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Polysaccharides constitute an important carbon pool in marine systems, but much is
still unknown about the fate and degradation of these compounds. They are derived
partly from production in situ, and in coastal areas, they are partly terrestrially derived,
originating from freshwater runoff from land. The aim of this study was to test the
applicability of high-throughput polysaccharide profiling for plant and algal cell-wall
compounds in dated sediment cores from a coastal marine environment, to examine
the preservation of cell-wall polysaccharides and explore their potential as proxies for
temporal environmental changes. Preserved compounds and remains of organisms
are routinely used as paleoenvironmental proxies as the amount and composition of
different compounds that can provide insight into past environmental conditions, and
novel means for reporting environmental changes are highly sought.

Keywords: comprehensive microarray polymer profiling (CoMPP), immunolabeling, geochemical proxy, Koljö
Fjord, North Atlantic Oscillation (NAO index)

HIGHLIGHTS

- A total of 30 different polysaccharide epitopes were detected in marine sediment samples
by probing with plant and brown algal antibodies and carbohydrate-binding module (CBM)
probes, using comprehensive microarray polymer profiling (CoMPP).

- Most of these epitopes were preserved at least 100 years, and some to the bottom of the
sediment core (approximately 200 years), notably those detected by antibodies and CBM to
fucose-containing sulfated polysaccharides (FCSP), cellulose, and the hemicelluloses xylan,
xyloglucan, and mixed-linkage (1→3)(1→4)-β-D-glucan (MLG).

- Profiles of epitopes varied over time, with indications of links to environmental variability.
- The potential to use this methodology to identify novel geochemical proxies of environmental

change is discussed.
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INTRODUCTION

The aim of this study was to test high-throughput polysaccharide
profiling of plant and algal cell-wall compounds in marine
sediments. We wished to determine the temporal preservation of
polysaccharide epitopes and further explore the potential of these
compounds as proxies for temporal environmental changes in a
coastal marine setting.

Dissolved organic carbon (DOC) is by far the largest planetary
pool of organic carbon (Kaiser, 2011). The photosynthetic
production of marine microalgae, which is estimated to comprise
half the global primary production (Field et al., 1998), contributes
to this. In marine coastal areas, terrestrially derived material can
also constitute an important part of the carbon pool. Less is
known about the fate of terrestrial organic matter in the ocean
(Hedges et al., 1997; Cragg et al., 2020) although understanding
this is central for Earth System Models (Gontikaki et al., 2015).
Degradation and processing of marine algal polysaccharides
are also poorly understood. As organisms die, unless degraded
in surface layers, they sink to the seafloor and either become
degraded or preserved in sediment layers. Algal polysaccharides
are important components of this process (Youssef et al., 2014
and references therein). These processes form a part of the
biological pump, sequestering carbon to sea sediment, and
if buried, or in the deep sea, taking it out of the active
global carbon cycle.

Koljö Fjord is a semi-enclosed sill fjord with limited water
exchange in the Kattegat/Skagerrak. The fjord is, therefore,
strongly affected by runoff from land and exhibits brackish
conditions and a stratified water column with 1–2 m of fresher
water at the surface (Nordberg et al., 2001). The Bäveån
river, with a catchment of ca. 300 km2, is the main point
source of freshwater to the fjord. The strong stratification
in the fjord leads to a more or less stagnant bottom water,
with periodically occurring hypoxic or anoxic conditions
(Gustafsson and Nordberg, 1999). In such environments, with
decreased oxygen exposure times, a strong case can be made
for paleo reconstruction of past organic matter composition
sources (Bianchi and Canuel, 2011), as such sediments are
often both undisturbed by animal activity (bioturbation), and
remains of organisms from the water column are often
well-preserved, due to limited bacterial activity. The lower
part of Bäveån (closest to Koljö Fjord) is a nature reserve
dominated by conifers on higher land and deciduous forest,
grasses, and wetlands in the lower areas (information from
Uddevalla municipality).

