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Counting wheat heads is a time-consuming process in agricultural production, which

is currently primarily carried out by humans. Manually identifying wheat heads and

statistically analyzing the findings has a rigorous requirement for the workforce and

is prone to error. With the advancement of machine vision technology, computer

vision detection algorithms have made wheat head detection and counting feasible. To

accomplish this traditional labor-intensive task and tackle various tricky matters in wheat

images, a high-precision wheat head detection model with strong generalizability was

presented based on a one-stage network structure. The model’s structure was referred

to as that of the YOLO network; meanwhile, several modules were added and adjusted in

the backbone network. The one-stage backbone network received an attention module

and a feature fusion module, and the Loss function was improved. When compared to

various other mainstream object detection networks, our model outperforms them, with

a mAP of 0.688. In addition, an iOS-based intelligent wheat head counting mobile app

was created, which could calculate the number of wheat heads in images shot in an

agricultural environment in less than a second.

Keywords: object detection, wheat head, one-stage network, machine learning, generative adversarial network

(GAN)

1. INTRODUCTION

As one of the three grains, wheat, a widely planted cereal crop, is widely planted worldwide. The ear
of wheat, known as the wheat head or wheat spike, is a staple food of humans—humans consume
most of the wheat head production, and merely approximately one-sixth of it is used for feeding.
Wheat can be processed into flour for staple foods or snacks, or fermented into alcohol or biofuel.
Wheat’s most common growth stages are the green, jointing, heading, filling, and maturity stages.
The growth and health statuses of the wheat head have a significant impact on wheat yield and
quality from the heading stage to the maturity stage. More specifically, spike number per unit
ground area is one of wheat production’s most critical agronomic factors. Based on this feature,
real-time evaluation can assist in monitoring wheat growth, making management strategies, and
then provide an early prediction of the wheat yield. In wheat breeding programs, the wheat head
feature can also be selected as a phenotypic trait.
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High-precision wheat head recognition is essential for
extracting wheat head features and automatically detecting
wheat phenotype. Machine vision and deep learning
technologies have advanced to the point where the number
of wheat heads can theoretically be measured automatically
and accurately. Nonetheless, identifying wheat heads via
machine vision technology is a complicated and tricky task with
multiple obstacles:

1. Wheat heads vary dramatically in size, posture, shape, and
texture depending on wheat varietals and growth stages. Take
wheat heads as an example, their edges’ shapes are irregular,
and some of their colors are similar to the leaves in particular
growth stages.

2. The automatic identification of wheat heads is significantly
hampered in the diverse field environment due to mutual
shielding between distinct wheat organs and the uneven and
unstable natural illumination.

3. Different growth environments for wheat also impact the
effect of the detection model. Hence, a machine learning
model that can detect wheat heads in various situations with
solid generalizability is desperately required.

In the realm of image-based wheat head recognition and other
spike-like plant recognition tasks, several researchers have made
significant progress. Convolutional neural networks (CNNs)
have been widely used in computer vision (such as object
detection tasks in this study) due to their powerful feature
extraction capabilities. Meanwhile, the particular end-to-end
structure allows convolutional neural networks to be trained end-
to-end and applied to document recognition; for example, Saleh
et al. (2021) proposed a CNN-based model to detect fake news.
To automatically distinguish wheat heads based on RGB photos,
Tang et al. (2017) and utilized classic image processing sharpen
and smoothing methods such as the Laplacian frequency filter
and median filter. The detection accuracy in a test set exceeded
90%, and the detection accuracy in a practical field experiment
was greater than that of the artificial wheat head recognition
approach. Uddin et al. (2020) utilized a CNN model to examine
the number of rice spikes. The model incorporated the feature
pyramid network (FPN) (Lin et al., 2017) into the faster region-
based CNN network, and the model’s accuracy approximated
99%. Allego et al. (2020) proposed an automatic method
for wheat heads recognition and counting in digital images
captured under realistic fields. The DeepCount method built
feature models and fed them into deep CNNs for classification.
The suggested method attained the most excellent coefficient
of determination (R2) of 0.89 on an experimental dataset.
Grbovi et al. (2019) employed a vehicle camera to collect data
samples in a wheat field and used a twin-support-vector-machine
segmentation model to train a wheat head detection model.
The automatic recognition accuracy of the model was almost
identical to that of the manual effect. Fernandez-Gallego et al.
(2018) used simple linear clustering to identify wheat heads. The
experimental results showed that the recognition accuracy was
94% on a wheat head image set under a high nitrogen application
level and 80% on a wheat head image set without nitrogen
application. To identify wheat heads, Fernandez-Gallego et al.

