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We introduce an integrative process-based crop model for garlic (Allium sativum).

Building on our previous model that simulated key phenological, morphological, and

physiological features of a garlic plant, the new garlic model provides comprehensive

and integrative estimations of biomass accumulation and yield formation under diverse

environmental conditions. This model also showcases an application of Cropbox to

develop a comprehensive crop model. Cropbox is a crop modeling framework featuring

declarative modeling language and a unified simulation interface for building and

improving crop models. Using Cropbox, we first evaluated the model performance

against three datasets with an emphasis on biomass and yield measured under different

environmental conditions and growing seasons. We then applied the model to simulate

optimal planting dates under future climate conditions for assessing climate adaptation

strategies between two contrasting locations in South Korea: the current growing

region (Gosan, Jeju) and an unfavorable cold winter region (Chuncheon, Gangwon).

The model simulated the growth and development of a southern-type cultivar (Namdo,

ND) reasonably well. Under Representative Concentration Pathway (RCP) scenarios, an

overall delay in optimal planting date from a week to a month, and a slight increase in

potential yield were expected in Gosan. Expansion of growing region to northern area

including Chuncheon was expected due to mild winter temperatures in the future and

may allow ND cultivar production in more regions. The predicted optimal planting date

in the new region was similar to the current growing region that favors early fall planting.

Our new integrative garlic model provides mechanistic, process-based crop responses

to environmental cues and can be useful for assessing climate impacts and identifying

crop specific climate adaptation strategies for the future.

Keywords: garlic, Allium sativum, crop model, biomass allocation, planting date, climate adaptation, climate

change, climate impact

1. INTRODUCTION

Garlic (Allium sativum) is a historically important horticultural crop in many countries with global
production reaching 30.7 million tons in 2019 after a 40% increase in production in the last
decade (FAOSTAT, 2020). The physiology of garlic has been extensively studied with an emphasis
on characteristics as a bulbous crop where a clove of the bulb is planted for growth and a newly
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grown bulb is harvested for storage and the next round of
planting (Takagi, 1989; Kamenetsky, 2007). Some knowledge has
been transferred to building crop models specifically targeted
for simulating garlic growth and estimating yield at harvest.
An early attempt for building a whole-plant garlic model was
based on radiation-use efficiency (RUE) to obtain the total
amount of carbon assimilates (Rizzalli et al., 2002). CropSyst,
which is also a crop model based on RUE, was parameterized
for garlic and used for simulating crop rotation between garlic
and wheat (Giménez et al., 2016). Other studies focused on a
certain aspect of the growth and development of garlic. The crop
coefficient (Kc) needed for calculating evapotranspiration with
the Penman-Monteith equation was specifically determined for
garlic (Villalobos et al., 2004). Photosynthesis and transpiration
responses to various environmental conditions were obtained
for building a leaf-level gas-exchange model for garlic (Kim
et al., 2013). Photosynthetic responses under elevated CO2 and
nitrogen fertilization were further investigated for building a
robust model for future climate conditions (Nackley et al.,
2016). With a coupled gas-exchange model parameterized for
garlic, a process-based model for simulating leaf development
and growth of hardneck garlic was developed (Hsiao et al.,
2019). The phenology of leaf initiation and appearance was
individually tracked by taking account of multiple cues including
thermal time accumulation, bulb storage effect, and photoperiod.
Individual leaf elongation was translated and aggregated into
leaf area expansion at canopy level which was then divided
into two layers of sunlit and shaded leaves for accounting
for assimilated carbon based on the coupled gas-exchange
model. However, carbon partitioning into plant organs such
as the bulb was not validated and thus not used for yield
estimation. Carbon partitioning is a crucial step in yield
estimation modeling for horticultural crops in the sense that
the final yield is a result of biomass partitioned into a certain
organ, such as the bulb, to be harvested (Marcelis et al., 1998).
The early garlic model used a set of multiple partitioning
coefficients dynamically varying with developmental stages of the
plant (Rizzalli et al., 2002).

Yield estimation for garlic cultivars grown in each region
has been crucial to manage growing practices and maintain
a stable supply in the market (Põldma et al., 2005; Abdalla
et al., 2011; Lee et al., 2011; Portela et al., 2012). Regression
models based on weather data or satellite images were often
used for yield estimation at a large scale with a minimum set
of historical input data (Choi and Baek, 2016; Gómez et al.,
2021). Although worldwide garlic production has been steadily
increased in recent years, it is unclear if yield will be stable in
the current growing regions under future climate conditions. For
estimating yield under previously unobserved conditions, it is
critical to developing a physiological understanding of how garlic
would respond to these environmental cues (Nackley et al., 2016).
Regional climate changes may lead to changes in current farming
practices and shifts in growing regions to maintain or maximize
the yield. The crop model is an important tool for supporting
such decisions by enabling simulations of plant growth under
diverse climate adaptation strategies (Rosenzweig et al., 2014;
Holzkämper et al., 2015; Corbeels et al., 2018).

