Rice 50 Li et al., 2010; Da Costa et al., 2021; Xu et al., 2021

Cash crops

(Gossypium hirsutum) Cotton 50 Zafar et al., 2018; Majeed et al., 2021

(Saccharum officinarum) Sugarcane 20–40 Zhao and Li, 2015; Hussain et al., 2018

Vegetables

(Solanum tuberosum) Potato 12–35 Rykaczewska, 2015; Momčilović, 2019

(Allium cepa) onion 20–50 Kandil et al., 2011; Ratnarajah and Gnanachelvam, 2021

Heat Shock Factors, Proteins and CRISPR
Technology
Many stress-inducible transcriptions factors (known as
heat shock factors; HSF, e.g., Hsf6A, DREB1A, OsMYB55),
stress-related genes, and proteins (HSP) are synthesized and
overexpressed to induce thermotolerance (Lamaoui et al.,
2018). The HS response is preceded by HSF that acts further
on the transcription of HSP mRNA. HSFs are components of
a complex signaling system that control responses not only to
high temperatures but many other abiotic stresses. They are
transcriptional activators of HS genes and bind specifically to
heat shock sequence elements throughout the genome. Figure 3
describes in detail the mechanism of HSP/HSF activation under
heat stress in the plant cell. A rapid increase in temperature up to
5–10◦C, causes the plant to trigger the “heat-responsive genes”
which translate into a special protein called heat shock proteins
(HSPs). HSPs protect the plants by activating the chaperons
and proper folding of proteins, inhibit the denaturation and
aggregation of intercellular proteins and maintain their function
by proper folding of proteins (Baniwal et al., 2005). HSPs are
miscellaneous, highly diverse and normally present in living
cells but under heat stress, different small and large HSPs are
produced which help in (i) folding of newly synthesized proteins
(Hsp60 and Hsp70), (ii) translocation the proteins between the
cellular membrane and from organelle to organelle (Hsp70),
(iii) prevent from deterioration, self-aggregation, improper
folding, and the production of the polymeric compound of
proteins (sHsp, Hsp70, Hsp90, Hsp100), (iv) the breakdown of
defective proteins by proteolytic (Hsp70, Hsp100), (v) activation
of signaling molecules, transduction, transcriptional factors and
transcription (Hsp70, Hsp90), (vi) production of oligomeric
complexes of high molecular weight that act as a cellular matrix
for unfolded protein stabilization (Hsp20 or small Hsp (sHSP)
(Hasanuzzaman et al., 2013).

CRISPR/Cas9 is a genome editing tool, widely use to edit the
eukaryotic genome specially in plants The transient expression of
this system is very useful to activate or limit the desired targeted
gene in plants (LeBlanc et al., 2018). Recently, the scientist
explained the heat-shock inducible CRISPR/Cas9 system for
genome editing and demonstrate its effectiveness in rice. They

combined the promoter of heat shock protein of rice U3 and
soybean to induce the HS-CRISPR/Cas9 system via Cas9 and
single guider RNA (Nandy et al., 2019). In another study, the
Enhanced response to ABA1 (ERA1) gene present in Arabidopsis
thaliana was targeted, that encode the farnesyltransferase and
upregulate the abscisic acid (ABA) signaling under heat and
drought stress. By using CRISPR/Cas9 system, they knock in the
ERA1 gene into rice genome and enhanced the ABA in rice under
heat and water deficit condition (Ogata et al., 2020).

MANAGING AGRICULTURE UNDER HEAT
STRESS

By proper agronomic management, such as water, the methods
and quantity for fertilization, the sowing time and method, the
addition of protectants, plants can be grown effectively under
heat stress (Ortiz et al., 2008). The usual practices are as follows:

• Mulching is done to preserve optimum moisture in soil,
because it reduces soil evaporation (Chen et al., 2015),
improves nitrogen and water efficiency (Singh et al., 2011),
prevents yield loss (Chakraborty et al., 2008; Głab and Kulig,
2008) in temperate and tropical regions under thermal stress
(Akter and Islam, 2017).

• Proper sowing time is very important for crops as early or
late plantation shortens the heading and maturity period,
improves pathogen infestation, eventually affecting economic
yield and grain quality (Khichar and Niwas, 2007; Al-Karaki,
2012; Hakim et al., 2012; Hossain and Da Silva, 2012).

