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Tree species identification is critical to support their conservation, sustainable

management and, particularly, the fight against illegal logging. Therefore, it is very

important to develop fast and accurate identification systems even for non-experts. In this

research we have achieved three main results. First, we developed—from scratch and

using new sample collecting and processing protocols—an dataset called CRTreeCuts

that comprises macroscopic cross-section images of 147 native tree species from Costa

Rica. Secondly, we implemented a CNN for automated tree species identification based

onmacroscopic images of cross-sections of wood. For this CNNwe apply the fine-tuning

technique with VGG16 as a base model, pre-trained with the ImageNet data set. This

model is trained and tested with a subset of 75 species from CRTreeCuts. The top-1 and

top-3 accuracies achieved in the testing phase are 70.5% and 80.3%, respectively. The

Same-Specimen-Picture Bias (SSPB), which is known to erroneously increase accuracy,

is absent in all experiments. Finally, the third result is Cocobolo, an Android mobile

application that uses the developed CNN as back-end to identify Costa Rican tree

species from images of cross-sections of wood.

Keywords: deep learning, convolutional neural network, plant classification, automated image-based tree species

identification, costa rican tree species, xylotheques

1. INTRODUCTION

Costa Rica is one of the countries with more tree species in the world. Within its 51, 900 km2 it
has around 2, 300 species distributed in approximately 700 genus and 130 families. These figures
are even more significant when we compare them to those of other regions. For example, the
continental United States of America has about 700 species over a territory of about 10 million
square kilometers (Fournier Origgi, 2016).

Trees are essential to sustain life on Earth, particularly, human life. They provide rawmaterial for
production of many goods and services, protect watersheds and wildlife, improve air quality, and
help counter climate change by removing carbon dioxide from the air, storing carbon, and releasing
oxygen into the atmosphere, among many other environmental services. Costa Rica has carried
out important conservation efforts, such as the PAS (Pago por Servicios Ambientales) program,
which grants financial recognition to farm owners who establish reforestation projects or natural
regeneration (ONF, 2020). It has also enacted laws that attempt to prevent illegal logging of tree
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species (SCIJ, 1996; Quesada-Monge, 2004). Thus, an accurate
and fast tree species identification is vital for their conservation
and proper management. Accordingly, tree species identification
has become a challenge for environmental ministries and
environmental organizations in all countries.

Because, the identification of tree species is also of great value
in legal, commercial, industrial, forensic, and paleontological
contexts, where only samples of wood are present, an
identification based solely on wood samples is often needed.

Wood species identification can be performed at a
microscopic and/or macroscopic level. The former is more
accurate than the latter, but requires special equipment and
techniques which are not always available. Thus, in this research
we decided to use macroscopic images only. The macroscopic
characteristics of wood are those that can be seen with the naked
eye or with the help of a small magnification (there is no general
agreement on the level of magnification that can be considered
“small”). In most cases, the set of macroscopic characteristics
unequivocally defines each species, which allows its identification
(Díaz-Vaz, 1979). Traditionally, identification at a macroscopic
level is a manual process that requires a high degree of knowledge
to observe and differentiate certain anatomical structures present
in a wood sample. Observations are performed on each of the
three cutting planes: transverse (cross) section, radial section
and tangential section (see Figure 1), with the help of a hand
lens (Wiedenhoeft, 2011a,b). Then, by using an identification
key, wood species atlases or field guides and manuals, the
expert determines the species of the wood sample. Therefore,
the accuracy of such identification critically depends on the
observer’s expertise.

Wood species identification is a very complex task even
for experts. For this reason it has been addressed from a
computational view point. The most recent approaches are based
on deep learning. This is motivated by the success achieved
with these techniques in automatically identifying plant species
based on pictures of leaves, flowers and other plant components
different from wood cuts (Carranza-Rojas et al., 2017; Goëau
et al., 2017). The success achieved from this perspective has been

FIGURE 1 | Cutting planes (taken from Hoadley, 2000).

remarkable, for example, the Pl@ntNet application1 is capable
of identifying thousands of plant species of the world’s flora
from an image. However, it has already been documented that
image datasets of wood cuts are few, uneven across taxa, and/or
small; consequently, not ideal for deep learning approaches
(Figueroa-Mata et al., 2018a). Perhaps, the main reason is that
the process of acquisition of samples and both macroscopic
and microscopic images of wood is complex and expensive.
Besides human experts do not require, for example, many
wood samples of the same species to make an identification.
Nevertheless, the availability of smartphones equipped with
high-quality cameras and low-cost digital microscopes that
take photographs comparable to microscopic images is making
feasible a change.

