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Stripe rust caused by Puccnina striiformis (Pst) is an economically important disease
attacking wheat all over the world. Identifying and deploying new genes for Pst
resistance is an economical and long-term strategy for controlling Pst. A genome-
wide association study (GWAS) using single nucleotide polymorphisms (SNPs) and
functional haplotypes were used to identify loci associated with stripe rust resistance in
synthetic-derived (SYN-DER) wheats in four environments. In total, 92 quantitative trait
nucleotides (QTNs) distributed over 65 different loci were associated with resistance
to Pst at seedling and adult plant stages. Nine additional loci were discovered by
the linkage disequilibrium-based haplotype-GWAS approach. The durable rust-resistant
gene Lr34/Yr18 provided resistance in all four environments, and against all the five
Pst races used in this study. The analysis identified several SYN-DER accessions that
carried major genes: either Yr24/Yr26 or Yr32. New loci were also identified on chr2B,
chr5B, and chr7D, and 14 QTNs and three haplotypes identified on the D-genome
possibly carry new alleles of the known genes contributed by the Ae. tauschii founders.
We also evaluated eleven different models for genomic prediction of Pst resistance, and
a prediction accuracy up to 0.85 was achieved for an adult plant resistance, however,
genomic prediction for seedling resistance remained very low. A meta-analysis based
on a large number of existing GWAS would enhance the identification of new genes and
loci for stripe rust resistance in wheat. The genetic framework elucidated here for stripe
rust resistance in SYN-DER identified the novel loci for resistance to Pst assembled in
adapted genetic backgrounds.

Keywords: GWAS, GBS, stripe rust (Puccinia striiformis Westend), synthetic hexaploid derived wheat, haplotype
GWAS
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INTRODUCTION

Stripe or yellow rust caused by an obligate pathogen Puccinia
striiformis tritici (Pst) is a major threat to wheat production
and grain quality. Wheat yield losses in different regions of
the world up to 25% have been reported and this can climb
to 80% when infections occur early in the crop season (Solh
et al., 2012). Recently, stripe rust epidemics have damaged
wheat production in many wheat growing countries and regions
including Australia, Ethiopia, China, United States, Europe,
South Africa, and South Asia (Milus et al., 2006; Chen, 2007;
Wellings, 2011). Since Airborne Pst urediniospores can migrate
to other regions of the world using the climatic system termed the
“Western Disturbance,” thus, spreading new races. The Western
Disturbance caused the spread of the (Pst) Yr9 virulent race in the
Indian Subcontinent and Nepal from the East African highlands
between 1985 and 1997. In the past decade, virulence for Yr27
caused epidemics in Pakistan and India on the commonly
growing mega cultivars, Inqlab-91, and PBW-343, respectively
(Duveiller et al., 2007).

Rust resistance, like other fungal diseases, can be controlled
by fungicide and resistant cultivars. However, the use of a
fungicide is associated with a high cost and is hazardous to
the environment. Therefore, deploying resistant cultivars is
environmentally friendly and particularly inexpensive for wheat
growers. To date, more than 83 Pst resistance genes (Yr1–Yr83)
have been catalogued in wheat and its wild relatives (Maccaferri
et al., 2015; McIntosh et al., 2016). These are predominantly race-
specific major genes, which interact with the pathogen according
to the gene-for-gene model and produce hypersensitive reactions.
This type of resistance is usually short lived when deployed in
large areas; the evolution of new pathotypes of the pathogen
population leads to a resistance breakdown. Virulence on Yr2,
Yr6, Yr7, Yr8, Yr9, Yr17, and Yr27 are examples of major gene
resistance breakdown. It is essential that new sources of resistance
are found and deployed to keep ahead of pathogen changes.
However, minor genes or adult plant resistance (APR) genes
are an alternative for major genes and provide a quantitative
resistance that is often race non-specific and durable against
various pathotypes.

Wheat breeders often rely on current or old varieties as
a source of resistance, however, wheat wild relatives can also
provide a useful source by direct recombination, bridge crosses,
or including the development of synthetic wheats (Ogbonnaya
et al., 2013). Within the wheat primary gene pool, considerable
genetic variation exists in Aegilops tauschii and T. turgidum for
resistance to both biotic and abiotic stresses (Halloran et al.,
2008). The introgression of this genetic diversity through the
development of synthetic hexaploid wheat (SHW) that can be
directly crossed to adapted hexaploid wheat is one such strategy.
Hexaploid wheat (SHWs) are known as primary synthetics and
are generally obtained by artificially crossing of durum wheat
(T. turgidum) and Ae. tauschii. These SHWs have been shown
to carry genetic variation for resistance to numerous biotic and
abiotic stresses (Mujeeb-Kazi et al., 1996; Ogbonnaya et al., 2013).
The yellow, leaf, and stem rust resistance genes Yr28, Lr21, Lr22,
Lr32, Lr39, Lr41, Sr33, Sr45, and Sr46 were derived from Ae.

tauschii, and the Sr genes were subsequently shown to be resistant
to the highly virulent Ug99 race (Cox et al., 1995; Zegeye et al.,
2014; McIntosh et al., 2016).

Genome-wide association studies (GWAS) are used to
associate the genetic loci with phenotypic diversity (Huang
and Han, 2014). This method combines a comparatively large
portion of natural diversity in a species and localizes marker-
trait associations to much shorter genomic regions because these
diversity panels incorporate many more historical recombination
events than classical recombinant inbred lines and doubled
haploid populations (Nordborg and Weigel, 2008). The GWAS
has proven to be a powerful tool for genetic analysis in wheat.
It has been successful in identifying the genomic regions and
markers for resistance to stripe rust in synthetic hexaploid
wheat (Zegeye et al., 2014; Bhatta et al., 2019), global landraces
collections (Jordan et al., 2015), Ethiopian durum wheats (Liu
et al., 2017c), advanced lines derived from exotic crosses
(Ledesma-Ramírez et al., 2019), Chinese wheat landraces (Long
et al., 2019), global spring wheat collection (Maccaferri et al.,
2015), global winter wheat collection (Bulli et al., 2016), US
Pacific Northwest winter wheat (Naruoka et al., 2015; Liu et al.,
2018), spring wheat (Muleta et al., 2017a), CIMMYT nurseries
(Juliana et al., 2017), Afghan wheat landraces (Manickavelu et al.,
2016), Ethiopian bead wheat (Muleta et al., 2017b), emmer wheat
(Liu et al., 2017b), North American elite spring wheat (Godoy
et al., 2017), elite ICARDA wheats (Jighly et al., 2015), diverse
spring wheat (Kankwatsa et al., 2017), global landraces collection
(Pasam et al., 2017), and elite durum wheat (Liu et al., 2017a).

Genome-wide prediction also referred to as genomic selection
or genomic prediction is a technique to improve the selection
accuracy and has the potential to reduce the cost of phenotyping
and breeding cycles (Meuwissen et al., 2001) can help increase
the rate of genetic gain especially in the case of quantitative
traits. In the first step, genomic estimated breeding values
(GEBVs) are estimated using a training set and different
prediction models, and best prediction models are then used
to select new germplasm developed by hybridization prior to
field evaluation. The application of genomic prediction depends
on the population size, marker density, model performance,
heritability of the trait, training population size, and breeding
population relatedness (Daetwyler et al., 2008; Bassi et al., 2016).
In wheat, genomic prediction studies have been reported to
predict rust resistance in diverse wheat landraces (Daetwyler
et al., 2014; Crossa et al., 2016), landraces from Afghanistan
(Tehseen et al., 2021), tetraploid wheat (Azizinia et al., 2020), and
improved wheat germplasm (Ornella et al., 2012; Rutkoski et al.,
2014; Bassi et al., 2016; Juliana et al., 2017).

This study was designed for: (i) evaluating the diversity for
stripe rust resistance in 193 SYN-DERs against prevailing Pst
races in Pakistan; (ii) conducting a GWAS analysis in SYN-DERs
for resistance loci to the prevailing Pst races and identifying the
linked SNP markers that could be deployed in marker-assisted
selection (MAS); (iii) comparing genomic prediction accuracies
for stripe rust resistance at seedling and adult plant stages
using different models with two genotyping platforms, and (iv)
determining whether some derivatives carry un-characterized
genes for Pst resistance.
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TABLE 1 | Virulence profile of Pst races used in this study.