Studies of macroalgae in fjords and embayments near Koljö
Fjord show that the shallow areas are characterized by diverse
flora, with the highest area coverage, as well as the highest species
diversity within the Rhodophyceae (red algae) and Phaeophyceae
(brown algae) (Eriksson et al., 2002). Eriksson et al. (2002) also
found that the depth-coverage had been significantly reduced
between 1941 and 1998, most pronounced below ca. 3 m water
depth and that small ephemeral and filamentous macroalgae had
increased in relative abundance. Other studies have also seen
an increase in green filamentous algae over the past decades
(Cossellu and Nordberg, 2010).

Remains of different organisms in such undisturbed sediments
can constitute time series of the biological and chemical
conditions of a water body, and sediment proxies of the
environment can broadly speaking be physical remains of
different organisms and molecules from either the organisms
or the water itself. Such geochemical proxies can be organic
or can constitute isotopes, isotope ratios, or heavy metals.
Organic geochemical proxies are molecules, produced by living
organisms in the past that are preserved in marine and/or
freshwater sediments. Central requirements for a geochemical
proxy are that it is well-preserved in aquatic sediments and
that it shows patterns of response to environmental forcing.
Photosynthetic pigments (Reuss et al., 2005; Ellegaard et al.,
2006), sterols, alkenones, and other lipids (Smittenberg et al.,
2004) have most commonly been used as geochemical proxies
of paleoenvironmental conditions. Due to the dominance of
carbohydrates in organic matter in aquatic systems, there is
considerable interest in their application as biomarkers (Bianchi
and Canuel, 2011). The monosaccharide composition (ratio of
hexoses to pentoses) in sediments has long been used as a
proxy for the origin of the carbohydrates in soils and sediments
(microbial or plant-derived, Spohn and Giani, 2012). Sugars have
been used as paleoenvironmental indicators of the source of plant
material in peat bogs (Jia et al., 2008), and monosaccharide ratios
have been used to distinguish between terrestrial and marine
carbohydrate sources in seawater (Cowie and Hedges, 1984).
However, polysaccharides have more rarely been reported as
paleoenvironmental proxies.

Koljö Fjord has been the target of several paleoenvironmental
studies, and patterns in environmental change derived from
studies of temporal changes in dinoflagellate cyst and diatom
communities were used to compare with the temporal patterns
in the polysaccharides.

Harland et al. (2004) studied dinoflagellate cysts in Koljö
Fjord sediment layers dating back to pre-1855 and found large
changes in the dinoflagellate cyst community ca. 1940 and
pre-1855. McQuoid and Nordberg (2003) studied diatoms in
Koljö Fjord sediment layers dating back to pre-1840 and similar
changes ca. 1930 and pre-1840. Both studies linked these changes
to shifts in environmental conditions, primarily shifts in the
pattern of the North Atlantic Oscillation (NAO). The NAO
is a major pattern of atmospheric variability in the Northern
hemisphere (van Loon and Rogers, 1978), and the winter
NAO index influences precipitation and sea-surface temperatures
(Schimanke et al., 2012).

Comprehensive microarray polymer profiling (CoMPP) is
a high throughput technique, which allows the analysis of
multiple samples with the advantage of not needing complex
separation techniques such as chromatography or hydrolysis.
Samples undergo a fractionation with different solvents and
later are probed using specific monoclonal antibodies and
carbohydrate-binding module (CBM) probes. These probes bind
to target epitopes in the sample matrix. Revealing the positive
reaction requires an enzymatic process, which generates a signal
(fluorescent or chemometric) on the array surface that can be
interpreted with a dedicated software (Moller et al., 2007). This
semi-quantitative method has been largely used with success
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for multiple types of polysaccharides in different matrixes,
among them from plant and algal cell-wall plants (Sørensen
et al., 2008; Salmeán et al., 2017a) but also marine animals
(Salmeán et al., 2017b).

The target site is, thus, known to present a good environment
for the preservation of biological and geochemical remains
and to be subject to documented environmental change over
time. Our aim was, in this setting, to test the applicability
of high-throughput polysaccharide profiling for detecting
polysaccharides in sediment cores, with the final aim to explore
the potential of such compounds as proxies for temporal
environmental changes.