Below is an overview of the most recent publications in this
field. Kwon et al. (2017) proposed six different CNN models
(variants of LeNet andMiniVGGNet architetures) to identify five
softwood species from Korea. A smartphone camera was used for
obtaining macroscopic wood images. The best accuracy achieved
was 99.3% with a LeNet3 architecture.

Ravindran et al. (2018) proposed one variant of the VGG16
model pre-trained on IMAGENET to identify 10 neotropical wood
species of the Meliaceae family. They tested the proposed model
to species and genus levels, achieving an accuracy of 87.4 and
97.5% respectively.

In Apolinario et al. (2018) a small CNN architecture was
proposed to identify seven commercial timber species from Peru.
From each image, they extracted patches of three different sizes,
namely, 32 × 32, 64 × 53 and 128 × 128 pixels, with which
they built three datasets for their experiments. A portable digital
microscope connected to a personal computer was used to get
the wood images. The best accuracy achieved was 94.05% for the
128× 128 pixels image dataset.

Oktaria et al. (2019) conducted a comparison of four CNN
architectures: Kayu30Net, AlextNet, ResNet and GoogNet on
a datset composed of 30 species of wood images which were
obtained from the Xylarium Bogoriense, Indonesia. However,
they did not specify further details about the database or the
training process of the models, e.g., if they use some kind of
transfer learning.

Ravindran et al. (2019) applied the ResNet34 model pre-
trained on IMAGENET to identify 38 wood species corresponding
to 15 genus of commercial interest in Ghana. They reported an
accuracy of 97.0% in the laboratory and 72.0% in field testing.

In Apolinario et al. (2019) the authors proposed a CNN
architecture based on Inverted Residual Mottenecks Blocks (IRB)
and depthwise convolutional layers that allow the identification
of known species and the clustering of those that are not. In
this sense, the proposed architecture is a classifier and clustering
algorithm. For their experiments they used two databases, the
first one composed of images of 16 wood species from Perú and
the second one is the Forest Species Database Macroscopic (FSD-
M) 2 composed of images of 41 wood species from Brazil (Filho

1https://plantnet.org/
2https://web.inf.ufpr.br/vri/databases/forest-species-database-macroscopic/
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et al., 2014). Accuracies achieved were higher than 91% for seen
and unseen species during the training phase.

Yang et al. (2019) applied transfer learning to the pre-trained
VGG19 model on IMAGENET dataset. Then, they used this
already tuned model for the classification of 25 wood species,
reaching an average accuracy per species of 93.63%. They also
applied this strategy to the VGG16 and INCEPTIONV3 models,
reaching an accuracy of 92.72 and 92.41% respectively.

Yusof et al. (2020) reported 100% accuracy when applying
transfer learning to the RESNET50model. The database they used
was composed of 20 tropical wood species.

In Verly Lopes et al. (2020), an INCEPTIONV4-RESNETV2
model pre-trained on IMAGENET was used to classify 10 North
American hardwoods species. The accuracy achieved was 92.6%.

Summarizing, most of the papers published about tree species
identification from wood images share the following aspects:

• Use macroscopic wood images, specifically from cross-
sectional woodcuts;

• apply transfer learning techniques to train the models
proposed;

• the number of species considered is small, not greater than 40;
• do not indicate if their training/testing processes avoid the

Same-Specimen-Picture Bias (SSPB), which substantially, but
erroneously, increases accuracy, as was reported by Carranza-
Rojas et al. (2018);

• have not developed mobile applications capable of accurately
and quickly identifying wood samples to prevent illegal
logging and mislabeling.

The main goal of this paper is to describe how we have applied
deep learning techniques to the identification of Costa Rican
native wood species. More specifically, we address the following
three problems:

• Develop a new protocol that is practical, non-destructive, uses
less space in xylotheques, andmore quickly results in a number
of samples appropriate for deep learning applications.