Pathotype Virulence on genes Avirulence on genes

3.Pst.140202 Yr6, Yr7, Yr27, and YrExp2 Yr1, Yr5, Yr8, Yr9, Yr10, Yr15, Yr17, Yr24, Yr32, Yr43, Yr44, YrSp, YrTr1, and YrTye

5.Pst.173262 Yr6, Yr7, Yr8, Yr9, Yr15, Yr17, Yr27, Yr43, Yr44, and YrExp2 Yr1, Yr5, Yr10, Yr24, Yr32, YrSP, YrTr1, and YrTye

1.Pst.571242 Yr1, Yr6, Yr7, Yr8, Yr9, Yr17, Yr27, Yr43, and YrExp2 Yr5, Yr10, Yr15, Yr24, Yr32, Yr44, YrSP, YrTr1, and YrTye

4.Pst.571243 Yr1, Yr6, Yr7, Yr8, Yr9, Yr17, Yr43, YrExp2, and YrTye Yr5, Yr10, Yr15, Yr24, Yr32, Yr44, YrSP, and YrTr1

2.Pst.571262 Yr1, Yr6, Yr7, Yr8, Yr9, Yr17, Yr27, Yr43, Yr44, and YrExp2 Yr5, Yr10, Yr15, Yr24, Yr32, YrSP, YrTr1, and YrTye

TABLE 2 | Mean response to Puccinia striiformis f. sp. tritici infection, estimates of variance components, and heritability.

Parameters Islamabad (ISB) Nowshera (NWS) Across Locations

IT (0–9) Severity (%) IT (0–9) Severity (%) IT (0–9) Severity (%)

Minimum 0.0 0.0 0.0 0.0 0.0 0.0

Mean 3.1 15.7 2.8 11.8 2.9 13.8

Maximum 8.5 90 8.5 80 8.5 85

σ2g 2.9*** 278.6*** 4.9*** 247.7*** 3.7*** 255.8**

σ2e 0.9** 127.3* 1.9** 114.7** 1.5** 129.6**

σ2ge 3.8ns 406.0ns 6.8* 362.5ns 5.3* 385.4ns

σ2
e 1.92 1.80 1.80 1.92 1.92 1.92

Heritability 0.75 0.68 0.71 0.68 0.72 0.66

σ2g, estimate of genotypic variance; σ2e, estimate of environmental variance; σ2ge, estimate of genotype x environment variance; σ2
e, estimate of residual variance; H2,

heritability; IT, infection type; DS, disease severity; ns, not significant; *P < 0.05; **P < 0.01; and ***P < 0.001.

A B

C D

FIGURE 1 | Histogram showing frequency distribution for the average coefficient of infection (ACI) at four locations, viz. Islamabad-2015 (ISB.15), Islamabad-2016
(ISB.16), Nowshera-2015 (NWS.15), and Nowshera-2016 (NWS.16), and disease severity (0–9 scale) against five Pst isolates (A), boxplots for ACI at four locations
(B), and disease severity against five Pst isolates (C), and coefficient of correlation across isolates and locations (D).
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FIGURE 2 | SNP density and distribution in all 21 wheat chromosomes using 90K SNP array and GBS characterized in SYN-DERs, (A) in 90K SNP array, (B) in
GBS, (C) haplotype density using 90K SNP array, and (D) haplotype density using GBS platform.

MATERIALS AND METHODS

Plant Materials and Experimental Sites
A panel containing 193 SYN-DERs were evaluated in this study
(Supplementary Table 1). The details of the germplasm have
been described earlier (Afzal et al., 2019). Briefly, the SYN-
DERs were developed by crossing elite cultivars and advanced
lines of spring wheat with synthetic hexaploidy wheats in several
combinations (refer to a pedigree for details of primary synthetic
hexaploid wheat accessions numbers). The field experiments
were conducted at the National Agricultural Research Centre
(NARC), Islamabad (33◦ 0′N, 73◦ 4′E) and Cereal Crop
Research Institute (CCRI), Nowshera (34◦ 1′N, 72◦ 2′E) Khyber
Pakhtunkhwa, Pakistan, in the winter field seasons of 2015–
2016 and 2016–2017.

Seedling Stage Phenotyping
Seedling screening against stripe rust was performed at the
Crop Disease Research Institute (CDRI), Murree, Pakistan under
controlled conditions. Small plastic pots (8 cm × 10 cm) were
filled with standard potting mix (soil and nursery substrate, 3:1),
and were used to grow 5–6 plants of each accession including the
susceptible wheat check cv. Morocco. The plants were grown in
a glasshouse maintained at 50% humidity and 20◦C. Genotypes
were assessed for infection type responses to five Pst races:
Pst.571242, Pst.571262, Pst.140202, Pst.571243, and Pst.173262

coded as Wang et al. (2016) and maintained at CDRI, Murree
laboratory. These stripe rust races are frequently found in the
yellow rust prone areas of Pakistan. The virulence and avirulence
formulas for the isolates are provided in Table 1. The Pst isolates
maintained at −80◦C were heat shocked in a water bath at
42◦C for 5 min. The mixture of petroleum ether (Merck Cat #
1.01775.2500) and paraffin oil (Merck Cat # 1.07162.1000) in a
ratio of 4:1 was used to suspend the rust spores for inoculation on
10-day-old seedlings, at the two-leaf growth stage. The inoculum
was applied using a fine mist atomizer. After inoculation, the
mineral oil was allowed to evaporate, and the seedlings were
then placed in a tray and watered. The Pst inoculated plant trays
were shifted to a dark dew chamber at 100% relative humidity,
10◦C temperature, and a light regime of 16 h light and 8 h dark
for 24 h. Plants were then moved to a clean glasshouse under
controlled temperature conditions of 15–18◦C and 50% relative
humidity. The same light/dark regime was continued during the
rust evaluation. Water was non-limiting and recommended doses
of liquid fertilizer were applied. Seedlings were treated with a
growth inhibitor (Maleic Hydrazide) to slow plant development
thus ensuring even disease infection and development. Notes on
rust infection types were taken using a 0–9 scale (McNeal et al.,
1971) on the 20th day of inoculation when susceptible genotype
Morocco exhibited maximum infection. Seedling infection types
(ITs) were classified as resistant with 0–4 (R), moderately resistant
with score 5–6 (MR), and moderately to highly susceptible with
score 7–9 (MS).
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TABLE 3 | Haplotype blocks on wheat chromosomes, their number, block size, and number of SNPs per block using 90K SNP array and
genotyping-by-sequencing (GBS) platform.