• Increasing crop nutrition (e.g., N, Ca, K, Mg, B, Se, and
Mn) alter the stomatal function, activate physiological and
molecular processes, improve tissue water potential, decrease
ROS toxicity by increasing the antioxidant concentration
stimulate heat stress tolerance (Waraich et al., 2012; Mengutay
et al., 2013). The post-anthesis foliar application also improve
grain proteins, slows down the ABA synthesis, improves
cytokinin production, stimulates the photosynthesis and
accumulation of assimilates (Dias and Lidon, 2010; Singh et al.,
2011).
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FIGURE 3 | Schematic overview of HSP/HSF’s pathway activation under heat/drought stress.

• The exogenous application of growth promoters [e.g.,
phytohormones, osmoregulatory, receptor molecules,
polyamines along with spermidine, putrescine, spermine,
putrescine, alpha-tocopherol (vitamin E), arginine etc.]
regulate the ROS and enhance the efficiency of the antioxidant
thus protect plants under HS (Farooq et al., 2011; Sharma and
Chahal, 2012; Hemantaranjan et al., 2014; Uprety and Reddy,
2016).

• Exogenous calcium application activates MDA that enhances
the activity of guaiacol peroxidase, CAT, SOD, which
ultimately induce heat resistance in plants. It can also protect
chlorophyll from solar radiation destruction and sustain
stomatal functioning (Dias and Lidon, 2009; Waraich et al.,
2012). Activation of different enzymatic, e.g., CAT, SOD,
ascorbate peroxidase (APX), and non-enzymatic antioxidants,
e.g., tocopherol, and ascorbic acid have a significant effect on
oxidative management under multiple stresses (Balla et al.,
2007).

• Plant treatment with reactive short-chain leaf volatiles (RSLVs
also known as oxylipins; a group of C4–C9 straight chain
carbonyls categorized by an alpha, β-unsaturated carbonyl
bond) show high thermotolerance (Yamauchi, 2018).

• Co-polymers of Poly (N-isopropyl acrylamide) (Dimitrov
et al., 2007) or poly acrylic acid (PAA) have been used as

thermo-tolerant nanoparticle to transport specific chemicals
within the plant to develop resistant against HS (Xu et al.,
2015).

• The use of natural bio-stimulants, e.g., amino acids,
microorganisms, fruit extracts, seaweeds, inorganic materials,
and chitin or engineered, e.g., plant hormones, phenols, salts,
chemical substances, and other elements with plant regulating
properties (Calvo et al., 2014; Van Oosten et al., 2017).

• Transfer of heat shock regulatory proteins (HSFs, HSPs) or
development of heat shock transcriptional elements (HSEs)
enhance gene expression within minute and induced heat
tolerance in plants.

MICROBE THERAPY FOR HEAT
TOLERANCE

Plants are home to large collection of microbes collectively
known as plant microbiome (Liu and Tan, 2017; Álvarez-Pérez
et al., 2019) which is highly dynamic in nature and show
significant shift in the composition in response to external stimuli
and environmental stresses, e.g., heat (Santos-Medellín et al.,
2017; Timm et al., 2018). This shift is not a passive plant reaction,
but a deliberate response because both plants and microbes
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have been coevolved since millions of years (Durán et al., 2018;
Kwak et al., 2018). Plants use precise combinations of chemical
stimuli under abiotic, or pathogen-induced stress which trigger
specific microbes to overexpress particular proteins or enzymes
for inducing stress tolerance (Bakker et al., 2018; Kumar and
Verma, 2018; Liu and Brettell, 2019; Hakim et al., 2021). Overall,
the plant microbiome controls nutrient availability, root growth,
plant yield and modulates resistance to stresses (Chialva et al.,
2018; Lu et al., 2018).