• Implement a CNN for automated tree species identification
based on macroscopic images of wood cuts that has an average
top-1 accuracy higher that 70%, for at least 70 tree species,
while avoiding experimental biases such as the SSPB (Same-
Specimen -Picture Bias) described in Carranza-Rojas et al.
(2018).

• Develop a mobile application that uses the CNN as back-end
to identify Costa Rican native tree species from images of
wood cuts.

2. MATERIALS AND METHODS

One of the problems researchers face when they attempt to
apply deep learning techniques to wood species identification
is the lack of macroscopic image databases. To our knowledge,
the only open-access database is the Forest Species Database
— Macroscopic (FSD-M) of the Laboratório Visão Robótica
e Imagem (Filho et al., 2014). It currently comprises 2,942
macroscopic images from 41 different forest species of the
Brazilian flora. Because we wanted to test our research on species

from Costa Rica and with a larger dataset, we collected wood
samples that grow in Costa Rica and integrated them to the Víctor
Rojas Xylotheque of the Costa Rica Institute of Technology.

To collect and process the wood samples, as well as to create
the image database, we developed new protocols that standardize
the involved processes. The following two subsections briefly
describe the protocols created and first mentioned in Mata-
Montero et al. (2018).

2.1. Sample Collection Protocol
All wood samples were collected from forests located along the
Pacific Coast of Costa Rica (see Figure 2); specifically, collections
were made at six pre-established sites:

1. Estación Experimental Horizontes, located in Guanacaste
(10◦42′10′′N, 85◦33′12′′W) at an altitude of 120 m.

2. Cañas, located in Guanacaste (10◦ 27′ 02′′ N, 85◦ 06′ 22′′ W)
at an altitude of 100 m.

3. Miramar forests, located in Puntarenas (10◦01′29′′N,
84◦14′04′′W) at an altitude of 270 m.

4. Parque Nacional La Cangreja, located in Puriscal (9.69◦N,
84.36◦W) at an altitude of 800 m..

5. Mogos forest, located in Península de Osa
(8◦45′00′′N,83◦22′59′′W) at an altitude of 40 m.

6. San Juan, located in Península de Osa (8◦39′02′′N,
83◦27′53′′W) at an altitude of 35 m.

In this research we do not use the information about altitude
because the number of samples is still relatively small. However,
this information is very important for other applications
and could be used for machine learning applications once a
larger dataset is created. If the xylotheque where samples are
maintained has access to a GIS system and altitudinal maps, then
altitude is generated by the GIS, otherwise it is critical to record
it for other uses.

The protocol developed for the extraction of samples in the
field includes the following steps:

1. Selection and evaluation of tree specimen. The tree specimen
must be a healthy tree with a diameter at breast height (DBH)
greater than or equal to 20 cm. The distance between the
selected trees must be at least 15 m., in order to increase
the variability between species. Once the tree is selected,
its features are recorded: species, diameter, number of tree
specimen, location, etc. Finally, a picture of the tree is taken
from 1 m. distance (Figure 3A).

2. Selection and cleaning of point of perforation. A place is
selected on the tree, free of branches and deformities. A 5 cm2

spot is cleaned, 1 m. above ground level, and bark is removed
(Figure 3B).

3. Perforation of trunk. A perforation is done by using a battery
operated 20v drill. The drill is equipped with a 1/2" diameter
plug cutter and the perforation depth is approximately 80mm.
The perforation process is non-destructive. Healing of the tree
takes 6–10 months. Once the perforation is finished, the drill
is removed and the sample is exposed (Figures 3C,D).

4. Extraction of the sample. A pricker is introduced to break
the basis of the cylinder and the sample is removed with
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FIGURE 2 | Location of forest reserves selected for sample collections.

FIGURE 3 | (A–H) Extraction process of a sample of wood.

needle-nose pliers (Figures 3E–G). Each sample has a length
of approximately 75 mm and a 12.5 mm diameter.

5. Sample storage and preservation. The sample is stored in a
sealed plastic bag that contains a 10 ml solution of 8 ml of
water and 2 ml 95% alcohol. The sample is now ready to be
taken to the laboratory (Figure 3H).