MATERIALS AND METHODS

Sampling and Dating
Surface, or near-surface, sediment from one marine sediment
core from each of Mariager Fjord, Koljö Fjord, and Sermilik
was used in the initial screening for polysaccharides. Sampling
information and coordinates for these three sites are given in
Table 1. The sample from Koljö Fjord, Sweden (Figure 1) had
the largest diversity and relative amounts of polysaccharides and
was, therefore, chosen for further analysis, using a 67-cm long
sediment core (KF12/5, refer to Table 1). The core was x-rayed
before subsampling at 1-cm resolution [refer to Ribeiro et al.
(2011) for details of the subsampling procedure]. Samples were
stored in the dark at 4◦C until further processing. Eighteen
samples from KF12/5, distributed approximately evenly along
the core KF12/5 (2–4 cm apart), were used for further analysis.
The core chronology in the core was established by means of
210Pb dating with 137Cs-peaks for verification (data shown in
Figure 2A). The 210Pb-based chronology was calculated using
a modified CRS-model (Andersen, 2017) in which the activity
below 41 cm was calculated using a regression of activity of
unsupported 210Pb vs. cumulative mass depth.

Sediment Extractions
The first batch (the three surface sediment samples) constituted
the pilot project and was used to test the methodology. The
three samples were homogenized and freeze-dried. The first
stage was the preparation of alcohol insoluble residue (AIR),
which serves to concentrate larger polymers and remove water.
To prepare AIR, 1 g of freeze-dried material was suspended in

TABLE 1 | Coordinates for the three sampling sites in the pilot study and methods
used for coring.

Location Coordinates Core code Sampling date Corer

Koljö Fjord,
Sweden

58◦13.591 N KF12/5 March 13, 2012 Rumohr lot

11◦34.293 E

Mariager Fjord,
Denmark

56◦39.814 N MF13/2 September 24,
2013

Supercorer

9◦58.517 E

Sermilik Fjord, East
Greenland

66◦5.149 N S11 August 2012 Rumohr lot

37◦45.728 W

Core KF12/5 was selected for the main study.

falcon tubes to a final volume of 5 ml of 70% ethanol, stirred
for 3 min, and centrifuged at 40,000 rpm for 10 min. The
resulting pellet was resuspended to a final volume of 5 ml 96%
ethanol, and the previous step was repeated two times more with
1:1 methanol:chloroform and 100% acetone. All the resulting
supernatants were kept and freeze-dried for analysis, and the final
pellet was also freeze-dried.

Since the sediments are marine, a sequential chemical
fractionation with the aim to extract FCSP and alginates (Salmeán
et al., 2017b), but also pectins, hemicelluloses, and cellulose, was
performed as follows: 1 g of freeze-dried material was dissolved
in up to 3 ml of water at 80◦C with stirring in a tissue lyser (1 h)
and separated by centrifugation as above. The pellet was later
dissolved in up to 0.2 M HCl for 1 h with stirring and separated.
Finally, the pellet was dissolved in up to 3 ml of 4 M NaOH and
similarly extracted for 1 h. The final pellet was kept for future
analysis, while all the supernatants were freeze-dried.

Since the results from the pilot project provided more land
plant signals than originally expected, for the core KF12/5, CDTA
was used instead of HCl to extract more pectins.

Comprehensive Microarray Polymer
Profiling—Antibodies, Printing, and
Probing
The supernatants from AIR and the subsequent chemical
fractionations were freeze-dried and redissolved up to a 1-ml
Arrayjet buffer (55.2% glycerol, 44% water, and 0.8% Triton X-
100) and were printed on to nitrocellulose as previously described
(Salmeán et al., 2018). The resulting microarrays were probed as
described in the study by Salmeán et al. (2018) using the following
monoclonal antibody and CBM probes diluted in phosphate-
buffered saline (PBS) with 5% milk (Table 2): anti-His tagged
CBM3a at a concentration of 10 µg/ml, CBM30 at 5 µg/ml,
anti-mouse INRA-RU1 and INRA-RU2, and BS-400-4, BS-400-
2, and BS-400-3 at a concentration of 1/10, and the following
anti-rat antibodies (all of them at a concentration of 1/10): JIM5,
JIM7, LM19, LM20, LM5, LM6, LM10, LM11, LM21, LM15,
JIM8, JIM20, and LM7.