(2018) employed simple linear clustering. The detection accuracy
was 94% on a data set with a high-nitrogen environment and 80%
on a data set without nitrogen application.

Additionally, unmanned aerial vehicle (UAV) techniques can
help capture wheat head images. Liu et al. (2007) operated UAVs
to capture rice head images. They used an improved region-
based fully CNN and achieved 87% detection accuracy on their
model. Considering UAV’s practical values in several situations,
especially in the Beyond fifth Generation (B5G), Gopi et al.
(2021) suggested a Machine Learning (ML)-assisted algorithm
to provide optimal performance during atmospheric disruptions.
Alsamhi et al. (2021b) focused on the application of blockchain
and Federated Learning (FL) to allow drone edge intelligence
for green and sustainable surroundings. They looked into the
motivation, structure for intelligent green environments, and
integration of FL and blockchain technology. An intelligent
technique was also presented for predicting the signal strength
from a UAV to Information-of-Things devices in smart cities
(Alsamhi et al., 2021a). Because of that, network connectivity
can be maintained, appropriate Quality of Service can be
provided, and the drone coverage area can be identified. Thanks
to the contributions made by previous scientists, UAVs have
significantly aided in crop spike detection tasks. Using photos
of rice acquired by UAVs, Zhou et al. (2019) employed an
unsupervised Bayesian learning algorithm to recognize the rice
spike. It achieved 96% in Recall and 72% in Accuracy.

Conclusively, previous research has provided some useful
insights into the use of deep learning approaches for wheat
head detection. There is still potential for development in terms
of detection speed and accuracy and other above-mentioned
classical obstacles in this task.

This paper suggested a novel wheat head detection model
based on the widely used single-stage object detection network
model, YOLO, with the purpose of detecting wheat quickly. The
main innovation of the networkmodel proposed in this paper can
be summarized in the following points: (1) Add generative sub-
network to the attention module to improve the main detection
network’s performance; (2) Replace the NMS algorithm in the
detection network with WBF algorithm; (3) Replace the original
GIoU calculation in the network by introducing CIoU to the
loss function.

2. MATERIALS AND METHODS

2.1. Data Set and Pre-processing
2.1.1. Data Set
The data set used in this study was retrieved from the
Global Wheat Head data set (Kaggle, 2020). Image data were
collected and annotated by nine research institutions from seven
countries, including Tokyo University, Saskatchewan University,
Queensland University, and Nanjing Agricultural University. A
number of organizations, including the Global Institute for Food
Security, DigitAg, Kubota, and Hiphen, have joined the effort to
accurately examine wheat heads.

The data set was divided into two parts, namely, the training
set and the test set. The training data set consisted of wheat
image data from multiple countries and regions, with more than
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FIGURE 1 | The data set contains pictures taken under various weather

conditions, illumination, and growth stages of wheat. (A) Photograph taken

under shading during the wheat filling stage. (B) Photograph taken in half

sunshine during the wheat flowering stage. (C) Photograph taken in full

sunlight during the heading stage of wheat. (D) Photograph taken in full

sunshine during the flowering stage of wheat.

3,000 images from Europe (France, UK, Switzerland) and North
America (Canada). The test data included about 1,000 photos
from China, Australia, and Japan. The data were images of wheat
fields with bounding boxes for each identified wheat head. Some
of the images did not have labeled wheat sheaf boxes, and the
images were recorded in many locations worldwide. Images were
captured in a variety of weather situations, illumination, and
wheat growth stages, as shown in Figure 1.