2.2. Sample Processing Protocol
Once a sample has been extracted it is processed in the laboratory
to prepare it for photography. This protocol includes the
following steps:

1. Cleaning the sample. In the laboratory, each wood sample
is cleaned in order to eliminate traces of bark and cambium,

leaving only sapwood and heartwood. The sample is measured
and weighed (Figure 4A).

2. Sectioning the sample. Depending on the actual length of
each wood sample, each one is turned into four or five smaller
cylindrical sections of 13mm length by using a precision blade
(Figure 4B).

3. Cutting the sections into cubes. Each face of each smaller
cylindrical section is turned into a cube by using a tungsten
blade (Figure 4C). The approximate size of each cube is 10
mm3.

4. Taking pictures. Each cube is photographed twice, first in
fresh/green condition, then they are subjected to a drying
process during 72 h at 65◦C, and again are photographed
in dry condition (Figure 4D). For each cube, three pictures
are taken: one for a cross section, one for a tangential, and
one for a radial section. Photographs are taken with a 20X
magnification Celestron© 5 Megapixel electronic stereoscope.

5. Building up the database. Finally, metadata such as date and
place of extraction, specimen ID, dimensions, and weight,
among others, are recorded for each cube (Mata-Montero
et al., 2018). Additionally, for each picture, the picture itself,
the type of cut (cross, tangential or radial), cube it belongs to,
and stage of the wood when the picture was taken (fresh, dry)
is recorded and stored.

2.3. Dataset
The complete image database consists of pictures of 656 samples
from 147 tree species from Costa Rica. It includes 42 families
and 110 genera. It comprises about 3,516 images of each of
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FIGURE 4 | (A–D) Sample processing.

FIGURE 5 | Some of the images in the database.

the three sections, namely, transverse, radial and tangential, in
two conditions, dry and fresh; that is, approximately, 3, 516 ×

3 × 2 = 21, 096 images. Each image is in uncompressed JPG
format with 2, 592 × 1, 944 pixel resolution, although there are
some few images of smaller resolution. Appendix 5A lists the
scientific names of each of the 147 species. Figure 5 shows some
of the images in the database. Because this database is highly
imbalanced, with several species having only one specimen, a
subset with 75 species, described in Subsection 2.5.2, was used
in the experiments.

2.4. Hardware and Software Used
All experiments were conducted on a desktop computer with
an Nvidia TITAN RTX GPU with 24GB GDDR5 of memory
and a AMD Ryzen 9 3900X 12-Core Processor with 32 GB of
memory. As to software, Tensorflow version 2.2.0 and Keras
version 2.3.0-tf were used to develop the CNN.

Photographs are taken with a 20X magnification Celestron©

Labs S20 Stereo Microscope. Figma 6.0 was used for the graphic
design and Ionic Framework 4.0 for the development of the
mobile application COCOBOLO. Node.js 8 (version 12.16.1)
was used as an intermediary for user management, database
queries and communication between the front and back-end.
The creation and management of text and image databases was
implemented in MongoDB 4.4. Finally, we used TENSORFLOW

SERVING (version 2.0) to deploy the CNNmodel for production.
The back-end runs under UBUNTU 18.04 and was developed
using TENSORFLOW (version 2.2) and the KERAS module.

2.5. Convolutional Neural Network
Architecture
Since the number of images was small to train a convolutional
model from scratch, we applied the fine-tuning technique using
VGG16 as a basemodel, pre-trained with the IMAGENET data set.

For fine-tuning purposes, we removed the softmax layer of
the base model and replaced it with our own, adding a Global
Average Pooling layer, two dropout layers and two dense layers.
In addition, we froze the weights for the first 10 layers so that they
remained intact throughout the fine-tuning process.

We also experimented with other base models such as
RESNET50 and MOBILENET, both IMAGENET pre-trained, but
obtained similar results. For example, with RESNET50 the Voting
Rule top-1 accuracy was 49.3%, compared to 70,5% when using
VGG16, as described in the Results Section.

2.5.1. Data Augmentation

Deep learning models often implement a data augmentation
stage to reduce overfitting and improve performance in
imbalanced class problems (Goodfellow et al., 2016; Wong
et al., 2016). Because the number of images per species is small
for deep learning approaches, we applied two different data
augmentation techniques.