The microbial application (inoculation) is cheap, eco-
friendly, low-input, and time-saving strategy as compared to
the development of stress-tolerant crop variety or germplasm
screening (Shrivastava and Kumar, 2015). Plant growth-
promoting microbes (PGPM) require optimum condition
for maximum efficiency (e.g., production of phytohormones,
nitrogen fixation, and solubilization of nutrients P, Zn,
Ca, Fe, etc.). Even though stress factors (salinity, drought,
heat, and heavy metals) decrease their efficacy, but some
PGPR modify themselves for maximum efficiency under
stress. Species of Enterobacter, Acetobacter, and Pseudomonas
solubilize the phosphorus 74%, 75%, and 80% respectively
at normal (30–32 ± 2◦C) and high temperature (38–40
± 2◦C) (Kachhap et al., 2015). Similarly, the Acetobacter
spp. produced 100%, Enterobacter spp. produced 82% and
Pseudomonas spp. produced 50% IAA both at high and low
temperatures. While high temperature reduced the efficacy of
nitrogen fixation in rhizobia. High temperature reduced the
symbiotic relationship between plant roots and microbes which
ultimately decreased the rate of nitrogen fixation. Heat stress
inhibits microbial adherence on root hair and root nodules
(Alexandre and Oliveira, 2013) and also disturb the molecular
signals between microbes and root hair which leads to forming
a weak symbiotic relationship between partners (Sadowsky,
2005). However, some rhizobial species from Acacia have
thermotolerance up to 44◦C which enable them to fix nitrogen
at high temperature and give benefit to plant (Zahran et al.,
1994).

PGPM are stable under chilling and heat stress (Barka et al.,
2006; Ali et al., 2011) but the molecular and physiological
changes connected to this stress management are poorly
understood. Inoculation studies reports that systemic effects
are involved during heat/chilling stress that change metabolic
and regulatory function of plant supporting both growth
and stress management (Abd El-Daim et al., 2019). Table 4
describes the role of PGPR in plant under stress condition.
Decrease in the ROS production by seed treatment with
Bacillus amyloliquefaciens and Azospirillum brasilense has
also been reported under HS (Abd El-Daim et al., 2014).
A recent review published the meta-analysis of microbe-
mediated thermotolerance in plants and their mechanisms
from 39 published research articles (Dastogeer et al., 2022).
They have reported a significant decrease in accumulation
of MDA and H2O2 in colonized plants showing lower
oxidation activity but a corresponding increase in the activities
of catalase, peroxidase, glutathione reductase under heat
stress. However, the activities of SOD, ascorbate oxidase,
ascorbate peroxidase and proline were variable. The overall

impact of microbial colonization was more pronounced under
heat stress.

Mechanistic Interpretation of Microbe
Therapy
A variety of PGPM have been known to induce heat stress using
various mechanisms (Dodd and Pérez-Alfocea, 2012; Ramadoss
et al., 2013). For instance, Pseudomonas putida produces heat
shock protein that plays a vital role in increasing plant thermal
tolerance (Ali et al., 2011) (Figure 4). Many of PGPM activate
structural changes in plants that impart tolerance to heat stress,
a phenomenon known as induced systemic tolerance (Yang
et al., 2009). Apart from inducing direct stress tolerance, several
plant-beneficial traits exhibited by these bacteria support plant
growth in a synergistic manner under stress (Etesami and Beattie,
2017; Imran et al., 2021). They benefit plants either directly,
through the phytohormones production, nutrient mobilization,
and nitrogen fixation or indirectly by triggering the signaling
cascades in the host plant. Burkholderia phytofirmans strain
PsJN is a well-reported PGPR that enhances heat tolerance in
tomatoes, cold tolerance in grapevine, water stress tolerance in
wheat, salt, and freezing tolerance in Arabidopsis. The same
bacterium also has the antifungal property that protects the
plant from biotic stress (Issa et al., 2018) revealing that a single
bacterium can induce multiple benefits in same or different hosts
(Imran et al., 2021).

Role of Microbial Phytohormones Under HS
Phytohormones are the key regulators of plant development,
and the plants have a natural ability to synthesize, perceive
and respond to these hormones. This response is modulated
upon exposure to external/internal stimuli (Khan et al., 2014;
Hakim et al., 2021), e.g., decreased levels of auxin, cytokinin,
and gibberellin and increased ABA level under HS (Wu et al.,
2016). One of the mechanisms of PGPM-mediated plant growth
improvement is the phytohormone production trait (Etesami
et al., 2015) which affect the metabolism of endogenous (Hashem
et al., 2016; Sorty et al., 2016) and ultimately play a key role
in modulating the plant’s response under stress, uptake etc.
(Spaepen et al., 2008; Khan et al., 2011). These facts validate that
the phytohormones-producing PGPM reverse the adverse effects
of heat stress.