90K SNP array GBS

N Block size (kb) SNPs N Block size (kb) SNPs

Chr Range Mean Range Mean Range Mean Range Mean

1A 203 3–99871 10339 2–8 2.76 177 2–19011 99093 2–8 2.76

1B 302 8–98626 7957 2–11 3.03 232 2–17887 98552 2–7 2.68

1D 137 9–85350 7191 2–8 2.69 52 3–16674 98478 2–5 2.65

2A 205 8–96300 7101 2–9 2.79 238 2–15837 99436 2–8 2.6

2B 304 2–99707 8066 2–14 3.06 335 2–18030 99593 2–14 2.8

2D 120 9–99556 6590 2–8 2.72 54 18–16323 97876 2–5 2.41

3A 157 12–95781 9254 2–8 3.05 185 2–18778 99440 2–8 2.84

3B 204 4–95726 8039 2–12 3.14 342 2–19638 99474 2–11 2.76

3D 41 5–91287 11581 2–9 2.88 72 6–14033 97701 2–8 2.39

4A 136 11–78450 5730 2–14 2.84 181 2–20901 99366 2–8 2.91

4B 117 6–90285 7816 2–8 2.84 138 2–12206 98672 2–7 2.38

4D 10 13–91196 15167 2–5 2.8 23 3–11454 92585 2–6 2.43

5A 202 3–99690 8305 2–11 2.99 186 3–15977 97276 2–8 2.65

5B 283 8–95328 10391 2–13 3.2 271 2–20623 99815 2–7 2.82

5D 67 7–99753 10919 2–11 2.87 16 7–19401 91446 2–5 2.56

6A 179 4–92210 11380 2–10 3.02 190 2–14164 98516 2–11 2.65

6B 206 2–98128 6607 2–10 2.8 329 2–16501 99871 2–9 2.68

6D 62 10–93126 7480 2–6 2.68 46 3–15001 98599 2–6 2.52

7A 182 3–89043 8119 2–13 3.04 292 2–18888 99514 2–9 2.8

7B 169 6–95920 8702 2–19 3.24 364 2–17576 99805 2–10 2.64

7D 39 37–48011 5530 2–6 2.41 79 2–15770 99555 2–7 2.59

Adult Plant Disease Phenotyping
The diversity panel and a susceptible check (Morocco) were
planted in 4 rows of 30 cm spacing and 2 m of length at
NARC, Islamabad, and CCRI, Nowshera in 2015–2016 for
screening for adult plant stripe rust resistance. The stripe rust
susceptible cultivar Morocco was planted every 20th row to assist
the spread of the rust epidemic. Inoculation was carried out
using the Pst inoculum consisting of races used in this study.
The inoculum was prepared by mixing rust spores mixture in
liquefied petroleum ether (Merck Cat#1.01775.2500) and paraffin
oil (Merck Cat # 1.07162.1000) in a ratio of 4:1 (V/V). The
inoculum was sprayed with the help of a ULV sprayer on the
rust spreader cultivar Morocco at the booting stage in both
years at both field locations because this stage coincides with the
favorable climatic conditions for rust spread. Rust infection and
severity percentages were recorded when the genotype Morocco
reached 70–80% severity. Rust scores were recorded three times
each season at 1-week intervals to avoid disease escape. Wheat
response to infection [infection types (IT)] was recorded using a
0–9 scale (Line and Qayoum, 1992). Yellow rust disease severity
(DS) was noted as % infected leaf area of the host genotypes.

Analyses of Variance, Heritability, and
Correlation
Analyses of variance of yellow rust infection types and disease
severity from adult plant field evaluation were done across years

and environments using a linear mixed model to test for additive
variance between genotypes, environments, and the interactions
between genotypes by environments. In the mixed linear model,
genotypes, and environments were used as fixed and years as
random factors. Broad-sense heritability (H2) was calculated
using an ANOVA model to estimate variance components on a
genotype mean basis.

H2
=

σ2
g

σ2
g +

σ2
ge
y +

σ2
e
yr

where, σ2
g is the genotypic variance, σ2

e is the environment
variance, σ2

ge σ 2
gxe is the genotype by environment interaction

variance, and σ2
e error is the residual error variance, y is the

number of years, and r is the number of replications within
each experimental site. Pearson correlation coefficients (r) among
experimental sites and cropping seasons were estimated to
examine the consistency of infection types and disease severity
across the environments. Statistical analyses of the present study
were performed using R Statistical Software.

DNA Extraction, and SNP Marker
Genotyping
For genomic DNA extraction, five seeds of each SYN-DER
accession were grown in 7 cm diameter disposable pots in a
growth room. After 16–18 days of growth fresh leaf samples
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TABLE 4 | Quantitative trait nucleotides (QTNs) associated with resistance to Pst races at seedling stage in SYN-DER panel using 90K and GBS markers.

Race SNP Allelesa Chr Pos QTN effectb LOD score −log10(p) r2 (%)c MAFd

Pst.571243 IWB72742 G/A 1B 300.6 −0.74 4.58 5.36 15.39 0.21

Pst.571243 1B_338552631 T/G 1B 338.6 1.05 3.74 4.48 9.18 0.06

Pst.571243 IWB73197 T/G 2B 152.2 −0.61 3.72 4.45 10.76 0.24

Pst.140202 2D_82307885 G/A 2D 82.3 0.86 4.18 4.94 10.9 0.1

Pst.140202 3A_701489529 C/T 3A 701.5 −0.65 3.48 4.21 5.29 0.08

Pst.140202 3B_180646490 T/C 3B 180.6 −0.57 3.67 4.41 9.98 0.23

Pst.140202 IWB26725 G/A 3D 367.4 0.48 3.29 4.01 6.09 0.15

Pst.571262 IWB1577 T/C 3D 439.7 −0.45 5.01 5.81 8.53 0.5

Pst.571242 IWB24288 A/G 3D 447.1 0.4 4.57 5.35 8.95 0.39

Pst.571243 4A_659618327 T/C 4A 659.6 0.55 3.61 4.35 11.3 0.42

Pst.571242 4B_11905357 G/A 4B 11.9 0.48 6.88 7.74 11.93 0.3

Pst.571242 IWB5827 T/C 4B 603.1 −0.39 3.91 4.66 9.15 0.44

Pst.571243 4B_609362872 A/C 4B 609.4 −0.49 4.93 5.72 9.26 0.48

Pst.571242 5A_363980539 A/G 5A 364.0 −0.32 3.43 4.15 5.3 0.31

Pst.571242 5A_590355732 C/T 5A 590.4 −0.36 3.49 4.21 7.91 0.48

Pst.571242 IWB28556 A/G 5A 620.6 −0.37 3.61 4.35 7.13 0.31

Pst.140202 IWB27708 A/G 5B 2.3 −0.22 3.39 4.11 2.34 0.32

Pst.571242 IWA3089 C/T 5B 580.4 0.43 3.29 4.01 10.6 0.47

Pst.571242 5B_580647907 T/C 5B 580.6 −0.75 7.24 8.11 10.52 0.08

Pst.571243 5B_580647907 T/C 5B 580.6 −0.77 4.19 4.96 7.19 0.09

Pst.571243 IWB35933 C/T 5D 521.4 −0.62 3.4 4.12 8.94 0.22

Pst.173262 7A_529833812 G/C 7A 529.8 −0.2 3.06 3.76 7.6 0.16

Pst.571262 7A_696929784 G/T 7A 696.9 −0.84 3.44 4.17 6.95 0.06

aResistance allele is underlined.
bQTN effect is negative if minor allele is increasing phenotype and positive if major allele is increasing phenotype value.
cPhenotypic variation explained by the QTN.
dMinor allele frequency.

were taken to perform DNA extraction (Dreisigacker et al., 2013).
Aliquant part of 50 µl DNA (50–100 ng/µl) for each sample
was shipped in a 96-well plate arrangement for genotyping with
high-density SNP markers, using the Wheat 90K SNP array
(Wang et al., 2014), at the Department of Primary Industries,
Victoria, Australia. The KASP marker for Lr34/Yr18 was used
to identify the durable rust resistance gene in SYN-DERs
(Rasheed et al., 2016).

Genome-Wide Association Analyses
Using SNPs and Haplotypes
The GWAS for stripe rust responses recorded in seedling and
field experiments was performed by the multi-locus GWAS
methods. The population structure was inferred from the
principal component analysis (PCA), and PC scores from the
first five principal components were used as a Q matrix. The
kinship matrix (K) was calculated from the TASSEL version 5.0.
Quantitative trait nucleotides (QTNs) were identified by meMLM
(Wang et al., 2016) and FASTmrMLM (Tamba and Zhang, 2018)
methods, which are included in the R-package mrMLM v 3.1.1

For each trait, P-values were extracted from the TASSEL results.
Manhattan and quantile-quantile (QQ; observed P values plotted
against expected P values) were plotted using R package qqman
(Turner, 2014).

1https://cran.r-project.org/web/packages/mrMLM/index.html

The SNP linkage disequilibrium blocks (SNPLDBs) were
constructed to identify the multiple alleles to fit the property
of multiple alleles per locus in the SYN-DERs. The SNPLDB
was constructed using RTM-GWAS software v1.2, which is
publicly available at https://github.com/njau-sri/rtm-gwas (He
et al., 2017). The output vcf from RTM-GWAS was used as a
marker dataset for association analysis in TASSEL version 5.0.