First, we divided each original image into several non-
overlapping sub-images (patches) that are four pixels apart. For
instance, if the resolution of the original image is 1, 600 × 1, 200
pixels, we can obtain 35 sub-images size 224 × 224 pixels.
Figure 6 illustrates this technique. We used an input size of
224×224 pixels due to physical limitations of the hardware used,
specifically the graphics card memory. When there are memory
limitations, at least two variables must be balanced: batch size
and image dimension. It is recommended to use a relatively large
batch size to generate good approximations of the gradient of the
loss function. Furthermore, the images must also be large enough
to capture a goog number of discriminating features. There is
clearly a trade-off between these two variables. We consider
224 × 224 images and batches of 32 images to be a reasonable
compromise since smaller images do not capture the multiple
anatomical features present and larger images would force us to
use smaller batch sizes.
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FIGURE 6 | Dividing the original image into sub-images (taken from

Figueroa-Mata et al., 2018b).

TABLE 1 | Number of species and specimens in dataset.

# species 23 18 16 12 41 10 2 8 3 4 4 1 1 1

# specimens per species 1 2 3 4 5 6 7 8 9 10 12 14 15 19

Secondly, we implemented, on the fly, transformations such
as rotation (value = 30), horizontal flip (value = True),
vertical flip (value=True), width shift (value = 0.2), height shift
(value = 0.2) and zoom (value = 0.3). For this, we used the
ImageDataGenerator class of Keras, with the values indicated.

2.5.2. Training and Validation Datasets

Since the number of specimens per species in the database varies
from 1 to 19 (see Table 1), we decided to diminish the imbalance
by selecting those species with at least 5 specimens. As a result, we
obtained 75 species of which, for example, 40 have 5 specimens.
Appendix 5A shows, highlighted in bold, the scientific name of
the selected species.

All datasets used in the work described in the Introduction
Section use cross section images exclusively. This is possibly
because cross sections tend to contain more information than
radial and tangential cuts. Additionally, in Figueroa-Mata et al.
(2018), it was confirmed that cross sections are more significant
when training a convolutional neural network of 40 species from
Costa Rica. Those 40 species are a proper subset of the set of
species in CRTreeCuts. We are not aware of any other study that
compares the relative significance of wood cuts for CNN-based
tree species classifiers. Based on these facts we decided to use only
cross sections — in dry condition, as this is their condition in
xylotheques — to train, validate and test our models, leaving for
future research the (combined) use of other cuts.

Images of the these 75 species were divided as follows: 70% for
training, 20% for validation, and 10% for testing, resulting, after
avoiding the Same-Specimen-Picture Bias (SSPB) (Carranza-
Rojas et al., 2018) in approximately 1,712 images for training,
522 for validation and 426 for testing; and finally, after applying
the data augmentation techniques described in section 2.5.1,
in approximately 95,446 for training, 29,109 for validation and
23,187 for testing. We say that SSPB is avoided (it is absent)
if all the images of the dataset are distributed so that, for each
sample (specimen) S, its images are used exclusively in one of the
following sets: training, validation or testing. Avoiding SSPB is
very important, otherwise, it could lead to fictitiously good results
as has been documented in Carranza-Rojas et al. (2018) and our
own experiments.

3. RESULTS

3.1. Accuracy of CNN
We conducted several experiments with the convolutional model
described in Section 2.5. Different values for hyper-parameters
such as learning rate and batch size were tested, as well as
optimizers such as SGD, Adadelta, Adam, and RMSprop.

The following two definitions of average top-k accuracy were
used. The first one applies to image patches (subdivisions)
obtained after data augmentation. The second definition applies
to complete images.

Let T be the set of images I used for testing after data
augmentation is applied. We define Accuracyk, the average top-k
accuracy achieved by the model with set T as follows:

Accuracyk =
1

|T|

∑

I∈T

hit(k, I) (1)

where hit(k, I) is a boolean function that indicates if one of the
top-k candidate species in the ranking generated by the model is
a correct identification of image I. An analogous definition can
be given for the average accuracy achieved at the species level.