Samples from core KF12/5 were printed as described above
and probed against the same anti-mouse antibodies under the
same conditions except for INRA RU1 and INRA RU2, which
were excluded this time, the same anti-His antibodies also
including CBM6 (at a concentration 10 µg/ml), and all the
anti-rat antibodies cited before, including the following as well
(Table 2): LM18, LM16, LM8, LM5, LM6, LM13, JIM13, JIM16,
LM14, LM12, JIM20, LM7, MAC207, BAM1, BAM2, and BAM3,
at a concentration of 1/10.

The arrays were scanned, and their signals quantified as
described by Hervé et al. (2016) to obtain heat maps.

RESULTS

Like previous cores taken at the same site in Koljö Fjord
(Ribeiro et al., 2011), the age model for the core is robust,
with relatively low errors on the age in the top part of the
core, slightly higher (ca. 10–30-year span pr. cm slice) in the
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FIGURE 1 | Map showing the Koljö Fjord sampling site on the west coast of Sweden.

bottom part of the core (Figure 2B). The 67 cm of the core
corresponds to ca. 200 years of sedimentation (Figure 2B). The
pilot study showed that antibodies developed mainly for epitopes
of polysaccharides in higher land plants (McCartney et al.,
2005) were able to detect epitopes in carbohydrates extracted
from marine sediment samples (Table 3) and those extraction
methods previously employed for marine materials (Salmeán
et al., 2017a,b) also appeared to be relevant for this type of
material. Thus, signals were detected in the surface samples
from 14 out of 21 epitopes, and all three sequential extractions
eluted different amounts and/or types of materials. Therefore,
we selected the site with the surface sample with the most
hits (which was Koljö fjord) and continued our study on a
core from this site.

In the extractions from the core, KF12/5 signals were detected
in all 18 samples by 30 out of 31 antibodies (Table 4). For some
antibodies (i.e., LM20, LM13, and CMB6) there were, however,
only few weak signals (Table 4). The strongest signals were seen
in the antibodies raised against FCSP and hemicelluloses (refer
to the discussion for interpretations of this). In the three samples
below 56 cm (older than ca. 1850), there were fewer hits (5–10)
in the heat maps, while above this depth there were, with a few
exceptions (6 cm, 15 cm), more than 18 hits in each sample. A few
antibodies and CBMs (i.e., CBM30, BS-400-3, BAM1, and BAM2)
had hits in all samples.

Due to the semiquantitative nature of the analysis, it is
not possible to directly translate the strength of the signals to
sedimentary concentrations and, therefore, not possible to make
quantitative comparisons between the epitopes. However, within

epitopes, signal strength indicates relative changes in sedimentary
concentrations. Therefore, we plotted signal strength against the
age of the samples for the epitopes with the strongest and/or
most consistent signals. This revealed that some of the dominant
epitopes fluctuated more or less synchronously (Figure 3A);
however, not all showed the same pattern (Figure 3B). The
possible implications of these patterns are discussed below.

DISCUSSION

Methodology
To our knowledge, there are only a few other studies of the
long-term preservation of carbohydrates in sediments. One study
by Kaal et al. (2014) studied that lacustrine sediments and
the sediment carbohydrates were detected by pyrolysis, another
(Pancost and Boot, 2004) studied marine sediments, and the
method in this study is also pyrolysis. Previous studies of
carbohydrates in soil or sediment time series have mainly targeted
monosaccharides and indicate that bacteria and cyanobacteria
leave traces of fucose, ribose, mannose, and galactose (Moers
and Larter, 1993). Other studies suggest that angiosperms leave
xylose traces in parison with gymnosperms (Cowie and Hedges,
1984). It is possible to find other studies where they compare the
ratio between simple sugars to distinguish between woody and
non-woody materials (Cowie and Hedges, 1984).