Genomic Prediction Models
This study used 11 marker-based prediction models to assess
predictability (i.e., the correlation between predicted and
observed trait values) of unobserved phenotypes. All prediction
models differed from each other with respect to assumptions
regarding estimation of markers effects. Among the parametric
models included, an MLM-based prediction model, a genomic
best linear unbiased prediction (GBLUP), was computed using
the “BGLR” function of R package Bayesian generalized linear
regression (BGLR) version 1.0.8 (Pérez and De, 2014). The
GBLUP prediction model utilizes a realized genomic relation
matrix (G) to model correlation among individuals (Vanraden,
2008; Habier et al., 2013). In addition, the Bayesian linear
prediction models, i.e., Bayesian Ridge Regression (BRR),
Bayesian least absolute shrinkage, and selection operator (BL),
BayesA, BayesB, BayesC, and reproducing kernel Hilbert spaces
regression (RKHS) were also used in prediction analysis. These
Bayesian prediction models were also used with the function
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TABLE 5 | Quantitative trait nucleotides (QTNs) associated with resistance to Pst at adult plant stages in four environments in SYN-DER panel using 90K
and GBS markers.

Environment SNP Allelesa Chr Pos (Mb) QTN effectb LOD score −log10(p) r2 (%)c MAFd

ISB.15 IWB7628 T/C 1A 3.1 2.3 6.34 7.19 6.83 0.47

ISB.16 1A_3878168 G/T 1A 3.9 2.18 6.71 7.57 6.95 0.3

NWS.15 IWB4201 G/A 1A 4.0 −2.96 3.95 4.7 5.72 0.1

NWS.16 IWB21700 T/C 1A 534.3 −7.22 3.53 4.26 8.13 0.29

NWS.15 1A_560487941 G/A 1A 560.5 −2.35 4.52 5.29 5.98 0.17

NWS.15 IWB10188 G/A 1A 581.5 −3.08 5.11 5.91 9.09 0.15

ISB.15 1B_8591698 C/T 1B 8.6 −2.92 3.4 4.12 5.97 0.1

NWS.16 IWB64963 G/A 1B 86.8 7.81 5.69 6.51 11.1 0.48

ISB.15 IWB2120 A/C 1B 106.8 2.92 3.84 4.58 6.85 0.15

ISB.16 IWB49173 T/C 1B 327.8 3.11 5.19 6 10.57 0.19

ISB.15 1B_633336851 C/A 1B 633.3 2.65 3.74 4.48 3.26 0.09

ISB.15 1B_683306760 G/A 1B 683.3 −2.58 6.16 7 8.16 0.36

NWS.16 2A_566856454 G/T 2A 566.9 11.57 4.08 4.83 9.06 0.12

NWS.16 2B_163977776 G/A 2B 164.0 −9.38 5.72 6.55 8.33 0.18

NWS.16 2B_360129171 G/A 2B 360.1 −13.81 7.83 8.72 6.89 0.06

NWS.15 IWB35566 G/A 2B 783.2 −2.85 4.6 5.38 5.11 0.1

NWS.15 3A_130776756 C/T 3A 130.8 3.81 5.81 6.64 6.5 0.06

NWS.15 3A_503145562 A/G 3A 503.1 2.12 3.75 4.49 3.88 0.13

NWS.15 3A_736945971 A/T 3A 736.9 −2 5.46 6.28 7.22 0.41

ISB.15 IWA747 G/A 3B 55.5 −3.21 5.65 6.47 9.26 0.21

ISB.15 3B_55514953 T/C 3B 55.5 −6.08 14.26 15.27 29.31 0.18

NWS.16 3B_65339336 G/A 3B 65.3 −15.82 5.7 6.52 14.21 0.1

ISB.16 3B_470866042 A/G 3B 470.9 −2.83 4.72 5.51 4.71 0.09

ISB.16 3D_2620724 C/T 3D 2.6 −2.17 5.95 6.78 8.2 0.5

NWS.15 3D_355163225 T/C 3D 355.2 −1.94 3.36 4.08 3.69 0.16

ISB.16 3D_551073224 T/C 3D 551.1 −2.34 5.45 6.27 6.64 0.23

NWS.16 4A_438964494 C/T 4A 439.0 5.83 5.54 6.36 5.45 0.48

NWS.16 IWB68805 C/T 4A 733.6 4.91 3.35 4.07 3.75 0.3

ISB.16 4D_156687029 G/A 4D 156.7 −6.08 10.39 11.34 13.35 0.06

NWS.15 IWB33444 C/T 5A 481.9 −2.41 10.85 11.81 9.01 0.5

ISB.16 IWA4223 C/T 5A 670.4 −1.72 3.09 3.79 4.71 0.46

ISB.15 IWB7864 G/A 5B 2.6 −2.29 4.23 4.99 6.14 0.32

NWS.16 IWB65690 G/A 5B 10.8 8.23 6.46 7.31 12.44 0.49

NWS.15 IWB8592 G/A 5B 64.7 2.79 9.55 10.47 8.81 0.24

NWS.16 5B_207483057 G/A 5B 207.5 6.74 4 4.75 3.31 0.13

ISB.16 5B_471381890 A/G 5B 471.4 2.81 4.58 5.36 6.28 0.13

NWS.16 IWA2062 G/A 5B 542.6 −9.99 3.94 4.69 6.48 0.07

NWS.15 IWB65055 T/C 5B 692.6 −2.58 4.62 5.4 8.44 0.26

NWS.15 IWB14489 G/A 5D 133.5 −3.85 6.99 7.85 6.04 0.06

ISB.16 IWB9144 G/A 5D 487.6 −1.73 3.15 3.85 4.52 0.41

ISB.15 IWB30735 T/C 6A 297.7 −2.8 4.14 4.9 8.9 0.33

NWS.15 IWB66163 T/C 6A 415.9 −2.18 3.61 4.34 3.82 0.14

ISB.16 IWB40151 A/G 6A 546.6 −1.89 3.14 3.85 5.44 0.37

ISB.16 6A_595332866 T/C 6A 595.3 −2.64 3.94 4.69 4.1 0.09

ISB.16 IWB37028 T/C 6B 4.4 −5.97 11.61 12.58 14.01 0.06

NWS.16 6B_22858086 A/G 6B 22.9 −12.25 7.15 8.02 9.36 0.11

NWS.15 6B_31867138 C/T 6B 31.9 −4.97 9.13 10.05 10.2 0.06

ISB.15 6B_231490683 G/A 6B 231.5 2.46 4.29 5.06 5.98 0.25

NWS.16 6B_361469100 C/T 6B 361.5 −9.57 4.24 5.01 3.59 0.07

ISB.15 6B_419133836 G/A 6B 419.1 −3.17 6.3 7.14 6.62 0.15

NWS.15 6B_618067850 G/C 6B 618.1 −4.03 5.93 6.76 6.71 0.06

(Continued)
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TABLE 5 | (Continued)

Environment SNP Allelesa Chr Pos (Mb) QTN effectb LOD score −log10(p) r2 (%)c MAFd

NWS.15 6D_436810635 G/A 6D 436.8 −3.16 5.47 6.29 10.85 0.17

ISB.16 IWB74161 C/T 7A 47.0 −1.79 3.34 4.06 5.05 0.43

NWS.16 7A_234640959 C/T 7A 234.6 5.9 4.71 5.49 5.49 0.43

ISB.16 IWB21762 C/T 7A 506.1 −2.21 4.53 5.3 6.44 0.28

ISB.16 7A_588284942 G/A 7A 588.3 1.78 3.86 4.61 4.34 0.3

NWS.16 7A_675526339 G/C 7A 675.5 −7.26 5.11 5.91 4.86 0.17

NWS.15 7A_676996750 G/A 7A 677.0 −3.29 5.28 6.08 7.02 0.09

ISB.16 IWB26214 C/T 7B 59.6 −3.19 6.87 7.73 8.24 0.14

NWS.15 IWA5939 T/C 7B 582.3 4.04 12.21 13.19 11.9 0.15

ISB.15 IWB13912 T/C 7B 692.6 −3.28 5.45 6.26 7.47 0.12

NWS.16 IWB48256 T/C 7B 711.5 −6.84 3.59 4.32 7.87 0.35

ISB.16 IWB12163 G/A 7B 727.5 −2.06 5.62 6.44 6.45 0.4

ISB.16 7B_746448232 A/G 7B 746.4 −1.87 3.49 4.22 3.87 0.2

NWS.16 IWB42068 A/G 7D 11.4 −5.84 3.69 4.43 6.05 0.4

ISB.15 IWB74163 A/C 7D 44.5 −3.07 9.65 10.58 12.08 0.41

ISB.15 IWB59266 A/G 7D 58.7 −3.11 4.95 5.74 7.59 0.14

ISB.16 7D_96173227 G/T 7D 96.2 1.82 4 4.75 3.25 0.17

aResistance allele is underlined.
bQTN effect is negative if the minor allele is increasing phenotype and positive if the major allele is increasing phenotype value.
cPhenotypic variation explained by the QTN.
dMinor allele frequency.