Auxin (IAA) is the most important hormone, imperative for
cell division, differentiation that controls seed germination, roots
development, and apical dominance (Maheshwari et al., 2015).
The majority of the rhizospheric microbes (>80%) synthesize
and release IAA in the rhizosphere which elongates plant roots,
increases the number of root hairs for enhanced uptake of water
and nutrients under normal (Oleńska et al., 2020) as well as
stress (Imran et al., 2015; Nawaz et al., 2020; Zia et al., 2021).
IAA producingOchrobactrum sp. and Pseudomonas sp. (volcanos
isolates) have shown improved root and shoot length, fresh
weight, and biomass of maize under high temperature (40◦C),
drought (up to 60% Poly Ethylene Glycol 6000), and salt (500mM
NaCl) (Mishra et al., 2017).

Gibberellins (GAs) regulate plant developmental processes
such as embryogenesis, leaf expansion, stem elongation,
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TABLE 4 | Role of PGPR in plant under stress condition.

Bacterial strain Crop Role in plant References

1-ACC Deaminase

Klebsiella sp. Triticum aestivum (Wheat) Klebsiella sp. SBP-8 protects the

plants against adverse effects of

salt and heat stress; reduce

stress-induced ethylene and

regulation of ion transporters

Singh et al., 2015

Bacillus cereus Triticum aestivum (Wheat) Increase plant growth (root,

shoot fresh and dry weight,

chlorophyll contents) under heat

stress

Ali et al., 2011

Pseudomonas putida

2-Exopolysaccharides

Bacillus cereus Solanum lycopersicum (Tomato) Increase the number of flowers

and fruits Increase chlorophyll,

proline, and antioxidants

Mukhtar T. et al., 2020

Bacillus amyloliquefaciens UCMB5113 Triticum aestivum (Wheat) Increase HSP26 and chlorophyll

content

Abd El-Daim et al., 2018

Accumulate GABA and modulate

metabolic pathways

Azospirillum brasilense NO40

Pseudomonas sp. AKM-P6 Sorghum bicolor (Sorghum) Enhance tolerance of sorghum

seedlings to elevated

temperatures

Ali et al., 2011

Rhizobium sp. (Cajanus) Leguminosae (Legume) Heat shock protein (Hsp) of

63-74 kDa

Sutherland, 2001

Pseudomonas sp. PsJN Solanum tuberosum (Potato) Promote growth Bensalim et al., 1998

Bacillus aryabhattai H26-2 and Bacillus siamensis H30-3 Brassica oleracea var. capitata (Cabbage) Leaf abscisic acid (ABA) content

and reduced stomatal opening

after stresses treatments,

Biocontrol activity against soft rot

Abd El-Daim et al., 2018

Bradyrhizobium diazoefficiens USDA110 Glycine max (Soybean) Survival in starvation Nishihata et al., 2018

Shinorizobium meliloti Medicago sativa (Alfalfa) Affect symbiosis during heat

stress

Ogden et al., 2019
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FIGURE 4 | Mechanism of PGPR for growth promotion and a(biotic) stress tolerance.

flowering, and fruit ripening (Binenbaum et al., 2018) while
abscisic acid (ABA) regulates cell division and elongation,
seed dormancy and germination, embryo maturation, floral
induction, and responses to stresses (Finkelstein, 2013). PGPM
capable to synthesize gibberellins stimulate plant growth and
stress tolerance by modulating the endogenous levels of GAs
and ABA. For instance, inoculation with GAs producing Serratia
nematodiphila and B. tequilensis increase the endogenous
synthesis of GA4 and ABA while reduced the salicylic and
jasmonic acids and improved plant biomass under HS (Kang
et al., 2015). Phytohormones-producing endophytic fungi
(Phoma and Penicillium sp.) and Bacillus spp. also modulate the
level of endogenous abscisic acid, salicylic acid, and jasmonic
acid under multiple stresses and improve thermotolerance
(Waqas et al., 2012). Inoculation with a multiple hormone (IAA,
CK, JA, SA, GAs, and ABA) producing B. aryabhattai strain
significantly improved nodule number, overall plant growth,
and increased stress tolerance of soybean to drought and high
temperatures (38◦C) (Park et al., 2017).