The average top-k accuracy can also be defined by a voting rule
(VR) similar to the one introduced by Siew et al. (2017). More
formally, we define VRAccuracyk, the average top-k accuracy
with VR, as

VRAccuracyk =
1

|C|

∑

I′∈C

VRhit(k, I′) (2)

where C is the set of complete (not subdivided in patches) images
used for testing and VRhit(k, I′) is a boolean function that is true
iff the correct species is in the set of k candidate species that more
often are predicted correctly when all patches p of image I′ are
tested with hit(k, p). This second measure of accuracy is more
realistic, as it is associated with a complete image but Accuracyk is
useful for training and validation, which is the approach we used.

The best average top-1 accuracy achieved for validation during
the training phase was 65.6% (see Figure 7). For this, we used the
SGD optimizer with a learning rate automatically fitted according
to the change of the validation accuracy. Initially, the learning
rate was 0.01 and was fitted by a factor of 0.1. After 10 epochs the
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FIGURE 7 | Training accuracy and loss for CNN model.

TABLE 2 | Species never correctly identified by the CNN.

Scientific name # Specimens

Pouteria filipes 5

Brosimum lactescens 5

Garcinia madruno 5

Tapiria guianensis 9

Drypetes brownii 5

Pachira aquatica 5

validation accuracy did not improve significantly. In the testing
phase, the average top-1 and top-3 accuracies were 59.9 and
76.5%, respectively.

Additionally, we calculated the top-1 and top-3 average
accuracies using VR and equation (2). With VR, we achieved a
70.5% top-1 average accuracy and 80.3% top-3 average accuracy
(see Appendix 5B).

Appendix 5B also presents the MRR for each species as well as
the average over all 75 species. The mean reciprocal rank (MRR)
was computed with the following formula:

MRR =
1

|Q|

∑

i∈Q

1

ranki
, (3)

where Q is the set of testing images and ranki is the ranking
position achieved by the i-th image. Q consists of patches
(Figure 6) generated in the data augmentation process, i.e., no
voting rule is used.

Of the 75 tested species, there were six that the CNN could not
identify even once, that is, the average top-1 and top-3 accuracies
were both 0, when using the voting rule. The scientific name of
these species and the number of specimens per species are shown
in Table 2.

To clarify what could be happening we analyzed in detail
the classification that the CNN carried out for these species.

Figure 8 shows an image of each of these six species and the
image of the predicted species. It is interesting to highlite that,
for each species, the top-1 (incorrectly) predicted species was
always the same. For instance, the network always confused the
species Pouteria filipes with the species Poulsenia armata, which
seems reasonable, since both species images are very similar, as
we can see in Figure 8. Besides, there are some close taxonomic
relationships for three of the six pairs of species in Table 2

that may help partially explain the failures (even though there
are other pairs of species that are also related but predictions
are much better). Specifically, three pairs of species belong to
the same family, and one of them also belongs to the same
genus. SpeciesGarciniamadruno and Symphonia globulifera both
belong to the Clusiaceae family, while Pachira aquatica and
Hampea appendiculata belong to the Malvaceae family. Finally,
Brosimum lactescens and Brosimum alicastrum belong to the
Moraceae family and have the same genus.

Additionally, Table 2 shows that the number of specimens of
each of these six species is always 5, except for Tapiria guianensis,
which has 9 specimens. However, there are species such as Cordia
alliodora, Hymenaea courbaril, Bursera simaruba, Trichilia
pleeana, and Lonchocarpus macrophyllum, among others (see
Appendix 5B), for which having only 5 specimens is not problem.
They are all classified with over 85% top-1 accuracy.

Another interesting result is that the misclassification
performed by the CNN for species in Table 2 is one-way, i.e.,
the network always confuses the species in the first column with
the species in the second column (Figure 8), but all the species
in the second column are identified with high accuracy, namely,
100% top-3 accuracy and more than 75% top-1 accuracy (see
Appendix 5B). This suggests that the number of specimens is
not enough for the network to learn how to differentiate species
correctly and, therefore, that future collecting efforts should
try to focus on those species in order to improve the overall
identification accuracy.