“BGLR” in the R package “BGLR.” For the ridge regression
BLUP (rrBLUP) model, we used the “mixed.solve” function from
rrBLUP R package version 4.6 (Endelman, 2011). To implement
the elastic net (EN), we used the “glmnet” function implemented
in the glmnet R package version 2.0–18 (Friedman et al., 2010).
To compute EN, the value of alpha.5 was used. The EN
model is a combination of ridge regression and LASSO. In
addition, non-parametric models, i.e., relevance vector machines
(RVM) and Gaussian Processes (GP), were used to build a
GS prediction model. The “rmv” and “gausspr” functions from
kernlab R package version 0.9–27 (Karatzoglou et al., 2007) were
used for RVM and GP modeling. To verify the predictability
of the 11 models in the SYN-DER population, we evaluated
the prediction accuracy by 10-fold cross-validation using a
training set randomly apportioned into each fold. The data
were partitioned into training population (90%) and validation
population (10%) sets.

RESULTS

Phenotypic Variations for Stripe Rust
Resistance in the SYN_DER Population
The response of the 193 SYN-DERs and check cultivars to Pst
was assessed in four environments (two locations × 2 years)
under high disease pressure. ANOVA showed highly significant
(P < 0.001 and P < 0.01) differences among genotypes both
for specific locations (Islamabad and Nowshera) and across
locations (combined data) (Table 2). The variance components
for environments were significant (P < 0.01 and P < 0.05).
Similarly, genotypes by environment interactions for IT were

significant (P < 0.05) at Nowshera and across locations buts
non-significant for ISB.

The frequency distribution of ITs displayed by the SYN_DERs
in response to the five Pst races is presented in Figures 1A,B. Of
the lines tested, 78% (152), 63% (122), 79% (153), 38% (75), and
80% (156) of accessions showed seedling resistance to Pst.571242,
Pst.571262, Pst.140202, Pst.571243, and Pst.173262, respectively.
Notably, 18 (9%) of the genotypes showed seedling resistant
infection types to all five Pst races.

The population showed a wide range of ITs across the
environments. At Nowshera, 12% of accessions (24 genotypes)
were highly resistant, 21% (41 genotypes) were showed resistant
reactions, and 3 genotypes (1.5%) were highly susceptible. At
ISB, 3% (6 genotypes) were highly resistant, 12% (24 genotypes)
were resistant, and 1% (2 accessions) showed highly susceptible
reactions (Figure 1). Eighteen (9%) of accessions were resistant
in both cropping seasons at both experimental locations. Broad
sense heritability (H2) for IT and disease severity ranged from
0.66 to 0.75% (Table 2).

Pearson correlation coefficients between stripe rust IT and
disease severity between Islamabad and Nowshera in both years
are presented in Figure 1E. Correlations were 0.51 and 0.59
for ITs, and 0.38 and 0.61 for disease severity at Islamabad
and Nowshera, respectively. The correlations between Islamabad
and Nowshera for ITs in 2015 and 2016 were 0.65 and 0.40,
respectively. The respective disease severity correlations were
0.63 and 0.30. All five Pst races evaluated for ITs were significantly
and positively correlated to each other and values ranged from
0.34 to 0.61 (Figure 1D). Seedling infection types and disease
severity of Pst.140202 and Pst.173262 were positively and were
significantly correlated with adult plant ITs and disease severity
in Islamabad in 2016.
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FIGURE 3 | Manhattan plots showing distribution of p-value on –log(10) scale for SNPs associated with an average coefficient of infection (ACI) at Nowshera-2016
(NWS.16) using 90K SNP array (A) and GBS markers (B). The allelic effects of SNPs on chr7B (C), chr6B (D), chr4D (E), and chr6B (F) are shown as boxplots. Each
boxplot shows the distribution of the average coefficient of infection (ACI) in a relevant environment for both allelic states of the SNP marker.

SNP and Haplotype Variations in the
Synthetic-Derived Diversity Panel
Two genotyping platforms, 90K SNP array and GBS, were
used for GWAS. For the 90K SNP array, 29,632 SNP markers
were retained after removing SNPs with missing data of >10%
and minor allele frequency of <0.05. Figure 2A shows SNP
marker density on each wheat chromosome. For GBS, out
of 236,327 SNPs identified, 47,122 were finally used after
removing SNPs with >10% missing data, and <5% minor allele
frequency (Figure 2B).

Haplotype blocks were constructed using both genotyping
platforms using the block partitioning approach with CIs
based on genome-wide LD (D/) patterns (Gabriel et al., 2002),
and implemented in RTM-GWAS (He et al., 2017). Table 3
describes the number of haplotype blocks, the range and
average size of blocks in terms of kb, and the range and
average number of SNPs comprising each haplotype block on
each chromosome. In the 90K SNP array, 19,070 LD blocks
were constructed (Figure 2C), out of which 3,325 blocks
contained more than two haplotype (alleles) (Table 3). The
maximum number of haplotypes (n = 304) were constructed
on chr2B, while the minimum was on chr4D (n = 10). On
an average, the haplotype block size ranged from 5.5 Mb
(chr7D) to 11.5 Mb (chr3D). The number of SNPs in each

haplotype block was minimum 2 and maximum 14. In GBS,
the number of blocks ranged from 16 (chr5D) to 364 (chr7B)
(Figure 2D). The haplotype block size ranged from 2 to
19.6 Mb (chr3B), while SNPs/block ranged from 2 to 11
(chr3B and chr6A).

Association Analysis for Seedling
Resistance to Puccnina striiformis in
Synthetic-Deriveds
In total, 23 QTNs were identified for seedling resistance against
five races in the SYN-DERs populations (Table 4). Eight QTNs
were associated with seedling resistance against Pst.571242, of
these the QTN on chr5B at 580.6 Mb was identified by both
90K SNP array and GBS and accounted for 10.5% of the
total phenotypic variation. Only two QTNs were identified for
resistance against Pst.571262 on chr3D and 7A, and explained
8.5 and 6.9% of the total variation, respectively. Five QTNs were
detected against Pst.140202: these explained 2.3 to 10.9% of the
total variation and were distributed on chr2D, chr3A, chr3B,
chr3D, and chr5B. Seven QTNs were identified for resistance
against Pst.571243 and accounted for 7.9 to 15.3% of the total
variation. Only one QTN was identified for resistance against
Pst.173262 on chr7A and explained 7.6% of the total variation.
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FIGURE 4 | The allelic effect of SNP 7A_675526339 on chr7A associated with the average coefficient of infection at Nowshera (NWS) in both years 2015 and 2016
(A,B). The allelic effects of IWB7628 on chr1A, and IWB12163 on chr7B on the ACI at Islamabad-2015 (C), and Islamabad-2016 (D), respectively. Each boxplot
shows the distribution of the average coefficient of infection (ACI) in a relevant environment for both allelic states of the SNP marker.