In this study, our primary objective was to build an integrative
process-based garlic model suitable for estimating harvestable
biomass as scape and bulb yield under diverse environments
including future climate conditions. A new model was developed
based on an existing process-based garlic model with an original
emphasis on phenology and extended with a focus on biomass
accumulation and partitioning (Hsiao et al., 2019). The model
was also improved to better reflect physiological responses
to temperature by taking into account storage conditions of
seed garlic bulbs and cold stress response in terms of leaf-
level growth and canopy-level mortality. We used Cropbox
modeling framework for reimplementation to take advantage
of its declarative modeling language and unified interface
for coordinating a large batch of simulations with minimum
configurations (Yun et al., 2020). For model testing, a new
parameter set was specifically calibrated for Namdo (ND)
cultivar (Allium sativum “Namdo”) and validated with multiple
datasets with biomass measurements. For demonstrating the
yield estimation capability of the model, a climate adaptation
strategy was assessed by model simulations for the same cultivar
grown in two locations of South Korea. ND is a cultivar
originally adapted to the warm climate in the southern region of
Korea (Kim et al., 2009). However, the boundary of the growth
region between northern and southern types of garlic has moved
northward in the past decades due to the warming climate (Heo
et al., 2006). Optimal planting dates for achievingmaximum yield
were discovered through model simulation under current and
future climate conditions in the two locations where one is an
already established region for growing southern-type garlic and
the other has the potential to become a new establishment in
the future.

2. MATERIALS AND METHODS

2.1. Garlic Model
The garlic growth model was extended from a process-based
model for leaf development and growth in hardneck garlic (Hsiao
et al., 2019). The original model was capable of simulating leaf
area expansion at an individual leaf level and estimating carbon
assimilated in a canopy calculated by coupled gas exchange, but
assessing biomass allocated into a particular organ, i.e., bulb, was
not a primary subject of the model at the time. For realistic yield
prediction under future scenarios, the model should be able to be
reliable under diverse environmental conditions (IPCC, 2014).

Model changes made for the experiments reported in this
paper include improved biomass allocation, a dynamically
adjusted phyllochron, and cold stress response (Figure 1). For
the sake of technical convenience, model code originally written
in C++ was reimplemented with Cropbox modeling framework
using Julia programming language (Cropbox.jl, 2021). The
Cropbox framework allowed a streamlined model development
from the model description in a concise declarative form,
iterative parameter adjustments within a notebook environment,
and batch simulation of large sets of parameters and production
of figures included in this paper. The model source code is also
available in the public repository (Garlic.jl, 2021).
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FIGURE 1 | Diagram of key processes updated in the model presented in this paper. Leaf appearance is driven by an accumulation of leaf tip appearance rate (LTAR)

which is modified according to dynamic phyllochron (*). Cold stress (
†
) is implemented in two folds; individual leaf-level growth driven by leaf elongation rate (LER) and

plant population-level response accounted by plant density (PD). Carbon assimilated through coupled gas exchange forms a carbon pool which determines the

amount of carbon partitioned into individual organs. The bulb carbon constitutes a final yield of garlic. For a complete structure of the model, refer to Figure 1 of Hsiao

et al. (2019).

2.1.1. Biomass Allocation
The total amount of carbon assimilation was calculated by a

C3 photosynthesis model coupled with a stomatal conductance

model and energy balance model as described in the previous

paper (Hsiao et al., 2019). Note that the overall model structure

including the gas-exchange module was reorganized for taking

advantage of domain-specific language provided by Cropbox
modeling framework (Yun et al., 2020). The assimilated carbon
accumulates and forms a carbon pool (g) ready to be distributed
to plant organs. A potential allocation rate of available carbon
(g d−1) is driven by the carbon supply rate from the pool
(g d−1) excluding maintenance respiration (g d−1). After taking
account of carbohydrate synthesis efficiency (Yg), an actual
allocation rate (g d−1) is determined and split into a set of
allocation rates for structural organs according to a partitioning
table (Figure 2).

The partitioning table is a 2-dimensional array where each
row represents a developmental stage and column represents a
destination. Developmental stages span from seed, vegetative,
bulb growth before scape appearance, bulb growth after scape
appearance, bulb growth after scape removal, and death.
Partitioning destinations include root, leaf, sheath, scape,

and bulb. For each time step of the simulation, an actual
allocation rate weighted by a partitioning coefficient found
in the table was used for biomass accumulation of each
destination organ.

We determined the initial partitioning coefficients
teleonomically for each phenological stage based on our
understanding of the crop and literature reviews (Takagi, 1989;
Meredith, 2008). We then inspected the model behavior visually
and heuristically to adjust the partitioning coefficients to mimic
the observations.