As we could see during the training phase (see Figure 7),
overfitting was present. This was caused by the restrictions
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FIGURE 8 | Images of species never correctly identified and the top-1

predicted species.

imposed to avoid the SSPB bias (Section 2.5.2). As wasmentioned
by Carranza-Rojas et al. (2018), if the bias is present in
the training, validation and testing phases, the accuracies are
fictitiously increased. To highlight this fact, we conducted an
experiment in which SSPB was present. Figure 9 shows the top-
1 accuracy and loss functions. As we can see, the top-1 accuracy
achieved was 97.5% for validation, which is much better than the
65.5% achieved when we avoided the SSPB bias (Figure 7). Once
the model was trained we evaluated them on the testing set and
achieved a top-1 accuracy of 97.3%, which is also considerably
better than the top-1 accuracy achieved in the testing phase if
SSPB is avoided. Carranza-Rojas et al. (2018) report differences
of around 10%, whereas in this case the differences are larger than
25%.We believe this is because different pictures of one specimen
are very similar, as they were all part of the same cylinder that was
removed from the tree. Thus, SSPB should definitely be avoided

in the development of deep learning tools for the identification of
tree species based on wood cut images.

In order to test the reliability of the model, it was also trained
and tested on a different dataset. For this purpose, we used a
dataset of images of species from Brazil (FSD-M) (Filho et al.,
2014). Figure 10, shows the accuracy and loss obtained during
the training phase of the model. Additionally, once the model
was trained, we tested its performance on a subset of images that
was not used in the training phase and obtained an average 83.8%
top-1 and 95.2% top-3 accuracy.

As an additional result of this work, preliminary tests show
that the samples collected with the proposed methodology can
be used not only to develop deep learning applications such
as COCOBOLO, but also for the anatomical characterization of
Costa Rican timber species (Valverde et al., 2020). This means
that samples obtained with the proposed protocol can be used
in xylotheques for other applications just like the larger samples
they traditionally collect and hold.

3.2. Cocobolo Mobile Application
An application capable of identifying tree species from a wood
image can be of great value in legal, commercial, industrial and
forensic contexts, because it can support legal experts, forestry
inspectors and customs officials to do field identifications in a
simple, fast and accurate way. For example, forestry inspectors
could determine if a wooden cargo is properly labeled to ensure
compliance with the established regulations.

As a supplement to the convolutional neural network designed
for the identification of tree species from Costa Rica, we
developed a mobile application for smartphones compatible
with the Android operating system. We decided to call the
mobile application COCOBOLO (Dalbergia retusa), because it is
an endangered native tree species of Central America whose
wood is beautiful and of great commercial value.

Unlike mobile tools for plant identification based on flowers,
leaves, and other plant components, COCOBOLO is a tool
developed for a specialized audience that includes xylotheque
users, law-enforcement officials, and tree species taxonomists,
among others. Its work flow starts with a set of wood samples that
have been already collected, treated, and need to be photographed
and identified. Thus, in general, users of Cocobolo are not
expected to use it to carry out identifications in the field (unless
they take along the specialized equipment described in Sections
2.1 and 2.2 or have access to samples already collected). Most
of its functionality can be achieved with a website that uses
the developed back-end to do the identifications. We chose
to develop a mobile application before a website (currently
underway) to facilitate image capturing, to provide a personalized
environment to manage pictures and their identifications, and to
refine use cases for future versions of both, mobile applications
and a website.

Because its back-end has been thoroughly trained and tested,
the testing phase of the back-end is a simulation of the
expected accuracy of Cocobolo with collected wood samples.
All photographs used were taken with a 20X magnification
Celestron©, 5 Megapixel electronic stereoscope. However,
smartphone cameras are already getting close to that level of
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FIGURE 9 | Training accuracy and loss for CNN model with SSPB bias.

FIGURE 10 | Training accuracy and loss for CNN model with FSD-M dataset and (possibly) SSPB bias.

magnification and will have that feature in the near future.
For the time being, we recommend the use of a clip-type lens.
They are very inexpensive and meet the 20X magnification
requirement.

COCOBOLO has of two components. First, a front-end, which
is the interface that captures queries, takes pictures, and presents
the results on the smartphone. Secondly, the CNN that acts as the
remote back-end, performing the identification. COCOBOLO was
designed following the methodology proposed by Hernández-
Castro for the development of software tools (Hernández-Castro,
2016). The software tools employed are described in Section 2.4.