2.1.2. Data Set Analysis
Several difficulties were encountered during data pre-processing:
(1) wheat in densely planted areas often had overlapping plants
in the image; (2) images were blurred when taken under
windy conditions; and (3) wheat phenotypes varied with wheat
genotypes and growth periods. These are the main challenges
to the application of image recognition technology in crop
phenotypic analysis.

As Figure 2 depicts, from the statistical perspective, the
number of detection frames in the training set obeyed the normal
distribution. The number of detection boxes in most images
ranged from 20 to 60, although 49 sample images did not contain
detection boxes, and the maximum number of detection boxes in
an image was 116. The detection boxes in a single image in the
data set may be too sparse or dense, which will make it difficult to
train the wheat head detection model. As illustrated in Figure 3,

different sparsity degrees of detection box number in sample
images of the training data set are offered.

2.1.3. Data Augmentation
The data augmentation method is usually applied in the case of
insufficient training samples. If the sample size of the training set
is too small, the training of the network model will be insufficient
or the model will over-fit. The data amplification method used
in this study included two parts: simple amplification and
experimental amplification.

1. Simple amplification. Traditional image geometry
transformation, including image translation, rotation,
cutting, and other operations, can be used for simple
data amplification. In this study, the method proposed by
Krizhevsky et al. (2012) was adopted. First, each original
image was cut into five subgraphs, and then the five subgraphs
were flipped horizontally and vertically. The trimmed training
set image was counted by outsourcing frames to prevent the
part of outsourcing frames from being cut out, and then HSV
channel color change was carried out (Sural et al., 2002). In
this way, each original image generated 15 extended images.
As a result, the training set was expanded from 3,000 image
samples to 45,000 data samples.

2. Experimental amplification. Currently, popular data
amplification methods in the field of deep learning research
include Cutout (DeVries and Taylor, 2017), CutMix (Yun
et al., 2019), and Mosaic (Ge et al., 2021). In this study,
these three methods were used for further data amplification
based on 45,000 training samples. Different amplification
methods were used to evaluate the comparative experimental
results. The Cutout method randomly cuts out some areas
in the sample and fills them with a certain pixel value, and
the classification label remains unchanged (Figure 4A). The
CutMix method cuts out a part of the area and fills it with the
training set randomly instead of 0 pixels. To make full use
of the image backgrounds that did not contain wheat heads
in the data set, when CutMix was performed, the image with
the wheat heads and the image without the wheat heads were
subjected to a 1:1 CutMix operation (Figure 4B). The Mosaic
method could use multiple pictures at once, and its most
significant advantage lies in the fact that it could enrich the
background of the detected objects (Figure 4C).

2.2. Methods
YOLO (Redmon et al., 2016; Redmon and Farhadi, 2017, 2018;
Bochkovskiy et al., 2020), and SSD (Liu et al., 2016) have
demonstrated great performance on MS COCO (Lin et al., 2014)
and Pascal VOC (Everingham et al., 2010) data sets and are
frequently employed in object detection tasks. However, since the
anchor parameters of YOLOv5 do not match the actual wheat
head data set. The performance of the model obtained by directly
training YOLOv5 is not good. The following are the key reasons:
Because MS COCO and Pascal VOC data sets are typically used
for YOLO and SSD algorithms’ training, the algorithm’s anchor
points are not universal, particularly when it comes to inferior
object recognition accuracy. As a result, our high-precision wheat
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FIGURE 2 | Histogram of the detection boxes in the data set.

FIGURE 3 | Training samples with different sparsity levels of the detection box number: (A) 9 boxes; (B) 19 boxes; (C) 37 boxes.

FIGURE 4 | Illustrations of three data enhancement methods: (A) CutMix method; (B) Cutout method; (C) Mosaic method.

head detection model was presented, which is co-opted for the
structure of the YOLOv5 model (Jocher et al., 2022) and is
primarily useful for wheat head recognition and is based on the
idea of the one-stage network.

Compared with YOLOv5, the main differences of our
model follow.