2.1.2. Dynamic Phyllochron
An interval between leaf appearance, phyllochron, is not
necessarily static throughout plant growth, but can dynamically
change depending on the growth condition. However, the
maximum leaf tip appearance rate (LTARmax; d−1) in the
original garlic model was determined by thermal time based
on storage duration between harvest and planting as well as
storage temperature for which seed garlic has been kept during
this period. Once initialized, LTARmax would have remained the
same until the end of simulation. This assumption was often held
when storage duration was close to an average duration where
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FIGURE 2 | Partitioning coefficients for plant organs dynamically adjusted

according to developmental stage. V, vegetative stage; R1, reproductive stage

between scape initiation and appearance; R2, reproductive stage between

scape appearance and removal; R3, reproductive stage after scape removal.

R3 is not used if the scape is not removed during simulation.

curve fitting was originally done for. However, sometimes the
leaf tip appearance rate may have stayed too high at the end of
the growing season when storage duration was longer than usual.
The opposite would happen when the storage duration was too
short. In other words, scape appearance in the reproductive stage,
which is driven by the same mechanism relying on phyllochron
that assumes a scape appears after three phyllochrons since the
onset of the reproductive stage, could become too sensitive to
the initial value of LTARmax. To alleviate this issue, LTARmax

was adjusted to converge toward half of the asymptote of the
maximum leaf tip appearance rate parameter (LTARmax,a; d

−1).
The initial value LTARmax,s is the same as maximal rate of leaf tip
appearance rate modified by storage duration SD defined in the
original model Hsiao et al. (2019). SDm is the storage duration
that results in half of maximal leaf tip appearance asymptote
(LTARmax,a) and α controls the steepness of the sigmoidal storage
function. The same value of parameters was adopted from the
original model (Table 1). After each leaf appearance, LTARmax

would linearly increase or decrease depending on the initial rate
and the slope toward the asymptote. Convergence is done when
leaf rank k reaches the generic leaf number Ng which was set to
10 by default.

r0 = LTARmax,s =
LTARmax,a

1+ e−α(SD−SDm)
(1)

r1 =
LTARmax,a

2
(2)

LTARmax = r0 + (r1 − r0)
k

Ng
(3)

TABLE 1 | Parameters for dynamic phyllochron.

Symbol Value Units Description

LTARmax,a 0.4421 d−1 Maximal leaf tip appearance asymptote

ST 8 ◦C Storage temperature

SDm 117.7523 d Storage days when reaching the half of LTARmax,a

α 0.0256 d−1 Steepness of sigmoidal storage function

Ng 10 – Generic leaf number

2.1.3. Cold Stress
Two types of cold stress response commonly found with garlic
plants grown in the field during the winter season were added to
the model: cold injury and cold damage. Cold injury represents
impeded leaf growth under below normal air temperatures. The
actual leaf elongation rate (LER; cmd−1) is scaled down from
potential leaf elongation rate (LERp; d

−1) by cold injury effect
[E(t)] at time t. The potential cold injury effect (E) is based on
an apparent cold injury effect at the moment (C) attenuated by
the period of cold the plant has experienced (D). The number of
cold days (D) increases when the air temperature (T) is below
a critical temperature for cold injury (Tc,i;

◦C) which assumed
to be 0 ◦C. Once the temperature rises above the threshold Tc,i,
the cumulative days D decreases until it resets to zero. The actual
cold injury effect at the time [E(t)] is preserved to be less than
or equal to the degree of effect experienced previously [E(t − 1)]
while the same episode is in effect (D > 0). It assumes that the
effect of cold injury is prolonged for a certain period of time while
recovering under normal temperature even after the cold episode
is over. The longer a plant is exposed to the cold temperature, the
more difficult it is to recover from the injury.

The potential cold injury effect (E) was derived from a growth
chamber experiment (Supplementary Figure S1). ND cultivar
was planted and grown in pots at room temperature until
the third leaf emerged. Plants were then placed in a growth
chamber subject to a constant temperature of 0◦C, –5◦C, –
10◦C, and –15◦C, respectively. The leaf area of the third leaf
blade from surviving plants was measured multiple times for
8 days. Each treatment had three replicates. For each sampling
point, normalized leaf area was calculated from the final leaf
area measured under room temperature before the onset of
treatment. The size of the potential cold injury effect (E) was
assumed to be the same as the normalized leaf area at a
given time (Supplementary Figure S2). A range of apparent cold
injury effects (C) was then obtained from each line of fitted E
(Supplementary Figure S3). With the obtained values, C is now
formulated as a logarithmic function with two parameters (a, b)
(Table 2).

d =

{

1, T < Tc,i

−1, T ≥ Tc,i
(4)

D =
∑

max(d, 0) (5)

C = max
(

0,min
(

log
[

a · (T − Tc,i)+ b
]

, 1
))

(6)
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TABLE 2 | Parameters for cold stress response.

