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Mid-infrared spectroscopy using Fourier transform infrared (FTIR) with attenuated total
reflectance (ATR) correction was coupled with partial least square regression (PLSR)
for the prediction of phenolic acids and flavonoids in fig (peel and pulp) identified
with high-performance liquid chromatography-diode array detector (HPLC-DAD), with
regards to their partitioning between peel and pulp. HPLC-DAD was used to quantify
the phenolic compounds (PCs). The FTIR spectra were collected between 4,000 and
450 cm−1 and the data in the wavenumber range of 1.175–940 cm−1, where the
deformations of O-H, C-O, C-H, and C=C corresponded to flavanol and phenols, were
used for the establishment of PLSR models. Nine PLSR models were constructed
for peel samples, while six were built for pulp extracts. The results showed a high-
throughput accuracy of such an approach to predict the PCs in the powder samples.
Significant differences were detected between the models built for the two fruit parts.
Thus, for both peel and pulp extracts, the coefficient of determination (R2) ranged
from 0.92 to 0.99 and between 0.85 and 0.95 for calibration and cross-validation,
respectively, along with a root mean square error (RMSE) values in the range of 0.46–0.9
and 0.23–2.05, respectively. Residual predictive deviation (RPD) values were generally
satisfactory, where cyanidin-3,5-diglucoside and cyanidin-3-O-rutinoside had the higher
level (RPD > 2.5). Similar differences were observed based on the distribution revealed
by partial least squares discriminant analysis (PLS-DA), which showed a remarkable
overlapping in the distribution of the samples, which was intense in the pulp extracts.
This study suggests the use of FTIR-ATR as a rapid and accurate method for PCs
assessment in fresh fig.

Keywords: FTIR-ATR, partial least square regression (PLSR), Ficus carica L., phenols, HPLC-DAD

INTRODUCTION

The rapidly growing interest in functional foods, particularly underutilized fruits and beverages is
based on their uniqueness as natural bioactive resources, necessary to enhance the human health
and well-being. Worldwide, large species are not fully assessed for their nutritional components
and biologically active compounds involved in consumer health promotion so far. Although the
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GRAPHICAL ABSTRACT | Scheme diagram showing the research methodology and analytical approaches.

naturally occurring phenotypic, chemotypic, and ecotypic
diversity of most of these species is still scarcely screened, it
is evident that they present an invaluable potential source of
bioactive compounds directly associated with the prevention
of coronary diseases. Particular attention should be devoted to
the investigation of these species’ bioactive compounds, mainly
their secondary metabolites, since they not only present the
main quality indicators of new cultivars but are also important
in chemotaxonomy (Česoniene et al., 2009). Phenolic acids
and flavonoids are among the most chemically heterogeneous
groups of secondary metabolites synthetized by plants. Screening
of these bioactive molecules has gained the most interest
during these decades, since it helps in recognizing new raw
materials for food, nutraceutical, and cosmetic industries.
Figs are an emblematic food of the Middle Eastern and
North African diets and constitute an important source of
phenolic compounds (PCs) which contribute significantly to
their taste, color, astringent flavors, and aroma (Vinson et al.,
1998; Kamiloglu and Capanoglu, 2013; Haytowitz et al., 2018;
Arvaniti et al., 2019). Anthocyanins, particularly cyanidin-
3-rutinoside; flavanols, mainly quercetin-rutinoside; phenolic,
such as chlorogenic acid; and flavones, such as luteolin and
apigenin-rutinoside, were reported as the major PCs isolated
from fresh figs (Vallejo et al., 2012; Viuda-martos et al., 2015;
Harzallah et al., 2016).

For high quantification accuracy of these compounds,
high performance liquid chromatography (HPLC), with
diode array detector (DAD) or even coupled with mass
spectroscopy (MS), are among the frequently used conventional
techniques (Nadeem and Zeb, 2018). However, these methods

are time-consuming, expensive, and require laborious work and
a large number of solvents, some of which are hazardous (Koch
et al., 2014). Therefore, accurate, rapid, with minimal sample
preparation, and low-cost technologies are highly required.
Fourier transform infrared (FTIR) spectroscopy presents all
these features and therefore, has become among promising
spectroscopic technologies, widespread in the analysis of
main food components. This technology is highly sensitive,
providing different levels of molecular information regarding
primary and secondary metabolite structures (Bouyanfif et al.,
2019). It measures predominantly molecular vibration and
determines its intensity by the dipole moment change during
the vibrational mode and provides a specific infrared spectrum,
which is the biochemical fingerprint that provides information
about molecular composition (Nadeem and Zeb, 2018). Earlier
studies showed that the FTIR spectroscopy provided satisfactory
results with high-throughput screening framework of numerous
biomolecules in several food samples mainly fruits, vegetables, or
beverages, e.g., biosynthesis of silver nanoparticles in figs (Jacob
et al., 2017), Sudanese honey (Tahir et al., 2017), discrimination
of bovine, porcine and fish gelatins (Cebi et al., 2016), fatty
acid changes in Caenorhabditis elegans (Bouyanfif et al., 2019),
mini kiwi (Baranowska-Wójcik and Szwajgier, 2019), red bell
pepper (Prabakaran et al., 2017). Therefore, FTIR spectroscopy
has emerged as a potential alternative for highly rapid metabolic
fingerprinting technique, which can be applied in conjunction
with an attenuated total reflection (ATR) correction procedure
(Mamera et al., 2020). However, FTIR provides complex spectra,
which consists of many related variables (wavenumber) per
sample, making its visual analysis very difficult. Hence, the
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chemometric and data mining approaches are usually applied
to simplify or dimensionally reduce the dataset to fewer
independent parameters, with a minimal loss of total variance,
thereby making human interpretation easier (Lu et al., 2011).
Achieving reproducible results, spectra dimensionality reduction
and high fingerprinting throughput acquisition requires a
rigorous use of chemometric models capable of associating the
numerous spectral intensities from multiple calibration samples
to identify chemical fingerprints within samples by removing
potential outliers and determining the principal components
capturing the high amount of total variance within the dataset
(Mamera et al., 2020). The most commonly used multivariate
calibrations is partial least squares (PLS), which is an appropriate
method for predistortion when highly collinearity is present
within the dataset.