1. An attention module was added in the backbone network to
enhance the extraction ability of wheat spike features.

2. Multi-scale feature fusion modules were added to the
backbone, and the modules were optimized by referring to

the ideas of the feature fusion network FPN and the path
aggregation network PANet (Liu et al., 2018).

3. The loss function was improved, and specific loss functions
were designed for the recognition modules of wheat spike and
background image.

4. The activation function was improved, and the LeakyReLU
function, commonly used by CBM modules in the backbone
network, was replaced with the Mish activation function.

5. A label smoothing function was added at the output end of the
backbone network to prevent classification overfitting.

The improved network result is shown in Figure 5.
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FIGURE 5 | Illustration of our model.

2.2.1. Attention Refinement Module
Human vision’s visual attention system is a type of brain
signal processing mechanism. Human vision can scan and
understand an image quickly and select the object area that
requires attention. Subsequently, greater focus is placed on this
area in order to collect more details about the subject that
needs attention while suppressing irrelevant data. In computer
vision, this attention method is also commonly utilized. An
autonomous driving business,Momenta, introduced a new image
detection framework in 2017 that models the connection between
feature channels and employs attention processes to improve the
accuracy of critical features (Hu et al., 2018).

Our wheat head detection model employed the attention
refinement module for the context information branch to refine
the output of the last two stages, inspired by the successful use
of attention mechanisms in autonomous driving. To integrate
the semantic information of the global context, the global
average pooling (Lin et al., 2013) approach was first employed
to determine the greatest receptive field. The attention module
training network then learned the characteristics with varying
weights in the following steps. The attention refining module
calculated the weight of each channel in the feature map. It then
weighted each original output channel with the relevant weight
to create a new weighted feature that may be used to further alter
and integrate features. With only a tiny amount of computation,
this attention method refined and optimized the output of two
stages in the context information branch [specifically, the fourth
and fifth stages of ResNet18 (He et al., 2016) down-sampling] and
retrieves the global context semantic information fast and easily.

As shown in Figure 5, a generator was added inside
“Attention.” Considering that InstanceNorm works better in
generative tasks, all BatchNorm layers inside the generator were
replaced with InstanceNorm. CGAN, CVAE, and CVAE-GAN
were compared as generator models for “Attention,” and finally
CVAE-GAN was chosen. Another change is that the common

deconvolution upsampling and linear interpolation upsampling
were replaced with the BiCubic interpolation upsampling
algorithm, which has a better interpolation effect, as shown in
Equations (1) and (2).

W(x) =











(a+ 2)|x|3 − (a+ 3)|x|2 + 1, |x| ≤ 1

a|x|3 − 5a|x|2 + 8a|x| − 4a, 1 < |x| < 2

0, otherwise

(1)

B(x, y) =

3
∑

i=0

3
∑

j=0

aij ×W(i)×W(j) (2)

In this case, calculating the coefficients aij depends on the
properties of the interpolated data. If the derivatives of the
interpolation function are known, a standard method is to use
the heights of the four vertices and the three derivatives of each

vertex. The first derivatives h
′
x and h

′
y represent the surface

slope in the x and y directions, respectively. The second mutual

derivative h
′′
xy represents the slope in both the x and y directions.

These values can be obtained by successively differentiating the
x and y vectors, respectively. For each vertex of the grid cell,
the local coordinates (0, 0), (1, 0), (0, 1), (1, 1) are substituted into
these equations.

The main function of the generator is to generate a noise
mask based on the attention feature maps extracted by the
backbone of the main detection network and attention extractor,
and to improve the feature learning ability of the main detection
network by adding noise to the attention feature maps. Its role is
similar to the dropout function in classification CNNs.

2.2.2. Feature Fusion Module
The fusion of characteristics from multiple scales is a critical way
to improve segmentation performance in many jobs. Low-level
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FIGURE 6 | Warm-up learning rate curve. The dashed line corresponds to the segmented constant learning rate; the red curve is the warm-up learning rate decay

strategy used in this paper.

features have a better resolution and contain more location
and detail information, but they have less convolution; as a
result, they have worse semantics and more noise. High-level
characteristics include more important semantic information,
but they have limited resolution and poor detail perception.
Improving the segmentation model requires effectively
combining them.