Symbol Value Units Description

Tc,i 0 ◦C Critical temperature for cold injury

a –0.1 – Cold injury factor 1

b 1.6 – Cold injury factor 2

Tc,d –15 ◦C Critical temperature for cold damage

s 0.9 – Cold damage shape factor

E = 1−
C

e
1
D

(7)

E(t) =

{

1, D = 0

min(E,E(t − 1)), D > 0
(8)

LER = E(t) · LERp (9)

Cold damage represents the death of the plant under more
extreme temperatures, resulting in a reduced plant density
(PD). The current plant density (PD) starts from an initial
planting density (PD0) and then may decrease over time as
the air temperature (T) drops below a critical temperature for
unrecoverable cold damage (Tc,d). Unlike cold injury where leaf
growth only slows down under low temperature and eventually
recovers once the temperature rises back up, cold damage leads
to permanent wilting from which plants no longer recover.
Mortality due to cold damage (M) is a logistic curve representing
a relative portion of plants that survived at the end of the cold
damage treatments. Cold damage shape factor (s) determines
how quickly the plants will die off under such extreme conditions.
Due to the lack of experimental datasets available for parameter
fitting, we instead looked up episodes of cold damage and
corresponding temperatures reported in the newspaper during
the past years to determine parameter values. Themodel assumed
mortality (M) started building up when the temperature went
below around −10 ◦C and quickly reached peak damage at
around−20 ◦C (Supplementary Figure S4).

M =
e−s(T−Tc,d)

1+ e−s(T−Tc,d)
(10)

S = 1−M (11)

PD = S · PD0 (12)

2.2. Parameter Estimation
A parameter set for ND cultivar was mostly based on existing
parameter sets calibrated for Korean Mountain (KM) and
Shantung Purple (SP). Only a few parameters were modified to
reflect how ND grows in general compared to the other cultivars
(Table 3). Minimum length of longest leaf (LMmin) was increased
to 100 cm which was the largest value found in our datasets. The
potential maximum elongation rate (LERmax) was accordingly
adjusted to 5.56 cm d−1 assuming full leaf expansion takes 18
days under optimal conditions. Initial leaves at harvest (ILN)
was set to 6 as found in a dissected seed garlic clove. Stay

TABLE 3 | Parameters for leaf development of Namdo (ND) cultivar.

Symbol Value Units Description

LTARmax,a 0.4421 d−1 Maximal leaf tip appearance rate asymptote

LERmax 5.56 cmd−1 Maximal leaf elongation rate

LMmin 100 cm Minimum length of longest leaf

ILN 6 – Initial leaf number

SG 1.5 – Stay green

green (SG) was set to 1.5 d which was a value calibrated for
SP cultivar. Storage temperature (ST) was assumed constant at
8 ◦C during the entire storage period. Seed bulb was assumed
harvested on June 30th and storage duration (SD) was calculated
accordingly. Note that it was our intention to select parameters
that allow overestimation of biomass and leaf area for tracking
potential growth while calibrating parameters to keep the timing
of phenology as close as possible to the observation.

We validated our new parameter set for ND cultivar using
three datasets. The first dataset (D1) was collected from an
experiment plot located at the Research Institute of Climate
Change and Agriculture (RICCA), Jeju, South Korea. ND cultivar
was planted on October 8th, 2014, and harvested on June 19th,
2015. Growth and development measurements, such as leaf
count, leaf area, biomass for each part, were recorded from
the mid-vegetative stage until harvest. This dataset was used
for evaluating the overall response of the ND parameter set we
obtained above. The second dataset (D2) was collected from
a temperature gradient greenhouse (TGG) located at the same
site in Jeju. TGG is a glass house equipped with heaters on the
one side of the wall that keeps a small, but constant gradient
in the enclosed planting zones. Five planting zones were set
up with 2 ◦C to 3 ◦C of temperature differences kept from end
to end. ND cultivar was planted on October 7th, 2014, and
harvested on May 17th, 2015. Similar measurements to the
first dataset were recorded from the early vegetative stage until
harvest. This dataset was used for evaluating the response of the
model to modest temperature changes in a similar way that the
model would be subject to future climate conditions. Scape was
not removed in both datasets. The last third dataset (D3) was
obtained from a farm field located at Jeongsil (JS) neighborhood
in Jeju, South Korea. ND cultivar was planted on September
9th, 2009, and harvested on June 18th, 2010. Types of recorded
variables were the same as other datasets. Scape was assumed
to be removed shortly after its appearance out of the whorl.
Only the visible portion of the scape was cut and measured for
biomass. Hourly time-series of weather data for each dataset
were obtained from nearby Jeju station (184) operated by Korean
Meteorological Administration.

2.3. Future Climate Projections
For assessing garlic yield changes in future climate conditions,
we specifically chose two locations in South Korea (Figure 3).
The first site was Gosan, Jeju located on a Southern island
with a humid subtropical climate off the Korean peninsula,
which is in Zone 9b in terms of USDA Hardiness Zones. Gosan
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FIGURE 3 | Geographic locations of Gosan and Jeju in South Korea. Gosan is

located on a Southern island with a humid subtropical climate off the Korean

peninsula. Chuncheon is located in the middle of the peninsula with a humid

continental climate with cold winter. A color overlay represents the average

minimum temperature (◦C) in January during past 30 years from 1981 to 2010

provided by the National Institute of Agricultural Sciences, South Korea.