Association Analysis for Adult Plant
Resistance to Puccnina striiformis
In total 68 QTNs were identified for adult plant resistance against
Pst in SYN-DERs (Table 5). Fourteen QTNs were identified for
ISB.15, 19 for ISB.16, 18 for NWS.15, and 17 for NWS.2016.
These QTNs were detected on all chromosomes except chr1D,
chr2D, and chr4B. Figure 3 shows Manhattan plots for significant
SNPs associated with resistance to Pst at NWS.16 using a 90K
SNP array (Figure 3A) and GBS (Figure 3B). The allelic effects
of associated SNPs are shown as box plots (Figures 3C–F).
The phenotypic variation explained by the QTNs ranged from
3.2% (96.1 Mb at chr7D) to 29.3% (55.5 Mb at chr3B). Some
QTNs were identified by both genotyping platforms, i.e., at
55.5 Mb on chr3B for resistance to Pst at ISB.15, and 560.4 Mb
at chr1A for NWS.15. A QTN at 53.4–58.1 Mb on chr1A
associated with NWS.15 and NWS.16, and another on chr7A at
675–676 Mb associated with NWS.15 and 16 (Figures 4A,B).
Similarly, QTN on chr7B at 711–727 Mb was associated with
resistance to Pst at NWS.16 and ISB.16 (Figure 4C). Some QTNs
were associated with resistance to Pst at multiple environments
including QTN at 3.1–3.9 Mb on chr1A associated with ISB.15,
ISB.16, and NWS.15 (Figures 4C,D). Interestingly some QTNs
were associated with both seedling and adult plant resistance,

i.e., the QTN on chr1B at 300–327 Mb was associated with
Pst.571243 at ISB.16 (Figure 5A), and the QTN at 152–163 Mb
on chr2B associated with Pst.571243 at NWS.16. Similarly, a
QTN at 355–367 Mb on chr3D was associated with Pst.140202
at NWS.15 (Figure 5B). The QTNs of chr4A, chr2D, and chr4B
were associated with Pst.571243, Pst.140202, and Pst.571242,
respectively (Figures 5C–E). A QTN on chr7A at 675–696 Mb
identified in NWS.15 and 16 was also associated with Pst.571262
(Figure 5F). The allelic effects were also determined for the
durable rust resistance gene Yr18, and the resistance allele
was significantly associated with resistance to Pst in all four
environments, i.e., ISB.16 (Figure 6A), NWS.16 (Figure 6B),
ISB.15 (Figure 6C), and NWS.15 (Figure 6D).

Haplotype Blocks Associated With
Resistance to Puccnina striiformis at
Seedling and Adult Plant Stages
In total, three haplotype blocks were associated with seedling
resistance against Pst.571242, Pst.140202, and Pst.173262 on
chr1A, chr3B, and 7D, respectively (Table 6). The haplotype
block on chr1A identified with the 90K SNP array was present
at 575.2 Mb and contained six haplotypes, whose frequency
ranged from 1.03 to 59% (Figures 7A,B). The effect of all three
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FIGURE 5 | Box plots showing allelic effects of SNPs associated with resistance against stripe rust with highest phenotypic effect at seedling stage against race
Pst.571242 (A), Pst.571262 (B), Pst.571243 (C), Pst.140202 (D), Pst.571243 (E), and Pst.173262 (F). Each boxplot shows the distribution of the average
coefficient of infection (ACI) in a relevant environment for both allelic states of the SNP marker.

haplotypes of chr1A LD block is shown in Figure 7C. A haplotype
block on chr3B by (GBS markers) was positioned at 125.8 Mb
and had four haplotypes with a frequency of 67 to 1%. Similarly,
the haplotype block on chr7D was present at 627.3Mb and
contained five variants with a frequency between 1.5 to 79.2%.
This haploblock is likely a homolog of the QTN identified on
chr7A for resistance against the same race.

In total, 11 haplotype blocks (two identified with GBS and
nine with 90K SNP array) were associated with Pst resistance
at the adult plant stage. Two haplotype blocks on chr5A and
chr1A were associated with resistance to Pst at ISB.16, with

three and six haplotype variants observed, respectively. The
haplotype block on chr6B was associated with resistance to Pst at
NWS.16 and consisted of three haplotypes (Figures 8A,B), where
the Hap-II (CCG) significantly reduce the ACI (Figure 8C).
Similarly, haplotype block on chr1A consisted of four haplotypes
(Figures 8D,E), and Hap-II (CATTCTTCA) was associated with
resistance to Pst at NWS.15 (Figure 8F). A haplotype block at
488 Mb on chr1D was associated with resistance to Pst at ISB.15
and NWS.15, while another haplotype block on chr5A at 465 Mb
was associated with Pst resistance at ISB.16 and NWS.15. This
haplotype block is likely the QTN at 481 Mb which was associated
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FIGURE 6 | The allelic effects of the durable rust resistance gene Lr34/Yr18 on the average coefficient of infection (ACI) in four environments at adult plant stage in
ISB.15 (A), ISB.16 (B), NWS.15 (C), and NWS.16 (D). Each boxplot shows the distribution of the average coefficient of infection (ACI) in a relevant environment for
both allelic states of the SNP marker.

with APR at NWS.15. Five haplotype blocks were associated with
Pst resistance at NWS.15 and these were distributed across chr1D
(2), chr2B, chr5A, and chr6A. For the haplotype block on chr2B
(6.2 Mb), 13 different haplotype variants were identified with a
frequency ranging between 1.03 and 43%.

Genomic Prediction for Resistance
Against Puccnina striiformis
Genomic-prediction analysis was conducted using a fivefold
validation for Pst resistance at four locations and five Pst races
using 11 different prediction models (Table 7). In the case
of APR, prediction accuracies ranged from 0.23 (RKHS for
ISB.15) to 0.511 (BL for NWS.15) using 90K markers, while
prediction accuracies were relatively lower for GBS. Among
the prediction models, BRR, BL, and GBLUP showed higher
prediction accuracies compared to other models. Prediction
accuracies were low for Pst.173262 and Pst.140202 using both
GBS and 90K markers. The hierarchical clustering was used to
classify the prediction models, which indicated that EN-based
prediction accuracies were quite different than other models both
for 90K and GBS markers (Figures 9A,B). Based on the 90K
platform, all Bayes model (A, B, and C) and BL were quite similar

in the prediction of reaction against Pst. BRR, GP, and GBLUP
were quite similar in the case of the GBS platform (Figure 9A),
while BRR was a bit different compared to GP and GBLUP in the
case of 90K markers (Figure 9B).

DISCUSSION

Stripe Rust Resistance in
Synthetic-Deriveds at Seedling and Adult
Plant Stages
The deployment of new, effective, and durable sources of
resistance against Pst is required to reduce the risk of epidemics.
Seven SYN-DERs were found to possess a high level of resistance
against three Pst races, while six were resistant against all five
races. It is likely that these SYN-DERs (SD37, SD38, SD73, SD85,
SD104, SD172, and SD173) carry major stripe rust resistance
genes. All five races used in the evaluation were avirulent to
Yr24/Yr26, which was identified in synthetic hexaploid wheats
and has been deployed in China and elsewhere (McIntosh et al.,
2018). Most Pst races are avirulent to the Yr24/Yr26 gene,
however, races virulent to Yr10 were also virulent to Yr24/Yr26,
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e.g., Australian Pst race 150 E16A + and Chinese Pst races V26-
CH42, and V26-Gui22 (McIntosh et al., 2018). Since SYN-DER
wheats are not extensively deployed in Pakistan and the races
used in this study were the most virulent available races, it is
likely that virulence to Yr24/Yr26 is not common in the pathogen
population in Pakistan. Therefore, the eight SYN-DERs could be
an excellent source of resistance against Pst in Pakistan and other
countries where virulence to this gene combination is not present.

At the adult plant stage, more than 110 SYN-DERs showed
moderate to resistant responses against Pst. The field screening
was carried out in ‘hot-spot’ areas of Pst incidence, thus, this APR
in SYN-DER could be usefully deployed against Pst races in the
region. These results are in accordance with previous findings
that APR occurs at a high frequency in synthetic hexaploid wheat
(Zegeye et al., 2014; Bhatta et al., 2019). This is partly attributable
to the fact that the A and B genomes of durum wheat are present
completely in synthetic hexaploid wheat and partially in SYN-
DERs. Previous studies indicate that Pst isolates from bread wheat
are often avirulent on durum wheat (Aoun et al., 2021). Among
the APR SYN-DERs, 68 carried the Lr34/Yr18 gene, which is
known to provide a partial resistance against all Pst races. The
results also suggested the presence of Lr34/Yr18 reduced overall
incidence of Pst in all four environments against all five isolates.
However, none of the SYN-DERs carried Lr67/Yr46, which was
expected because this gene evolved after polyploidization and
is mostly present in landraces from Pakistan and India (Riaz
et al., 2016), while synthetic hexaploid wheats and parents used
in SYN-DER did not have any introgression from Pakistan or
Indian landraces.