The features obtained by the spatial information branch of the
model in this article comprised a wealth of image space details.
The features acquired by the context information branch, on the
other hand, provided a wealth of image context information.
The two models’ output features were not on the same level,
one being deep and the other shallow. As a result, merging
them directly proved unfeasible, and a fusion module was
required to complete the fusion of these features at various scales.
To select and combine features, an FFM learning attentional
mask was utilized. To achieve feature fusion, the steps listed
below were used. (1) The traditional convolution operation was
undertaken in the fusion module after a concatenated series
is directly employed for diverse input characteristics. (2) The
attention method utilized by the SENet (Hu et al., 2018) model
was followed for feature optimization. (3) Using global average
pooling, feature vectors for series features were produced. (4)
Using convolution and activation functions, the weights of
distinct features were determined. (5) The re-weighted features
were multiplied by the features and weights, then added to the
original features.

2.2.3. Loss Function
The loss function of our model consists of three parts: box
coordinate error, CIoU error, and classification error [see
Equations (3)–(6)]. Box coordinate error (xi, yi) is the center
position coordinate of the predicted box, and (wi, hi) is the width
and height of the predicted box. Correspondingly, (x̂i, ŷi) and

(ŵi, ĥi) are the labeled ground truth box coordinates and size.
Additionally, λcoord and λnoobj are constants; K×K is the number

of grids; M is the total number of predicted boxes; and I
obj
ij is 1

when the ith grid contains a detection target and 0 in other cases.

Loss = Lossbounding_box + Lossciou + Lossclassification (3)

Lossbounding_box =λcoord

K×K
∑

i=0

M
∑

j=0

I
obj
ij (2− wi × hi)[(xi − x̂i)

2

+ (yi − ŷi)
2]+

λcoord

K×K
∑

i=0

M
∑

j=0

I
obj
ij (2− wi × hi)[(wi − ŵi)

2

+ (hi − ĥi)
2]

(4)

Lossciou =

K×K
∑

i=0

M
∑

j=0

I
obj
ij [Ĉilog(Ci)+ (1− Ĉilog(1− Ci)]+

λnoobj

K×K
∑

i=0

M
∑

j=0

I
noobj
ij [Ĉilog(Ci)+ (1− Ĉilog(1− Ci)]

(5)

Lossclassification =

K×K
∑

i=0

I
obj
ij

∑

c∈classes

[p̂i(c)log(pi(c))

+ (1− p̂i(c)log(1− pi(c))]

(6)

Zheng et al. (2020) proposed a more effective IoU calculation
method, CIoU, whose formula is Equation (7).

CIoU = 1− IoU +
ρ2(A,B)

c2
+ αν (7)

The categories of classification are defined in the model as two
categories, namely, positive and negative. For each ground truth
box, the prediction box and its IoU are calculated. The largest IoU
is a positive class, and the others are negative classes.
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FIGURE 7 | Flow chart of three pseudo-label models: (A) Model include the step of placing the model prediction labels into the Trust Part, (B) Model include the step

of placing the prediction labels intro the Trust Part, also with iterative process, and (C) Model without the step of placing the model prediction labels into the Trust Part.

2.2.4. Label Smoothing
Machine learning samples usually have a small number of
mislabels, affecting the prediction performance. Label smoothing
solves this problem by assuming that the labels may be incorrect
at training time and avoiding “overconfidence” in the labels of the
training samples. When the objective function is cross-entropy, a
straightforward implementation of this idea is labeled smoothing.

In each iteration, instead of putting (xi, yi) directly into the
training set, an error rate ǫ is set, and (xi, yi) is substituted into
the training with probability 1-ǫ, and (xi, 1−yi) is substituted into
the training with probability ǫ. In this way, the model is trained
with both correct and incorrect label inputs, and it is conceivable
that the model so trained will not match every label “to the fullest
extent”, but only to a certain extent. In this case, the model will
be less affected if there are indeed incorrect labels.