According to USDA Hardiness Zones, Gosan is Zone 9b and Chuncheon is

Zone 6b.

is where ND cultivar is currently grown on a large scale for
commercial purposes where stakeholders are interested to see
how the cultivar would be performing and if any adjustments in
growing practice such as if planting date shifts would be required
in the long term. The second site was Chuncheon, Gangwon
which is located in the middle of the Korean peninsula with a
humid continental climate with cold winter. Chuncheon is in
Zone 6b according to USDA Hardiness Zones and the current
climate is not favorable for growing a Southern cultivar, such as
ND, which has been historically more adapted to warm climates.
However, it is not clear whether future climate conditions could
allow the growing of new crops in a region previously not
suited for production. We assumed two RCP (Representative
Concentration Pathway) scenarios, RCP4.5 and RCP8.5, for
future climate projections (IPCC, 2014). Daily weather dataset
for the two locations under RCP4.5 and RCP8.5 scenarios
were obtained from the AgClimate data portal (AgClimate,
2019) operated by Rural Development Administration in South
Korea. Elevated CO2 concentrations for RCP scenarios were
used accordingly for driving the integrated coupled gas-exchange
model. For comparison with current climate conditions of each
location, we also obtained 30-years of normal weather data from
1980 to 2010 provided by the same data portal. The daily weather
dataset was then scaled down to hourly time-series by applying
an interpolation method specifically designed for different types
of weather variables (Moon et al., 2019). Elevated CO2 levels
for each year under future scenarios were obtained by linear
interpolation between CO2 abundance projection reported in the
Climate System Scenario Tables (IPCC, 2013).

For each location, multiple runs of the simulation were
executed with combinations of treatments. In the case of future

climate projections, 8 time windows from the 2020s to 2090s
with 10 years interval multiplied by 10 repetitions from different
random seeds produced 80 weather datasets for each RCP
scenario. Historical weather was organized in a single time
window referred to 1980s with 10 random repetitions, leading
to 10 weather datasets. The planting date was adjusted from
240th to 350th DOY (day of the year) with 10 days intervals,
requiring 12 runs for each weather condition. In turn, the current
normal scenario involved 120 runs of simulation while each
RCP scenario required 960 runs. Immediate scape removal after
appearance was assumed. The harvest date was set fixed to be
May 15th considering practical harvest dates of ND cultivar
grown in Jeju. The yield was based on fresh biomass of bulb
at the harvest date. In the model simulation, fresh biomass was
calculated with 85% moisture content in bulb. The optimal
plating date was then determined by finding out a planting date
that gives maximum yield for a given year. For the sake of yield
comparison between planting dates, years were grouped into
three time periods, namely 1980–2010s, 2020–2050s, and 2060–
2090s. A data point in the 1980–2010 period was composed of 10
samples originated from a set of stochastic weather data pooled
for the entire period whereas a data point in the future climate
scenario was composed of 50 samples where the result of 10
stochastic weather datasets was combined with 5 periods of 10
years interval.

3. RESULTS

3.1. Model Evaluation
3.1.1. Dataset 1 (RICCA Field)
Our parameter for ND cultivar was first evaluated with
measurements from field grown garlic in the dataset D1. Green
leaf area from themodel exhibited consistent overestimation with
an average RMSE (root mean square error) of 275 cm2 while
keeping a similar trajectory of leaf expansion and senescence
pattern to the observation (Figure 4). The maximum green leaf
area was estimated to be 1.193 cm2 on April 28th while the
maximum value in the dataset was 1.150 cm2 observed on April
30th. The peak was reached in simulation shortly after the scape
appeared on April 23rd during early vegetative growth.

Simulated biomass allocation to each part of plant structure,
namely bulb, leaf, stalk, and scape, was close to the observation
with an average RMSE of 5.0, 1.6, 2.5, and 1.7 g, respectively
(Figure 5). The maximum biomass of bulb from the simulation
was 22.6 g reached on June 14th while the observed maximum
was 26.0 g measured on June 4th which was the final date
recorded in the dataset. The maximum living leaf biomass from
the simulation was 8.4 g reached on April 27th and the maximum
observed value was the same 9.9 g on April 30th. The maximum
biomass of stalk, which consists of leaf sheath and scape, from the
simulation was 15.3 g close to the observed maximum of 15.9 g.
However, the timing of the peak was shifted by almost 3 weeks
later on May 27th compared to the observed May 7th. Since leaf
sheath withered away at the end of the growth stage, the only
remaining part of the living stalk would be a scape which was the
reason why a convergence between two values occurred in mid-
June. The simulated biomass of the scape reached its maximum
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FIGURE 4 | Comparison of model simulated green leaf area and observation from dataset D1 which was from field measurements and primarily used for evaluating

new parameters.

FIGURE 5 | Biomass allocation to leaf, bulb, stalk, and visible portion of scape simulated over time compared with measurements from dataset D1 which was from

field measurements and primarily used for evaluating new parameters.

Frontiers in Plant Science | www.frontiersin.org 7 March 2022 | Volume 13 | Article 783810

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yun et al. Yield Estimation Using Garlic Model

value of 9.5 g on June 20th which was almost identical to the
observed maximum which, however, occurred earlier on June
4th. Note that the two slopes of biomass increase for simulation
and observation were almost parallel to each other.