This is the first time the antibody-based CoMPP method
has been used to detect polysaccharides in marine sediments,
and to our knowledge, this is the first time such a variety of
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FIGURE 2 | (A) Activity of 210Pb (left) and 137Cs (right) with depth. These data were used to create the age-depth model. (B) Age-depth model. Both for the core
from Koljö Fjord KF12/5.

polysaccharide epitopes have been detected in marine sediments.
Compared with other traditional methods used to determine
polysaccharides, CoMPP could become a strong asset for
sediment analysis. Some of these methods can be less specific
as it is the case of atomic C to N ratios (Bianchi and Canuel,
2011) or require a more laborious sample process as it is the case
of sugar analysis in combination with gas chromatography-mass
spectrometry (Pettolino et al., 2012).

Variety and Preservation
We found a large variety of compounds preserved throughout
much of the studied time period. The preservation of many

epitopes throughout the core and the patterns of both increase
and decrease over time indicate that the epitopes are responding
to something other than degradation. A pure degradation pattern
would be expected to take the shape of a more or less exponential
decline. Although we would expect a pattern of resilience in the
order of pectin > hemicelluloses > celluloses > lignin, due to
the differences in degradability of these compounds (Albersheim
et al., 2010), this is not reflected in the temporal epitope profiles.
Therefore, we can conclude that it is very unlikely that the
pattern we saw is purely a degradation pattern. We did not
find the limit of preservation, as four of the epitopes showed
signals continuously, all the way to the bottom of the core.
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TABLE 2 | Specificities of the probes used in this study, organized in
alphabetical order.

Probe Recognised epitope structure References

BAM-1 Un-sulfated epitope present in sulfated
fucan

Torode et al., 2015

BAM-2 Sulfated epitope present in sulfated
fucan

Torode et al., 2015

BAM-3 Possibly sulfated epitope present in
sulfated fucan

Torode et al., 2015

BS-400-2 Callose, (1→3)-β-D-glucan Meikle et al., 1991

BS-400-3 (1→3)(1→4)-β-D-glucan Meikle et al., 1994

BS-400-4 Mannan(1→4)-β-D-mannan Pettolino et al., 2001

CBM3a Crystalline cellulose/XG Blake et al., 2006;
Hernandez-Gomez et al.,

2015

CBM6 Amorphous cellulose,
β-1,4-xylan,β-1,3-glucan,
(1→3)(1→4)-β-D-glucan, β-1,4-glucan

Fernandes et al., 1999;
Czjzek et al., 2001;

Boraston et al., 2003;
Henshaw et al., 2004; Pires

et al., 2004

CBM30 HE cellulose/MLG/XG Najmudin et al., 2006

INRA-RU1 Rhamnogalacturonan I Ralet et al., 2010

INRA-RU2 Rhamnogalacturonan I Ralet et al., 2010

JIM5 Homogalacturonan with a low DE Clausen et al., 2003

JIM7 Homogalacturonan with a high DE Willats et al., 2001; Clausen
et al., 2003

JIM8 AGP McCabe et al., 1997

JIM13 AGP Knox et al., 1991

JIM16 AGP Knox et al., 1991

JIM20 Extensin Smallwood et al., 1994

LM5 Pectinside chains RGI,
(1→4)-β-D-galactan

Jones et al., 1997

LM6 Side chains RGI, (1→5)-α-L-arabinan Willats et al., 1998; Lee
et al., 2005;

Verhertbruggen et al., 2009

LM7 Homogalactauronan with an
intermediate DE, non-blockwise
distribution of MeOH/Alginate