When using cross-entropy to describe the loss function, for
each sample i, the expression of the loss function is:

Li = −yiP(ŷi = 1|xi)− (1− yi)P(ŷi = 0|xi) (8)

After randomization, the new labels have the same probability
of 1-ǫ as yi and a different probability of epsilon (i.e., 1-yi).
Therefore, when the randomized labels are used as training data,
the loss function has the same probability of 1-ǫ as the above
equation, and the probability of having ǫ is as Equation (9)
shown:

Li = −(1− yi)P(ŷi = 1|xi)− yiP(ŷi = 0|xi) (9)

By taking the above two equations as a probability-weighted
average, we get Equation (10):

Li = −[ǫ(1− yi)+ (1− ǫ)yi]P(ŷi = 1|xi)

−[ǫyi + (1− ǫ)(1− yi)]P(ŷi = 0|xi) (10)

Let y′i = ǫ(1− yi)+ (1− ǫ)yi, we can simplify the above Equation
(10): to get Equation (11):

Li = −y′iP(ŷi = 1|xi)− (1− y′i)P(ŷi = 0|xi) (11)

Compared with the original cross-entropy Equation (8), only
yi is replaced with y′i in Equation (11), and all other contents
remain unchanged. This is logically equivalent to replacing each
label yi with y′i and then performing the normal training process.
Therefore, we do not need to randomize before training, but just
replace each label.

2.2.5. Optimization for NMS
In the classical object detection algorithm, in order to improve
the Recall rate for the target, a dense number of anchor boxes
are generated in the anchor phase. Therefore, there are many
redundant frames corresponding to the same target during post-
processing. Therefore, NMS is an essential step in removing
the redundant boxes in post-processing. However, it has the
following drawbacks:

1. Object overlap: as in the first figure below, there will be a box
with the highest score. If NMS is adopted, we will delete the
other prediction box with a slightly lower confidence level,
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TABLE 1 | Comparison of variant models and our model.

Method mAP FPS Batch size Input resolution

FasterRCNN 0.5396 7 2 600 × 600

MaskRCNN 0.6493 9 2 600 × 600

EfficientDet 0.6520 107 8 512 × 512

YOLOv3 0.5806 23 2 608 × 608

YOLOv4 0.6385 127 2 608 × 608

YOLOv5 0.6674 151 2 608 × 608

SSD300 0.6465 45 2 300 × 300

SSD300 0.6460 62 8 300 × 300

SSD512 0.6477 19 2 512 × 512

SSD512 0.6478 21 8 512 × 512

Our model 512 0.6825 147 2 512 × 512

Our model 512 0.6893 151 8 512 × 512

Our model 1024 0.6756 79 2 1024 × 1024

The bold values were used to label the best performing score compared with others.

TABLE 2 | Results of model fusion.

Models OoF NMS method mAP

Our model 512 NMS 0.6847

Our model 1024 NMS 0.6756

Our model 512 + soft NMS 0.6893

Our model 512 + YOLO series + MaskRCNN + WBF 0.6991

The bold values were used to label the best performing score compared with others.

TABLE 3 | Comparison of variant models and our model.

Model Attention module mAP FPS Batch size Input resolution

YOLOv5 Baseline 0.6674 151 2 608 × 608

Our model CGAN 0.6791 116 2 512 × 512

Our model CVAE 0.6825 147 2 512 × 512

Our model CVAE-GAN 0.6837 108 2 512 × 512

The bold values were used to label the best performing score compared with others.

TABLE 4 | Ablation experiment results on our model512.

Cutout CutMix Mosiac Warm-up Label smoothing Pseudo label mAP

+ + A 0.5020

+ + + + + C 0.6893

+ + + + A 0.6735

+ + + + + B 0.6770

+ + + + C 0.6708

+ + + C 0.6681

+ + + C 0.6595

The bold values were used to label the best performing score compared with others.

which represents another object (due to overlap with the box
with the highest confidence level being too large).