Leaf development phenology simulated by the model was in
agreement with fresh leaf count recorded in the dataset with an
average RMSE of 1.6 leaves (Figure 6). According to the model,
leaf initiation was completed on March 22nd with the total
number of 16 leaves and the 16th leaf appeared on April 2nd.
The final leaf was completely senesced and dropped after about
2.5 months of growth on June 15th.

3.1.2. Dataset 2 (RICCA TGG)
Plants grown in higher temperature zone 1 had a larger green leaf
area of 1.521 cm2 and reached its peak earlier on April 20th when
compared to plants grown in lower temperature zone 5 whose
maximum green leaf area was estimated to be a smaller 1.303 cm2

reached on May 9th (Figure 7). The simulation result was in
agreement with observation recorded in dataset D2 in which zone
1 had a larger leaf area of 1.176± 0.239 cm2 on April 17th, in
contrast to zone 5 having a smaller leaf area of 1.124± 0.090 cm2

on the same date. After 3 weeks on May 9th, the difference was
flipped over where plants in zone 1 had senesced faster, resulting
in a smaller green leaf area of 512± 55 cm2 while zone 5 was still
greener with 701± 70 cm2. The mean temperature recorded in
dataset D2 for zone 1 was 15.5 ◦C and zone 5 was 12.6 ◦C.

3.1.3. Dataset 3 (JS Field)
Simulated biomass allocation compared with another
independent dataset D3 came with an average RMSE of
7.4, 3.6, and 4.2 g for bulb, leaf, and stalk, respectively (Figure 8).

The maximum bulb biomass from the simulation was 37.4 g
reached on June 22nd while the observed maximum was 28.7 g
measured on May 26th. The maximum living leaf biomass from
the simulation was 10.0 g reached on May 1st and the maximum
observed value was 9.1 g on April 28th. Themaximum biomass of
stalk from the simulation was 13.5 g on May 1st when scape just
appeared and was subsequently removed. The maximum stalk
biomass recorded in the dataset was 12.3 g observed on April
28th. Once the scape was removed and no longer a part of stalk
composition, stalk biomass gradually decreased as the mature
sheath stopped growing and started senescence. According to
the dataset, scape was removed during the reproductive stage,
but an exact date of the removal was not recorded. Thus, we
assumed that scape removal took place as soon as a tip of the
scape became visible out of the whorl which occurred on May 1st
by model estimation. The scape biomass at the time of removal
was 5.7 g.

3.2. Yield Projection
3.2.1. Gosan
In the current climate condition, the fresh yield on ND
cultivar in Gosan, Jeju was estimated to be maximum at
an average of 6.8 kgm−2 with an SD of 0.8 kgm−2 when
planted in late August (240 DOY) which was closely followed
by early September planting (260 DOY) with an average of
6.7± 0.7 kgm−2 (Figure 9). A similar level of high yield was
maintained until late September then yield gradually decreased
with later planting dates. The difference between maximum yield
from early planting date and minimum yield from later planting
date was 3.7 kgm−2. In the near future from the 2020 to 2050s, a

FIGURE 6 | Simulated leaf development phenology compared with fresh leaf count recorded in dataset D1 which was from field measurements and primarily used for

evaluating new parameters.
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FIGURE 7 | Comparison of model simulated green leaf area and observation for two temperature zones (Zone 1: high, Zone 5: low) recorded in dataset D2 from a

temperature-controlled glass house.

FIGURE 8 | Biomass allocation to leaf, bulb, stalk, and visible portion of scape simulated over time compared with measurements from dataset D3 which was from

field measurements with scape removal.
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similar pattern was observed that high yield was achieved with
early planting in September. An overall yield was increased to
7.5± 0.8 kgm−2 under RCP4.5 and 7.6± 0.8 kgm−2 under the
RCP8.5 scenario when compared to the current climate. There
was no clear difference between RCP4.5 and RCP8.5 scenarios in
terms of estimated yield for a given planting date. In the distant
future from the 2060s to the 2090s, the RCP4.5 scenario still
maintained a similar pattern where a high yield was achieved
in early planting dates, but then the range of potential high
yield was expanded to later planting dates. For example, planting
dates from late August (240 DOY) to mid-October (290 DOY)
all resulted in an average yield that closely ranged from 7.6 to
7.7 kg m−2. The difference between the maximum andminimum
yield estimated in the range of planting dates was reduced to
3.0 kgm−2. Under the RCP8.5 scenario, the yield curve was
more flattened that the difference was only 1.8 kgm−2 between

all planting dates. The maximum yield was 8.3± 0.6 kgm−2 in
early-October (280 DOY).

When optimal plating dates were assessed from current to
future climate conditions by 10-year intervals, a clear trend
of shifting toward later planting date was found in the future
projection although its strength varied depending on scenarios
(Figure 11). Both scenarios began with optimal planting date in
early to mid-September then showed a strong divergence at the
end of the century that the optimal planting date surfaced from
late September to early October under the RCP4.5 scenario, while
mid-November became a possibility under the RCP8.5 scenario.