Cytokinins are involved in processes such as seed germination,
apical dominance, roots development, nodule organogenesis,
development of vascular tissues, flower and fruit, and plant-
pathogen interactions (Osugi and Sakakibara, 2015). Different
microbes (such as Bacillus, Escherichia, Agrobacterium,
Methylobacterium, Proteus, Pseudomonas, and Klebsiella)
inhabiting plant rhizosphere are capable to synthesize and release
CK in the rhizosphere which stimulate plant growth under stress
including heat (Liu et al., 2013). Exogenous application of

INCYDE-F (an inhibitor of CK-oxidase/dehydrogenase) in
Arabidopsis increased the contents of CK trans-zeatin and
cis-zeatin in roots and IAA in all tissues after HS. It further
reduced the level of ABA in leaves and ethylene in apices of
roots which shows that inhibition of CK-degradation helped the
Arabidopsis to cope with HS (Prerostova et al., 2020).

Ethylene is a gaseous hormone involved in abscission,
senescence, reproductive development, and a(biotic) stress
response (Liu et al., 2021). Pollen development is the most
thermosensitive stage during reproduction, therefore, regulation
of ethylene signaling in reproductive tissues is critical to gain
reproductive success (Jegadeesan et al., 2018). Various abiotic and
biotic stressors enhanced the levels of ethylene in plant tissues
which is detrimental for plants. Enterobacter sp. SA187-induced
thermo-tolerance to wheat in field has been reported (Shekhawat
et al., 2021) which is mediated by the ethylene signaling
via the TF EN13 and constitutive H3K4me3 modification
of HS memory genes, generating robust thermotolerance
in plants.

Biosynthesis of ethylene is undertaken by two transcripts (i)
PsACS [encode enzymes that convert S-adenosyl-L-methionine
to 1-aminocyclopropane-1-carboxylic acid (ACC)] and (ii)
PsACO (encode enzymes that convert ACC to ethylene
(Savada et al., 2017). Various microbes, i.e., Methylobacterium,
Bacillus, Alcaligenes, Enterobacter, Pseudomonas, Azospirillum,
Rhizobium, and Bradyrhizobium have an enzyme “1-
aminocyclopropane-1-carboxylate (ACC) deaminase,” which
metabolize ACC (an immediate precursor of ethylene) into
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α-ketobutyrate and ammonia ultimately lowering down the
ethylene levels and detrimental impact on plants under stress
including HS (Saleem et al., 2007). Burkholderia phytofirmans,
Pseudomonas frederiksbergensis, P. vancouverensis, P. putida, and
B. cereus are few examples of heat resilient microbes that utilize
the ACC-deaminase enzyme to reduce the endogenous ethylene
levels in plants produced under a range of different stresses
including salinity (Liu et al., 2021), drought (Danish et al., 2020),
and heat (Mukhtar S. et al., 2020).

Role of Microbial Exopolysaccharides Under HS
Exopolysaccharides (EPSs) are bacterial extracellular polymers
that form 3D structure of complex compound (sugars, enzymes,
polysaccharides, lipids, nucleic acids, extracellular DNA
structural proteins) which is used in energy exchange mechanism
in response to environmental signals (Mishra, 2013) and have
a direct role in heat stress tolerance (Nishihata et al., 2018;
Ogden et al., 2019). These EPSs are involved in cell aggregation,
adhesion, water retention, building a protective barrier and
supplying nutrients. They contain high-molecular-weight
polymers that enable bacteria to cling with the soil particles via
hydrogen bonding, van der wall forces, anionic and cationic
bonding, and keep them alive. The inoculation with heat-
resilient, ESPs-producing B. cereus increased root and shoot
length, chlorophyll and proline contents, water intake, number
of flowers and fruits in tomato under high temperature (Mukhtar
T. et al., 2020). HS induces changes in EPSs production as well
as other cellular proteins, i.e., HSPs which prevents protein
aggregation, misfolding, and target abnormally folded proteins
for degradation (Parsell and Lindquist, 1993). Nguyen et al.
(2014) reported that Pseudomonas sp. strain PsJN produced
ESPs at high temperature and enhanced growth of the potato.
Application of Bacillus, Pseudomonas and Azospirillum spp. (Ali
et al., 2011; Abd El-Daim et al., 2019; Da Jeong Shin et al., 2019)
have been shown to induce metabolic and regulatory proteins
modulation to develop heat stress tolerance along with the cold
and drought stresses. Apart from this, EPS act as chemoattractant
and help to develop microbial biofilm matrix on the root surface
that protect root surfaces from any damage under any kind of
stress including HS.