TABLE 5 | Ablation experiment results on our model1024.

Cutout CutMix Mosiac Warm-up Label smoothing Pseudo label mAP

+ + + + + C 0.6687

+ + + + A 0.6756

+ + + + + B 0.6741

+ + + B 0.6713

+ + + C 0.6520

The bold values were used to label the best performing score compared with others.

2. There are some cases that all boxes are not predicted correctly
or not all boxes are accurate. Sometimes there are even cases
where all the boxes around an object are labeled, but they are
still not accurate.

3. The traditional NMS method is based on classification scores,
and only the predicted boxes with the highest scores can
remain. Nevertheless, in most cases, IoU and classification
scores are not strongly correlated, and the positions of many
boxes with high confidence in classification labels are not
very accurate.

Therefore, this paper introduced soft NMS, the core of which
is not to remove the redundant detection directly by an
NMS threshold but to suppress the highly redundant detection
results by a penalty function so that its score decreases. To be
more specific, the more redundant the IOU is, the more its
score decreases.

Both NMS and soft NMS exclude some boxes, while weighted
boxes fusion (WBF) uses all boxes. Therefore, it can fix the case
that all models are predicted inaccurately. Moreover, WBF will
use all the predicted frames to fuse it. Therefore, this paper also
uses WBF for experimental comparison.

3. EXPERIMENT

Our model was compared against other one-stage models such
as EfficientDet (Tan et al., 2020) and the YOLO series models
[YOLOv3 (Redmon and Farhadi, 2018), YOLOv4 (Bochkovskiy
et al., 2020), and YOLOv5] in an experiment. Simultaneously,
comparative experiments with the popular two-stage models
were carried out. Our model was trained using the warm-up
approach. The pseudo label method was used to fully utilize
validation set data to improve the training process. The model
fusion method was utilized to further increase the accuracy of the
findings. An ablation experiment was undertaken to determine
which strategies were most effective in enhancing the accuracy of
the results.

3.1. Warm-Up
In deep learning tasks such as object detection, the model is
usually warmed up (He et al., 2016) first instead of using a
linear learning rate tuning strategy. That is to say, it is gradually
increased to a set learning rate with a small learning rate, which
will lead to better final convergence. The warm-up technique is
generally used in papers and competitions, especially in tasks
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FIGURE 8 | Intelligent wheat detection system flowchart.

where the model is difficult to converge. In this paper, we
used two learning rate adjustment strategies, MultiStepLR and
CosineAnnealingLR, whose learning rate variation curves are
shown in Figure 6.

3.2. Pseudo Label
As a semi-supervised learning method, the pseudo-labeling
technique plays an important role when the training dataset is
insufficient. This paper uses a small training dataset and a large
test dataset. The small training set is likely to lead to overfitting
of the model, and the pseudo-labeling technique can be used to
label the test set data to achieve a rapid augmentation of the
training set.

There is a big difference between object detection and
classification tasks in the production of pseudo labels. In the
production of pseudo labels for classification tasks, there is only
one label for a picture (e.g., there is only one positive and negative
label for a picture in a binary classification task). Therefore,
we only need to select samples with high prediction probability
(select samples with prediction probability greater than 0.99 and
label them as 1) to train the model as positive samples. However,
in the object detection task, a picture has multiple labels, if only
the labels with high prediction probability are selected, then there
will be many wheat heads in a picture that are not labeled as
negative samples, which will lead to a decrease in the detection
ability of the model. So the prediction probability threshold in
the target detection task becomes a key to the pseudo labeling,
which cannot be too high but at the same time cannot be too low
(too low will introduce some wrong labels). Our solution is to use
a sliding threshold to search for the best threshold of the model

first and then fine-tune this threshold as the threshold for making
a pseudo label, which is generally low, namely 0.15.

We have three different implementations of the pseudo label
method, as shown in Figure 7.

3.3. Experiment Result
Our model and seven other methods were used to detect wheat
heads under the same experimental conditions, and the mAP and
FPS values of the models were compared. The results are shown
in Table 1.