Willats et al., 2001; Torode
et al., 2015

LM8 Xylogalacturonan Willats et al., 2004

LM10 Xylan, (1→4)-β-D-xylan McCartney et al., 2005

LM11 Xylan, (1→4)-β-D-xylan/arabinoxylan McCartney et al., 2005

LM12 Feruloylate on any polymer Pedersen et al., 2012

LM13 Linearised (1→5)-α-L-arabinan Moller et al., 2008; Marcus
et al., 2010

LM14 AGP Moller et al., 2008;
Pedersen et al., 2012

LM15 Xyloglucan (XXXG motif) Marcus et al., 2008

LM16 homogalactauronan, 6′-β-D-galactosyl-
β-(1→4)-D-galactotriose [Processed
(1→5)-α-L-arabinan]

Verhertbruggen et al., 2009

LM18 Partially methylesterified
homogalacturonan

Verhertbruggen et al., 2009

LM19 Partially methylesterified
homogalacturonan

Verhertbruggen et al., 2009

LM20 Partially methylesterified
homogalacturonan

Verhertbruggen et al., 2009

LM21 Mannan, (1→4)-β-D-
mannan/galactomannan/glucomannan

Marcus et al., 2010

LM25 Xyloglucan Pedersen et al., 2012

MAC207 AGP, β-linked GlcA Pennell et al., 1989 TA
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One of the prerequisites for a geochemical proxy thus seems
to be met, i.e., that the compounds can be preserved over time
in the sediment.

Provenance of the Epitopes
Many of the 30 epitopes for which we found signals in the
sediment have been detected in previous studies in a variety of
marine and freshwater land plants, seaweeds, and algae; a few
have also been found in marine animals. The most dominant
epitopes and their possible provenance are discussed below.

Among the polysaccharide epitopes detected in the samples,
the most straightforward to mention is cellulose, which is
detected by CBMs (i.e., CBM30 and CBM3a). In the Koljö
Fjord samples, particularly CMB30 shows a consistently high
signal throughout the core. All plants have cellulose in their
cell walls and their content usually accounts for 35–50% of
dry weight (Chen, 2014). Microalgae and phytoplankton (Vidal-
Melgosa et al., 2021) also contain cellulose in their cell walls,
and it is, therefore, not possible to conclude the extent to
which the cellulose detected is of land plant or algal origin.
Cellulose is difficult for many heterotrophic organisms to
degrade (Voet and Voet, 2004) as it is made up of very stable
microfibrils formed by a bundle of linear chains of glucose
attached to each other by 1,4-β-glycosidic linkages. Plants contain
large amounts of recalcitrant structural polysaccharides, while
microalgae generally contain proportionally higher levels of
protein. Due to proximity to land, it is likely that at least some
of the cellulose detected was of land plant origin. However, due
to the presence of cellulose in the cell walls of both macroalgae
and microalgae, marine cellulose may also have contributed to
the signals obtained.

Xylans, which are detected by the antibody LM11, are a
structurally diverse group of polysaccharides commonly found
in land plants (Vogel, 2008). They have also been found in
smaller amounts in other members of the plant kingdom
(Archaeplastida) such as green algae, comprising chlorophytes
(Chlorophyta) and charophytes (Streptophyta), as well as red
algae (Rhodophyta). However, there is no reference of xylans in
the glaucophytes (Hsieh and Harris, 2019) or brown algae up
to date (Michel et al., 2010; Hsieh and Harris, 2019). Thus, we
believe that most of the signal produced by LM11 binding is likely
to be from land plants.

(1→3)(1→4)-β-D-glucan (MLG), detected by the probe BS-
400-3, is the epitope with the highest signal in the heat map and
a consistently high signal throughout the core. MLG is restricted
to certain taxonomic groups in the plant kingdom. While it is not
present in dicotyledonous plants, it is a major glycan component
of the cell walls of grasses and cereals of the Poaceae (Eder
et al., 2008; Sørensen et al., 2008). It is also found in Equisetum
(horsetails), lichens, fungi, and some bacteria. Furthermore, MLG
is also present in some red and brown algae (Salmeán et al., 2017a
and references therein). The high signals obtained with BS-400-3
may, therefore, be attributable to MLG from terrestrial or marine
sources. The structural features of MLG, i.e., the amount and
distribution of (1→ 3)-linked and (1→ 4)-linked glucans, varies
according to the organism, and it may be possible to determine

the source by undertaking structural analysis. However, this was
beyond the scope of this study.