3.2.2. Chuncheon
In the current climate condition, the yield of ND cultivar
in Chuncheon, Gangwon was estimated close to nil with a
maximum yield of 0.06± 0.05 kgm−2 due to impeded leaf

FIGURE 9 | Yield estimation within a range of planting dates under current and future climate projection in Gosan, Jeju which is a region that grows ND cultivar at a

commercial scale. The current climate indicates simulation results with 30-years of normal weather data from 1980–2010. Shades represent a range of ±1 standard

deviation from the mean fresh yield.

FIGURE 10 | Yield estimation within a range of planting dates under current and future climate projection in Chuncheon, Gangwon where the current climate is not

favorable for growing ND cultivar. The current climate indicates simulation results with 30-years of normal weather data from 1980–2010. Shades represent a range of

±1 SD from mean fresh yield.
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growth and increased mortality from cold winter temperature
during early vegetative growth (Figure 10). However, under
future projections, yield became more viable thanks to a warmer
climate. In the near future from the 2020 to 2050s, the
maximum estimated yield was 1.5± 0.7 kgm−2 under RCP4.5
and 1.3± 0.9 kgm−2 under RCP8.5 scenario when both planted
in early September (250 DOY). In the distant future from the
2060 to 2090s, more yield was achievable with 2.5± 0.8 kgm−2

under RCP4.5 and 4.3± 1.1 kgm−2 under RCP8.5 scenario
with early to mid-September plating dates, 250 DOY and 240
DOY, respectively. The difference between the maximum and
minimum yield estimated in the range of planting dates was
0.6 kgm−2 in the early period and 1.0 kgm−2 in the late period
under RCP4.5 scenario. RCP8.5 scenario initially had a similar
range of estimated yield over multiple planting dates with
0.5 kgm−2 in the early period, but then showed a much higher
variance of 1.7 kgm−2 in the late period.

In terms of optimal planting dates for each period, planting
in around early September consistently turned out to work best
regardless of climate scenarios and estimated yield gradually
declined with later planting dates in all scenarios (Figure 11).

4. DISCUSSION

4.1. Model Evaluation
4.1.1. Parameter Calibration
Our parameter set for ND cultivar was mostly derived from
existing parameters for Korean Mountain (KM) and Shantung
Purple (SP) with small changes (Hsiao et al., 2019). The final
parameter set used in our simulation turned out to be similar
to one calibrated for the SP cultivar. It would not be unexpected
given that ND was originated from a Chinese cultivar and hence
there is a chance SP might be also related to this original cultivar
due to geographical proximity (Kim et al., 2009).

4.1.2. Overestimation
Simulation with the calibrated parameter set often resulted in
overestimation in the sense that model output tends to touch
upper boundaries of observed data points (Figures 4, 5, 7, and
8). This overestimation is intended and expected because our
model estimates for biomass and yield potential for a given
environmental condition with assuming no limiting factors such
as water and nutrient while the field conditions are likely less than
optimal. Some types of overestimation also presumably came
from the difference between physical measuring methods and
modeled algorithms. For example, the green leaf area recorded
in the dataset was measured by taking only non-withered leaves
at the time of observation which is prone to lose leaves with some
green parts intact. On the other hand, the green leaf area from
the model was calculated for individual leaves at a fractional scale
by tracking the current green portion of the leaf for each time
step. Such difference could have been one of the reasons leading
to overestimation in leaf area simulation (Figures 4, 7).

4.1.3. Temperature Regimes
Evaluation of model response under slightly separate
temperature regimes as conducted in temperature gradient
house provided an insight into how elevated air temperature
under RCP scenarios would affect plant growth (Figure 7). In
short, the plant will grow larger and faster and die earlier in
warmer conditions. An average of 3 ◦C difference in temperature
led to more than 2 weeks of the shift in growth peak and 15%
change in total green leaf area. Subsequent changes in senescence
timing would imply a need for finding out optimal harvest dates
which we assumed as a rather constant management decision in
our simulation.

4.1.4. Storage Condition
Storage duration (SD) affects maximum leaf tip appearance rate
(LTARmax) via the dynamic phyllochron model (Equations 1,

FIGURE 11 | Optimal planting dates estimated for each year under current and future climate projections in Gosan and Chuncheon. The year 2010 indicates

simulation results with 30-years normal weather data from 1980–2010 representing current climate. For RCP scenarios, each year indicates a 10-year average, e.g.,

2090 refers to 2090–2100. Error bar and shades represent a range of ±1 SD from mean optimal planting date.

Frontiers in Plant Science | www.frontiersin.org 11 March 2022 | Volume 13 | Article 783810

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Yun et al. Yield Estimation Using Garlic Model

2, 3). Storage temperature (ST) along with storage duration then
decides number of leaves initiated inside a seed bulb at the time
of planting. Despite the importance on phenology, experimental
records rarely exist for when seed bulbs were harvested and in
which condition they were stored until the date of planting. With
controlled experiments on storage conditions, we could have
a better understanding of how leaves are initiated during the
storage period and whether more sophisticated approaches like
a dynamic plastochron would be necessary.