The model fusion method was then used to improve mAP.
The model fusion method is simple because it calculates the
intersection of the results of multiple models directly. In this
study, the model fusion method was used to combine our model,
FasterRCNN, and YOLO models, as shown in Table 2.

The experimental results show that the mAP obtained when
fusing the our model512 + YOLO series(v3 + v4 + v5) +

MaskRCNN models is 0.6991, which is already higher than
that of Leaderboard #1 in Global Wheat Detection (mAP:
0.6897). It must be noted that although this competition does
not allow participants to use the YOLO-v5 model because
YOLO-v5 does not comply with the MIT License. However, in
previous experiments, even using YOLO-v5 alone, the mAP only
reached 0.6674.

3.4. Ablation Experiments of Generative
Methods
This paper uses three generative models to optimize the
attention module: CGAN, CVAE, and CVAE-GAN. To
verify their respective implementation effects, ablation
experiments are carried out in this paper. Table 3 illustrates the
experimental results.

From the Table 3, it can be seen that CVAE-GAN combines
the advantages of CGAN and CVAE, respectively. However, this
model inference speed is also the slowest. By comparing the
baseline model, we can find that various optimization of the
attention module effectively promote our model’s performance.

3.5. Result Analysis
To verify the effectiveness of the various pre-processing
techniques proposed in this study, ablation experiments were
performed on both our model512 and model1024. The
experimental results are shown in Tables 4, 5.

Through the analysis of experimental results, it was found
that data enhancement methods such as Cutout, CutMix, and
Mosaic greatly improved the performance of our model. The
principles of CutMix and Mosaic are similar, and it was found
that compared with adopting both methods, using CutMix or
Mosaic alone exerted a more significant effect on improving
model performance. It was also found that the model performed
best when warm-up, label smoothing, and pseudo label methods
were used simultaneously.

3.6. Software Design
In order to realize the end-to-end model of wheat detection
and promote the efficiency of recognizing and labeling,
an intelligent diagnosis system based on our model was
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FIGURE 9 | Screenshot on iPhone12 mini. From left to right: screenshot of the app launched on the desktop; screenshot of the function selection after launching;

screenshot of the test result; and image of wheat used for testing.

developed as an app for iOS using the programming
language Swift. The workflow of the system is shown
in Figure 8.

The app works as follows. First, a video stream of wheat
is accessed via the iPhone’s camera. Then the representative
frames are extracted and sent to the server. Next, the server
transfers the received images to the trained our model.
Finally, the output of the model is returned to the iOS end,
and the iOS end draws a detection frame based on the
returned parameters. Some screenshots of the app in action
are shown in Figure 9. The app has been submitted to Apple’s
App Store.

Two functional modes were created for this app. The manual
mode requires the user to take a picture manually for detection.
The automatic mode takes a frame from the video stream every
second for automatic detection and result archives.

4. CONCLUSIONS

This study suggested a novel wheat head detection model based
on the widely used single-stage object detection network model,
YOLO, with the purpose of detecting wheat quickly. The main
innovation of the network model proposed in this paper can
be summarized in the following points: (1) Add generative
sub-network to the attention module to improve the main
detection network’s performance; (2) Replace the NMS algorithm
in the detection network with WBF algorithm; (3) Replace the
original GIoU calculation in the network by introducing CIoU
to the loss function. Adding an attention mechanism and a
multi-scale feature fusion module, as well as improving the

activation function, increased the model’s performance. Data
augmentation methods containing Cutout, CutMix, and Mosaic,
as well as technical methods like label smoothing and pseudo
label, were used to make the most of the training data set
and expand the training data samples. The model’s effect was
optimized via test time augmentation, OoF, WBF, and model
fusion. Comparative and ablation experiments were carried out
to verify the model’s efficiency. According to the findings, the
proposed wheat head detection network’s inference time could
approach 25 ms, and an mAP of 0.688 was realized for wheat
head detection. A mobile software based on Swift and PHP
was built to allow this network to be applied on iOS mobile
terminals, allowing it to be widely used in the agricultural
production scenario.
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