Quantitative Trait Nucleotides and
Haplotypes Associated With Puccnina
striiformis Resistance in
Synthetic-Deriveds
Both platforms, i.e., GBS and 90K SNP array, effectively
identified the loci associated with resistance to Pst, and some
QTNs were common to both platforms. We have collected
information for stripe rust resistance loci from 35 different
studies (Supplementary Table 2) and compared our QTNs with
previous findings. Among the Yr resistance genes, Yr24/Yr26
is derived from synthetic wheats and widely deployed in
synthetic wheat-based commercial cultivars in China (Zeng et al.,
2014). Previously, GWAS identified several Yr resistance loci
co-localized with known Yr genes including Yr24/Yr26/Yr28
on chromosome 1B, Yr48 on chromosome 5AL, Yr32 on
chromosome 2A, and Yr19 on chromosome 5BL (Zegeye et al.,
2014). Apart from Yr24/Yr26, it was expected that several
of the SYN-DERs could carry Yr32 because all five races
are avirulent to this gene. One QTN and one haplotype
were associated with resistance to Pst on chr2A at 566 and
30.8 Mb, respectively. The QTN at ∼566 Mb was likely to
be Yr32; previously, the SNP AX-108752496 (similar position)
was reported to be associated with Pst resistance (Wu et al.,
2021). However, the minor allele provided resistance and its
frequency at this QTN was 12% (n = 23), fourteen out of
23 SYN-DERs also possessed the durable rust resistance gene

Lr34/Yr18. Therefore, these 14 accessions could carry both major
and minor genes, thus, provide valuable donor sources for
breeding programs.

Among the 32 seedlings and 68 APR QTNs, 18 had a
phenotypic effect exceeding 10%. The largest effect QTN on
chr3B at ∼55.4 Mb explained 29.3% of the variation was
identified by both platforms in two environments. However, the
phenotypic variation explained was relatively lower in ISB.16
(14.2%). Yao et al. (2020) previously identified a QTN at a similar
position in Chinese wheat landraces (designated QYr.nafu.3BS).
Since the major allele provided resistance at this QTN, it is likely
that this locus was responsible for the high frequency of the
resistant SYN-DERs.

Previous studies identified QTNs for resistance to Pst on
chromosomes 2A, 3B, 6A, and 7B in an association mapping
panel of 181 SHWs (Zegeye et al., 2014). The QTNs and
haplotypes identified on the D genome showed the potential
of SYN-DERs for improving the Pst resistance in modern
wheat cultivars. The same loci associated with seedling and
APR to Pst on chr1B (∼300 Mb), chrr7A (∼506 Mb), chr2B
(∼150 Mb), chr3A (∼701 Mb), chr3D (∼355 Mb), and chr5B
(∼2.2 Mb). These loci could be used to discover potentially
novel alleles of major stripe rust resistance genes. The genes
Yr18, Yr29, Yr30, and Yr78 have been widely used in wheat
breeding (Wu et al., 2021). However, in our study, no SNP
association was found in the vicinity of Yr78 and Yr30. The
QTN on chr1B at 683 Mb was likely to be Yr29, and a QTL
QYr.nwafu-1BL was also identified in close proximity (Wu
et al., 2021). The QTN on chr3A was identified as effective
against Pst.140202, and a major gene Yr75 is located nearby
at ∼675 Mb, while the stem rust resistance gene Sr15 was
identified at the same position (Babiker et al., 2015). However,
several loci identified in this study could not be compared
with the previous studies due to the absence of a meta-analysis
of stripe rust resistance loci in wheat. The establishment of
such a framework would greatly enhance the validation and
identification of loci associated with stripe rust resistance,
particularly in GWAS studies.

Our study applied an LD based haplotype approach to
discover loci associated with resistance to Pst. Until now, only
one haplotype-based GWAS for stripe rust resistance has been
reported (Wu et al., 2021). Previously, we used a haplotype-
GWAS approach in SYN-DERs to identify the loci associated with
drought adaptability (Afzal et al., 2019). The results confirmed
that haplotype-GWAS was an effective strategy to increase the
power of GWAS experiments. Here, we showed that haplotype-
GWAS identified 9 out of 13 trait-associated loci where individual
SNPs were ineffective. This was because haplotypes containing
a group of closely linked SNP markers can increase the level of
polymorphisms and overcome the limitation of using single SNP
markers by creating more combinations (haplotypes). Several
haplotypes associated with phenotypes in our study were not
identified by SNP-GWAS and this could be due to many factors,
including patterns of LD in the population, marker density, and
the genetic architecture of the trait. The haplotype on chr6B
(Figures 7A–C) associated with ARP was also identified by SNP-
GWAS and is likely to be a new locus. Similarly, a haplotype
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TABLE 6 | Haplotypes associated with resistance to Pst at seedling and adult plant stages in SYN-DER wheats using 90K and GBS markers.

Genotype (Frequency)

Trait Haplotype ID Chr Position SNPs/
block

−log10(p) Hap-I Hap-II Hap-III

ISB.16 LDB_1_25490035_25490120 1A 25490035 2 1.45E-06 GA (0.68) AG (0.30) GG (0.019)

Pst.571242 LDB_1_575215721_575228785 1A 575215721 2 1.00E-08 GG (0.59) AA (0.18) AG (0.15)

NWS.15 LDB_3_19112718_19129042 1D 19112718 2 1.19E-06 AA (0.74) TG (0.25)

ISB.15 LDB_3_488576303_488577792 1D 488576303 4 4.00E-07 ATGT (0.55) GGAC:0.37 GGGT (0.02)

NWS.15 LDB_3_488576303_488577792 1D 488576303 4 1.00E-08 ATGT (0.55) GGAC:0.37 GGGT (0.02)

ISB.15 LDB_4_30830742_30831056 2A 30830742 2 7.00E-08 CA (0.92) TG:0.06 CG (0.01)

NWS.15 LDB_5_6258683_6338084 2B 6258683 9 3.00E-12 CATTCTTCA (0.43) CACCCTTCA (0.18) TGTTCCTCG (0.14)

Pst.140202 LDB_8_125880000_125930410 3B 125880000 4 6.91E-06 GACT (0.67) GGTC (0.15) AGTC (0.15)

NWS.16 LDB_10_111292188_111292941 4A 111292188 2 2.00E-09 GC (0.47) AT (0.44) GT (0.046)

NWS.15 LDB_13_465541110_465541233 5A 465541110 2 5.00E-07 CG (0.58) TA (0.35) TG (0.02)

ISB.16 LDB_13_465541110_465541233 5A 465541110 2 1.00E-08 CG (0.58) TA (0.35) TG (0.02)

NWS.15 LDB_16_584678556_584680439 6A 584678556 2 8.00E-06 GT (0.60) TG (0.31) GG (0.025

NWS.16 LDB_17_15781175_15781777 6B 15781175 3 1.00E-07 CCG (0.34) CTG (0.31) TCT (0.25)

Pst.173262 LDB_21_627325333_627325482 7D 627325333 2 6.00E-07 GC (0.79) AT (0.103) GT (0.06)

*Bold haplotype blocks are the loci also identified by SNP-GWAS. Only the top three most frequent haplotypes in each LD block are mentioned, and the values in
parentheses are the frequencies of the relevant haplotypes in the diversity panel.

A B

C

FIGURE 7 | LD haplotype block with SNP positions (A), variants of haplotype block (B), and allelic effect of different haplotypes on resistance against Pst.571242 in
the block for LBD_1_575215721_575228785 on chr1A (C). Each boxplot shows the distribution of the average coefficient of infection (ACI) in a relevant environment
for all allelic states of the SNP marker.

consisting of nine SNPs on chr2B at 6.2 Mb (Figures 7D–F) was
not identified by SNP-GWAS, and Hap-II, which provided a high
level of APR was present in 83 accessions. Several genes and QTL
have been identified on chr2B including Yr32, Yr43, Yr44, Yr53,
Yr72, Qyr.cim.2BS2,3, and many more (Supplementary Table 3).

However, none of these genes or QTL were located at the position
of the haploblock as identified in this study, thus, it could be a
new locus. Another haplotype on chr1A was in the proximity of
QTL Qyr.nwafu-1AL at∼587 Mb, which was previously reported
using 90K and 660K markers. However, no major gene has been
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FIGURE 8 | LD haplotype block with SNP positions, variants of haplotype block and allelic effect of different haplotypes in the block for
LBD_17_15781175_15781777 on chr6B (A–C), and LBD_5_6258683_6338084 on chr2B (D–F). Each boxplot shows the distribution of the average coefficient of
infection (ACI) in a relevant environment for all allelic states of the SNP marker.

identified in this region. In conclusion, haplotype-GWAS proved
to be a useful approach in combination with SNP-GWAS to
improve the discovery of resistance loci.