Callose (1→3)-β-D-glucan recognized by antibody BS-400-
2 is a polysaccharide that occurs in land plants at certain
stages of development, for example, during cell plate formation,
and in response to some biotic stresses when it has a role in
plant defense (Piršelová and Matušíková, 2013). Nevertheless,
β-1,3-glucan is not generally abundant in land plants, and its
occurrence is transient. (1→3)-β-D-glucan is also a structural
feature of laminarin (sometimes known as laminaran)—an algal
polysaccharide used as a storage glycan that is based on (1→3)-
β-D-glucan with (1→6)-β-D branches (Indergaard and Minsaas,
1991; Biersmith and Benner, 1998; Rioux et al., 2007), and
laminarin can also be detected with BS-400-2.

A recent study (Becker et al., 2020) has shown that laminarin
is a major molecule in the marine carbon cycle, and the moderate
signals we saw in some samples are, therefore, most likely
predominantly of algal origin.

Epitopes of fucose-containing sulfated polysaccharides
(FCSP) also known as fucans or fucoidans are detected by BAM1
(an unsulfated epitope present in sulfated fucan), BAM2 (a
sulfated epitope present in sulfated fucan), and BAM3 (a possibly
sulfated epitope present in sulfated fucan) mAbs (Torode
et al., 2015). Brown algal cell walls, particularly, contain these
polysaccharides; however, some marine animals also contain
FCSP in small amounts (Salmeán et al., 2017b). Several diatom
species also contain FCSP (Vidal-Melgosa et al., 2021). The most
likely provenance of these signals is, therefore, marine algae. The
difference in detection of the three BAM probes is consistent with
the results in seaweeds of Torode et al. (2015) and Vidal-Melgosa
et al. (2021) and could give insights of specific provenance (e.g.,
order Fucales vs. Laminariales in the case of brown seaweeds).

We would like to remark that regardless of the presence of
red seaweeds in the area; at the time when the analysis was
performed, we lacked the right probes to determine the presence
of sulfated galactans in the samples. However, these complex
polysaccharides are known to be present in the cell walls of these
aquatic organisms and could be found with the right analytical
tools in the sediments. In a previous study, Salmeán et al. (2018)
have used CBMs and SusD-like proteins as molecular probes;
nevertheless, this is outside the scope of this sediment study. To
our knowledge, there are still no molecular probes, which could
be used with CoMMP to detect and distinguish the presence of
sulfated galactans.

Temporal Variation
There are clear temporal patterns in the intensity of the signals
of many of the detected epitopes. Figure 3A shows almost
synchronous fluctuations in four epitopes that all showed clear
signals throughout the core. The general patterns of these
fluctuations have some similarities with decadal trends in the
NAO winter index (Hurrell, 2020). From ca. 1890 to ca. 1930
and from 1970 to 2000, the NAO is mainly positive (Figure 4).
Positive NAO conditions have been linked to milder and wetter
conditions in the Baltic area region (Schimanke et al., 2012),
which would imply higher runoff of freshwater from land in
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The strength of the color is proportionate to the strength of the signal; the strongest signal is given the value 100 and the others valued relative to this signal. Epitopes with a relative signal lower than 5 in any of the
samples were excluded. CBM, carbohydrate-binding module; DE, degree of esterification; HG, homogalacturonan; AGP, arabinogalactan protein; FCSP, fucose-containing sulfated polysaccharides (fucoidans or fucans).
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FIGURE 3 | Fluctuations in selected epitopes by age. (A) More or less
synchronous temporal fluctuations in the epitopes, detected by the mAbs:
LM11 (1→4)-β-D-xylan/arabinoxylan; LM25 xyloglucan; BAM1 FCSP
(un-sulfated epitope present in sulfated fucan) and BAM2 FCSP (sulfated
epitope present in sulfated fucan). FCSP, fucose-containing sulfated
polysaccharides. (B) Changes in relative presence of epitopes by age,
detected by the mAbs: BS-400-4 (1→4)-β-D-mannan; BS-400-2 callose,
laminarin (1→3)-β-D-glucan, and BS-400-3 (1→3)(1→4)-β-D-glucan. MLG,
mixed-linkage glucan.