COCOBOLO allows users to identify pictures of wood
stored in the phone’s gallery or use the camera to take a
picture and identify it. The identification process responds
with the three most probable species, their scientific name,
their common name, an estimated level of accuracy, and
one image for each species. Users can also consult general

information about the species with which the convolutional
neural network was trained and share their identification by
email or using WHATSAPP.

Figure 11 shows on common use case. When the user selects
the option “Identify,” the screen in Figure 11A is displayed
and the user can choose between “Gallery” or “Camera”.
The “Camera” option activates the smartphone’s camera for
the user to take a new picture. The “Gallery” option shows
the smartphone’s photo gallery which, in this case, contains
8 previously stored photos, as shown in Figure 11B. Once
the picture is selected, it is identified after clicking the
button “Identify.” For instance, if the user chooses the third
photo in the top row in Figure 11B, COCOBOLO responds
with the ranking shown in Figure 11C. COCOBOLO has
been successfully tested with up to five concurrent users
and is being fine-tuned to improve its performance before
public deployment.
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FIGURE 11 | (A–C) COCOBOLO mobil application.

4. DISCUSSION

An alternative solution to the traditional way of identifying tree
species from macroscopic images of wood cuts was presented.
The approach has been to build a CNN by applying the fine-
tuning technique to a base VGG16 model pre-trained with
IMAGENET. The resulting model was then trained with a new
database composed of cross-sectional wood images of 75 Costa
Rican tree species. The achieved top-1 and top-3 accuracies
during the testing phase were 76.5 and 80.3%, respectively. We
consider this very good, given that this is the first attempt with
this dataset and that the number of species is relatively large
compared to previous work in this domain. Consequently, this
CNN was used as back-end for a mobile application named
COCOBOLO. This mobile application allows the identification
pictures of wood stored in the smartphone’s gallery or use the
camera to take a picture and identify it. COCOBOLO responds
with the 3 most probable species, their scientific names, their
common names and one image for each species. In addition,
it is possible to share the identification results by email or
WHATSAPP. COCOBOLO is currently undergoing fine-tunning
for efficient integration of its components with larger number of
concurrent users.

The methodology used to conduct the training, validation and
testing sets avoided the well-known Same-Specimen-Picture Bias.
The presence of this bias is often overlooked in similar research.

However, in this domain we experimentally confirmed that it
would have erroneously increased the average accuracy by more
than 25%. Therefore, future work should consider and avoid
this type of bias. Consequently, image databases of wood cuts
must be documented with enough data to avoid potential biases.
Specifically, programmers should be able to always test, for each
pair of images {I1, I2}, if specimenID(I1)= specimenID(I2).

We proposed an innovative workflow that defines protocols
for—non-destructively—collecting samples in the field,
processing the samples, taking photographs, and annotating
these pictures in a database. As a result, we have supplemented
the Costa Rica Institute of Technology xylotheque with 656
wood samples of 147 tree species from Costa Rica. In addition, a
database with 21.096 images was created.

The identification of tree species is critical to support their
conservation, sustainable management, and, mostly, to fight
illegal logging. However, an immediate challenge to make this
approach more effective is to build larger datasets with more
species and more specimens per species. In this respect, we are
already using the same protocols to enhance CRTreeCuts so that
it comprises at least 200 tree species and at least 10 specimens per
species. This corresponds to approximately 8.5% of the number
of tree species in the country and 15% of timber species. However,
even though it is critical to increase the size and taxonomic
coverage of datasets, field trips to collect wood samples and lab
work on those samples is still slow and costly. Thus, recent
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approaches to deep learning with small datasets should be
explored for this domain, among them, zero-shot (Larochelle
et al., 2008), one-shot (Li Fei-Fei et al., 2006; Koch et al., 2015;
Vinyals et al., 2016), few-shot or k-shot learning (Chen et al.,
2019; Wang et al., 2020), and Siamese networks (Baldi and
Chauvin, 1993; Bromley et al., 1993; Figueroa-Mata and Mata-
Montero, 2020).
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