4.1.5. Other Environmental Cues
While our assessment for yield projection under future condition
was primarily driven by model response to temperature regimes,
there is still room for considering other environmental cues.
For instance, we did not have a separate vernalization process
in the model but assumed winter chilling was always at an
adequate level for triggering continuous development in the
following warm spring. While it worked reasonably well in
most cases, some processes like mortality from cold stress could
capitalize on this additional cue to make dormant plants less
vulnerable to cold damage, for instance. Soil water availability
would be another important cue in terms of assessing irrigation
requirements under future climate conditions given that garlic
plots are often irrigated to prevent water deficiency during the
reproductive stage.

4.2. Yield Projection
4.2.1. Gosan
Jeju, including Gosan, is a region where southern-type garlic
cultivars like ND have been grown at a commercial scale thanks
to the warm climate. Northern regions in the Korean peninsula
often have colder winters which prevents growing southern-
type cultivars. Growers instead choose northern-type cultivars
for cold hardiness. As southern cultivars have the advantage of
higher yield and shorter growing seasons, whether they could
be adapted to northern regions has been an important question
to many growers and stakeholders. According to our simulation
results using a process-based model, ND cultivar would continue
growing well with a slightly higher yield (Figure 9). The optimal
planting date in early September estimated for the current
climate condition was indeed close to the current practice held
in Jeju. This practice is, however, expected to be delayed in
the near future if growers keep trying to maximize yield under
both climate scenarios (Figure 11). The amount of planting
date delay depends on the scenarios and the model estimated
that the RCP4.5 scenario could see a shift less than a month
while the RCP8.5 scenario could potentially result in 2 months
of late planting. Note that although optimal planting dates
were seemingly changed drastically, yield estimation curve vs.
planting date was actually getting more flattened and the
difference between the maximum and minimum yield became
smaller in warmer climate conditions. Such changes imply that
growers would have more options to choose planting date better
suits their own needs. For example, October planting in the
future would still promise a yield level close to the potential
maximum while taking a relatively shorter growing season to
help reduce the overall cost of labor and resources. High yield

does not necessarily lead to high profitability when a longer
growing season increases overall water demand entailed by
higher irrigation cost for compensation (Lobell, 2014). Looking
further in the distant future, it was more clear to expect a shift in
optimal planting to later dates although yield difference to earlier
planting dates was not significant.

4.2.2. Chuncheon
Chuncheon is located in the middle of Korean peninsula and
its continental climate frequently experiences below freezing
temperatures during the winter season. Hence, only northern-
type cultivars, adapted to cold climates have been grown in
this region. Our simulation results confirmed expected yield
for the current climate was almost non-existent as most plants
subject to mortality (M) could not survive after episodes
of extreme cold. By contrast, future climate conditions were
projected to become more favorable in both scenarios so
that expecting some tangible yields would be at least feasible
(Figure 10). Generally, early planting dates were favored in terms
of optimal yield as similar in the current growing region like
Jeju (Figure 11). Although the level of estimated yield was still
lower when compared to the yield currently obtainable in other
established regions, growers may be able to take advantage of
this new opportunity for expanding crop portfolio during the
winter season.

4.3. Climate Adaptation
It is important to tease apart an effect of adaptation introduced
by planting date shift in the future from an impact of planting
date shift in the current condition (Lobell, 2014; Challinor
et al., 2018). According to the result from Gosan, planting
date shift in the established growing region has little effect
on adaptation as evidenced by a similar or smaller range
between maximum and minimum yield when comparing the
current and future climate scenarios (Figure 9). Higher estimated
yield was a result of increased productivity under more
favorable conditions primarily due to the higher temperature
and elevated CO2, but not from potential phenological changes
that occurred by planting date shift. In non-established
regions like Chuncheon, however, an effect of adaptation
increased virtually from zero to a substantial amount when
transitioning to new climate conditions as evidenced by
a rising slope of yield estimation curve (Figure 10). In
other words, the importance of planting date as a climate
adaptation strategy depends on how crops are adapted to the
local condition.

Underlying uncertainties of crop models often hinder model
driven assessment of climate change adaptation (Rosenzweig
et al., 2014; Holzkämper et al., 2015; Corbeels et al., 2018). We
adopted a process-based model with coupled gas-exchange to
minimize uncertainties in physiological responses to temperature
and CO2, but still there remain many processes that can use
improvements. For instance, the water stress response was solely
dependent on leaf water potential disconnected with soil water
status albeit a less practical implication when garlic plants
are generally irrigated to meet high water demand during the
reproductive stage. Nitrogen response is another important
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factor that the model currently does not take into account and
instead assumes non-limiting due to extensive use of fertilizers
in practice, but will be critical for assessing an exact cost of
production in finding optimal yield.
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