Genomic Prediction for Stripe Rust
Resistance
The transition from phenotypic selection to marker-assisted
selection, and now genome-wide selection, will allow breeders to
improve the selection decision during the early filial generations.
However, the success of genomic selection depends on several
factors such as the heritability of the trait, phenotypic variation
explained by markers, and appropriate genomic prediction
models (Ali et al., 2020). Genomic prediction resulted in an
accuracy of up to 85% for APR at ISB.16, although predictions
at other locations were less accurate. Prediction accuracies
were low to moderate for the three other environments
using the 90K SNP array but higher for GBS markers. The
reason for low prediction accuracies can be attributed to
smaller population sizes and unrelated genotypes. Recently,
the prediction accuracy for stripe rust resistance in wheat
landraces from Afghanistan was observed to be between 0.33

to 0.38 (Tehseen et al., 2021). Among the prediction models
used, GBLUP and BayesB were the most effective, while EN
was the least. The results in this study supported previous
genomic prediction studies, where GBLUP and similar models
predicted the disease resistance more accurately than other
models (Avni et al., 2017; Juliana et al., 2017; Tehseen et al.,
2021).

CONCLUSION

There is an ongoing need to identify new sources of resistance
to Pst. The SYN-DERs provide valuable genetic resources for
wheat improvement because they have high breeding value and
are derived from primary synthetic hexaploidy wheats with
D-genome contribution from Ae. Tauschii. Thus, SYN-DERs can
be used to enhance the diversity of the D-genome in modern
bread wheat but also the diversity of the A and B genomes because
the synthetic wheats carry introgressions from durum wheat.
More than 65 loci were identified in this study, which represent
potentially important genes for race-specific and broad-spectrum
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TABLE 7 | Genomic prediction accuracy using 11 different models for stripe rust resistance at four locations, and against five isolates at seedling stage using 90K SNP
array and genotyping-by-sequencing (GBS) platform.

Markers NWS.15 ISB.15 NWS.16 ISB.16 Pst.571242 Pst.571262 Pst.140202 Pst.571243

90K BayesA 0.506 (0.052) 0.405 (0.053) 0.482 (0.07) 0.506 (0.038) 0.279 (0.113) 0.219 (0.074) 0.11 (0.05) 0.426 (0.059)

BayesB 0.489 (0.055) 0.407 (0.05) 0.486 (0.07) 0.51 (0.044) 0.286 (0.111) 0.228 (0.079) 0.101 (0.051) 0.414 (0.062)

BayesC 0.491 (0.061) 0.413 (0.052) 0.477 (0.077) 0.5 (0.044) 0.29 (0.104) 0.236 (0.076) 0.107 (0.055) 0.434 (0.061)

BRR 0.488 (0.055) 0.395 (0.056) 0.502 (0.061) 0.498 (0.044) 0.264 (0.102) 0.236 (0.079) 0.139 (0.041) 0.413 (0.06)

BL 0.511 (0.053) 0.392 (0.047) 0.47 (0.078) 0.493 (0.043) 0.275 (0.101) 0.24 (0.073) 0.102 (0.05) 0.42 (0.059)

GBLUP 0.468 (0.058) 0.393 (0.048) 0.472 (0.069) 0.494 (0.044) 0.259 (0.103) 0.241 (0.077) 0.106 (0.038) 0.396 (0.059)

RKHS 0.354 (0.054) 0.235 (0.054) 0.39 (0.081) 0.386 (0.062) 0.205 (0.094) 0.221 (0.064) 0.061 (0.049) 0.226 (0.084)

EN 0.48 (0.062) 0.413 (0.06) 0.482 (0.069) 0.491 (0.043) 0.227 (0.104) 0.214 (0.085) 0.117 (0.033) 0.402 (0.056)

RVM 0.505 (0.067) 0.396 (0.072) 0.486 (0.069) 0.466 (0.049) 0.245 (0.108) 0.212 (0.06) 0.131 (0.043) 0.34 (0.054)

GP 0.476 (0.058) 0.392 (0.06) 0.5 (0.058) 0.498 (0.048) 0.258 (0.107) 0.25 (0.076) 0.088 (0.038) 0.408 (0.057)

RRBLUP 0.481 (0.057) 0.406 (0.052) 0.486 (0.069) 0.501 (0.042) 0.228 (0.099) 0.222 (0.078) 0.139 (0.035) 0.405 (0.058)

GBS BayesA 0.449 (0.108) 0.442 (0.077) 0.391 (0.061) 0.399 (0.089) 0.168 (0.047) 0.102 (0.07) 0.079 (0.053) 0.23 (0.051)

BayesB 0.421 (0.118) 0.432 (0.083) 0.386 (0.06) 0.405 (0.086) 0.146 (0.046) 0.117 (0.067) 0.067 (0.056) 0.227 (0.048)

BayesC 0.421 (0.114) 0.412 (0.084) 0.395 (0.061) 0.396 (0.084) 0.157 (0.053) 0.122 (0.07) 0.097 (0.053) 0.236 (0.044)

BRR 0.407 (0.114) 0.426 (0.079) 0.398 (0.061) 0.428 (0.084) 0.146 (0.05) 0.106 (0.067) 0.062 (0.059) 0.229 (0.048)

BL 0.428 (0.111) 0.399 (0.087) 0.38 (0.062) 0.391 (0.093) 0.15 (0.05) 0.109 (0.071) 0.054 (0.056) 0.241 (0.048)

GBLUP 0.417 (0.111) 0.435 (0.081) 0.366 (0.069) 0.388 (0.086) 0.151 (0.051) 0.117 (0.069) 0.013 (0.054) 0.225 (0.05)

RKHS 0.403 (0.115) 0.424 (0.082) 0.36 (0.064) 0.407 (0.09) 0.104 (0.043) 0.107 (0.07) 0.039 (0.052) 0.228 (0.052)

EN 0.26 (0.086) 0.33 (0.109) 0.17 (0.104) 0.379 (0.066) 0.256 (0.049) 0.002 (0.087) −0.01 (0.07) 0.084 (0.065)

RVM 0.486 (0.106) 0.381 (0.08) 0.346 (0.072) 0.439 (0.084) 0.06 (0.04) 0.038 (0.071) 0.171 (0.06) 0.224 (0.083)

GP 0.413 (0.114) 0.427 (0.087) 0.372 (0.069) 0.466 (0.084) 0.139 (0.049) 0.133 (0.071) 0.048 (0.066) 0.246 (0.056)

RRBLUP 0.398 (0.109) 0.421 (0.082) 0.388 (0.061) 0.385 (0.087) 0.079 (0.056) 0.104 (0.07) 0.001 (0.053) 0.213 (0.055)

Genomic prediction models: BayesA, BayesB, and BayesC. BRR, Bayesian ridge regression; BL, Bayesian least absolute shrinkage and selector operator; GBLUP,
genomic best linear unbiased prediction; RKHS, reproducing kernel Hilbert spaces regression; EN, elastic net; RVM, relevance vector machine; GP, Gaussian processor;
rrBLUP, ridge regression best linear unbiased prediction. The values in the parentheses are SDs of the prediction accuracies.

A B

FIGURE 9 | Ward’s hierarchical clustering on the prediction genomic values derived from the stripe rust infection types using 90K (A) and GBS (B) marker platforms.
Genomic prediction models: BayesA, BayesB, BayesC, Bayesian ridge regression (BRR), Bayesian least absolute shrinkage and selector operator (BL), genomic
best linear unbiased prediction (GBLUP), reproducing kernel Hilbert spaces regression (RKHS), elastic net (EN), relevance vector machine (RVM), Gaussian
processor (GP), and ridge regression best linear unbiased prediction (rrBLUP).

resistance to stripe rust. Haplotype-GWAS should be a routine
GWAS analytical approach to extend the discovery of genetic loci
associated with phenotypes. The novel loci for resistance to stripe

rust identified by SNP, and haplotype GWAS provide an arsenal
of new alleles for resistance breeding. The SNP markers with large
phenotypic effects for both all-stage resistance and APR can be
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converted to KASP or STARP markers for use in marker-assisted
pre-breeding and breeding programs.
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