these periods. This would fit a signal of the higher signal of
terrestrially derived cell-wall epitopes in this period. The general
decrease in cell-wall epitopes in the predominantly NAO-period
(shaded area in Figure 4) is coherent with this interpretation.
Apart from a decrease in 2003, the general trend at the top
of the core is also increasing, which again approximately fits a
return to positive NAO index ca. 1980. Another prerequisite for a
geochemical proxy, therefore, also appears to be met, e.g., that
they respond to environmental forcing. As the trends are not
completely correlated and the data are so far from one core,
our conclusion is that this method shows some promise for
discovering potential new proxies for freshwater runoff but must
be tested further.

Data on the temporal organic carbon content in a core from
Koljö Fjord reported by Nordberg et al. (2001) show a fluctuating
decrease from ca. 8% in ca. 1820 to ca. 5% from 1940 to 1960,
then an increase to ca. 8% in ca. 1995, followed by a decrease to
ca. 5% in ca. 2000. At the top of the core (younger than ca. 1950),
this follows the pattern in the epitopes in Figures 3A, 4. However,
the patterns diverge in the lower part of the core. In the samples
older than ca. 1879, the signals in the epitopes in Figure 3A, and
others, gradually decline with depth in the core. This may be a
degradation signal.

Future Perspectives
While there was a reduction in signal strength for some
compounds with core depth, we did not, in this study, reach
the limit for the preservation of these compounds, as at least
four (CMB30, BS-400-3, BAM1, and BAM2) were present with
strong signals to the bottom of the core at 67 cm (estimated to
be ca. 200 years old). The maximal preservation limit for these
compounds is, therefore, yet to be determined, e.g., by analyzing
longer/older core material.

Given that this exploratory study is from one single
location and a cold-temperate fjord setting, future study
should also explore the longevity of these compounds in
sediment records of different compositions and under different
environmental settings.

As some of the compounds appear to be responding positively
to the milder and wetter conditions of positive NAO index and
as many of them likely are of terrestrial origin, they may have
potential as paleoenvironmental proxies of terrestrial influence.
As the method is simple and has high throughput, they could
constitute a valuable contribution to geochemical proxies.

However, the response seen in this study should be confirmed.
The preservation potential should be tested in other coastal (and
perhaps also oceanic) locations. We saw from the pilot study that
some of the epitopes were present at other sites, but this needs
to be confirmed through down-core analyses. To test whether
the potential proxies are in fact responding to terrestrial input, it
would be relevant to analyze gradients from land, as they should,
in this case, decline with distance, or in a river mouth (to test a
potential relationship with salinity gradient).

To shed light on the role of these compounds in marine carbon
cycling and their possible role in carbon sequestration, it would
be relevant to look at gradients through the water column and

Frontiers in Plant Science | www.frontiersin.org 9 April 2022 | Volume 13 | Article 785902

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-785902 April 12, 2022 Time: 18:12 # 10

Salmeán et al. Marine Sediment Polysaccharides

FIGURE 4 | Fluctuations in the four epitopes from Figure 3A, compared with fluctuations in the winter North Atlantic Oscillation (NAO) index (refer to details in text).

into the sediment. Again, the high-throughput nature of this
methodology is helpful.

At present, we cannot identify the epitopes with certainty, and
we suggest elucidating this when we know which of them has the
potential to be a robust, broadly applicable proxy and when it has
been calibrated by further studies.

Conclusion
We have shown that this method with its simple extraction
and high-throughput analysis is applicable for analyzing epitopes
of polysaccharides in marine sediment core samples. We have
documented long-term preservation of a large variety of epitopes,
in some cases, for more than 200 years. We further see
fluctuations in relative abundance, apparently in some cases
driven by environmental fluctuations.
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