Microbe-Induced HS Tolerance and Antioxidant

Activity
Plant growth-promoting rhizobacteria not only produce
phytohormones but also help plants by modulation of different
genes under heat stress. Heat stress upregulates the genes
involved in autophagy (e.g., SlWRKY33b and SlATG5 genes)
that are harmful to plants. But the application of Bacillus cereus
sp. isolate (SA1) and humic acid (HA) down-regulate the
expression of these genes which not only give relief but provide
thermotolerance to the tomato plants (Khan et al., 2020) and
increase the uptake of potassium (K) phosphorus (P), and iron
(Fe). B. cereus SA1 enhanced the activity of antioxidants (CAT,
APX, SOD) as well as the efficacy of chlorophyll pigments.
The inoculation also resulted in a reduced level of abscisic
acid (ABA) and enhanced the level of salicylic acid (SA). The
treated plant showed a reduced level of glutathione (GSH).

It has been shown that thermotolerant bacteria (Bacillus spp.
actinobacterium Kocuria sp.) and cyanobacteria (Calothrix
elenkinii and Anabaena laxa) show plant growth-promoting
activities (30–50% root and shoot length, biomass, and dry
weight) and stimulate peroxidase (5–10%) and endoglucanase
activities in a range of different plants (Kumar et al., 2013).

Thermotolerant P. putida strain AKMP7 inoculated to wheat
plants increased the plant biomass and dry weight, enhanced root
and shoot length, increase the number of tillers and spikelet,
and enhance grain formation (Ali et al., 2011). The inoculated
bacteria prevent the plant from cellular injury, enhance the
antioxidant enzymatic activities (SOD, APX, CAT), and improve
cellular metabolism, e.g., the level of protein, proline contents,
cellular sugar, amino acid, and starch, and the efficiency of
chlorophyll under heat stress condition. AKMP7 formed biofilm
on plant roots which help plants to combat adverse heat
stress conditions.

CONCLUSIONS AND FUTURE
PROSPECTS

Global warming has become a critical challenge to food security,
causing severe yield losses of major crops worldwide. Given
the expanding needs for global food supply as well as the
extreme pressure of population growth and climate change
trajectories, strategies should primarily be focused on the right
investigation on different abiotic stresses especially on heat stress
that becomes a key problem in the last decade. The plants are
more vulnerable to high temperatures because of their sessile
nature. They exhibit physio-morphological, biochemical, and
molecular adaptations against heat, but further investigations
are required to understand the thermotolerance mechanism
active in different plant species. The plants themselves produce
antioxidants, reduce the stomatal conductance, activate heat-
responsive genes, and produce heat shock proteins, but on
the other hand, exogenous or foliar application of chemicals
like calcium chloride (CaCl2), salicylic acid, bio-stimulants,
nanoparticles, and osmoprotectants are useful in sustainable
agriculture. Furthermore, heat-sensitive genes can be targeted
through CRISPR-Cas9 to develop heat-insensitive crops in the
future. The heat resilient microbes produces phytohormones,
ethylene, ACC deaminase, antioxidant enzymes, and HSP under
heat stress enabling plants to maintain their growth under
stress. A recent review publishes the meta-analysis of 39
published studies in support of PGPR-mediated thermotolerance
in plants. This supports that microbe-mediated solutions are
more sustainable than developing heat-tolerant varieties as
microbes are usually present in the soil and rhizosphere and can
form associations with homologous as well as non-homologous
hosts. So, a single heat resilient microbe-inoculum may be
effective in more than one crop or plants. Furthermore, the
microbes aremulti-purpose and exhibit many other traits of plant
interest apart from giving tolerance against heat stress making
the microbe-therapy more effective than chemical or genetic
engineering or breeding approaches. However, the molecular
mechanisms involved in this tolerance may be studied in detail
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in different crops prone to heat stress. As plants can’t live
in isolation in any environment, they have a direct impact of
environment and also interact with the microbes present in soil.
Whereas microbes also interact with other microbes and to the
environment. So, this tri-partite association is very important for
the stable functioning of the plants and microbes and over all
agricultural sustainability in any given environment.
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