One generally agreed, the chemometrics of multivariate
adjustments may be used efficiently to identify the relationships
between the actual concentration of targeted compounds, as
determined by conventional methods, such as HPLC-DAD and
predicted amounts using the mid infrared spectroscopy (FTIR
spectroscopy in this case) (Tejamukti et al., 2020). Partial least
squares regression (PLSR) is a versatile discriminant method, that
has been well documented (Brereton and Lloyd, 2014; Mehmood
and Ahmed, 2016; Lee and Jemain, 2019). Mathematically,
the PLS model has a similar approach to PCA to project
high dimensional data into a series of linear subspaces of the
explanatory variables (Lee and Jemain, 2019). However, the
PLS model assumes a supervised learning process instead of an
unsupervised learning approach in the PCA model (Yang and
Yang, 2003). The application of FTIR spectroscopy and HPLC
combined with multivariate calibration for analysis was reported
over several biological raw materials, showing a very significant
prediction accuracy, such as honey (Anjos et al., 2015; Tahir et al.,
2017), virgin olive oil (Hirri et al., 2016), Mangosteen (Tejamukti
et al., 2020), grape, carob and mulberry (Yaman and Velioglu,
2019), coffee beans (Liang et al., 2016), salvia seeds (Tulukcu et al.,
2019), and kakadu plum powders (Cozzolino et al., 2021).

Being the third worldwide fig producer, Morocco recognizes
this fruit as a principal component of the local people diet.
Despite hosting a wide range diversity of this species, local
figs remain poorly screened for their biochemical fingerprints
linked to its nutritional quality, mainly because of the classic
methods used so far are often costly. In this context, the
application of rapid, efficient, and the sampling cost approach,
with approved prediction accuracy, is of utmost required. In
this study, we aimed at screening twenty-five fig cultivars using
HPLC-DAD and attenuated total reflectance Fourier transform
infrared (ATR–FTIR) coupled with PLS. This study was designed
to assess the fig peels and pulps of sampled cultivars separately to
evaluate the throughput resolution of PCs prediction through the
abovementioned design over the two fruits parts. It also attempts
to determine which part of the fruit provides the most relevant
discrimination among cultivars. This is the first attempt to predict
the amounts of phenolic acids and flavonoids through modeling
a colossal FTIR-ATR spectral dataset of fig peels and pulps
in Morocco. Building those models for eventual confirmation
through time, will immensely contribute to manage the wide

range of fig diversity hosted in Moroccan agroecosystems, as a
first screening stage with time saving and satisfactory precision
level. This study will serve as a useful reference for researchers,
food and nutraceutical industries, helping to efficiently and
rapidly assess these key fingerprints.

MATERIALS AND METHODS

Plant Material and Experimental Design
Figs of an ex situ collection were randomly harvested at
their complete ripening stage. The collection is composed of
16 local and 9 exotic varieties which have been planted in
2005 in the experimental station of the National Institute
for Agricultural Research of Meknes (INRA) in the Northern
Morocco. The collection is conducted in a complete randomized
block on ferritic soil. These cultivars were chosen based on our
previous studies on 135 cultivars under the same conditions and
experimental design, which were screened for their chemotypic
(Hssaini et al., 2019) and morphotypic (Hssaini et al., 2020a)
diversity besides the combination of both (Hssaini et al., 2020b).
The findings of the aforementioned studies revealed highly
significant variability, where the cultivars herein investigated
captured a high level of total variance and underwent further
analysis. Table 1 shows the fig cultivar herein investigated, their
geographical origin, ripening period, and growing conditions
along with their respective codes. Figs were considered fully
ripened when they were easily separated from the twig and when
the receptacle turned to reddish-purple coloration.

Samples Preparation
Immediately after harvesting, the fruits were manually peeled
using a sharp stainless knife and both peels and pulp inclosing
seeds were sliced, frozen under −80◦C for 48 h and then
lyophilized at a pressure of 0.250 mbar and temperature
for −55◦C for 48 h (Alpha 1-2 LDplus lyophilizer, Christ,
Osterode, Germany). Hereto, triplicate lots of fig fruits from
each genotype were grounded to a powder using an IKA
A11 Basic Grinder (St. Louis, MO) at room temperature. The
samples were then packaged in polyethylene terephthalate (PET)
bags (size: 17 cm × 12 cm L/W; permeability: 50–100 and
245.83–408.64 cm3 µm/m2 h atm for O2 and CO2, respectively;
permeability to water vapor: 16.25–21.25 g µm/m2 h) and
vacuum sealed and then, kept refrigerated at 4◦C until FTIR-ATR
and HPLC-DAD fingerprinting.

Fourier Transform Infrare Spectroscopy
Fourier transform infrared spectra of fig peels and pulps powders
were collected between 4,000 and 450 cm−1 at a resolution
of 4 cm−1 on Perkin–Elmer Fourier transform infrared
spectrometer (Perkin Elmer, Waltham, MA, United States).
At room temperature, each sample was scanned three times
in distinct randomly mass (50 mg) of the sample. For each
FTIR spectrum, three scans were averaged and IR spectrum
corresponded to the accumulation of 128 scans. The germanium
crystal was in contact with the sample after applying a pressure
setting at a maximum of 1,700 kg/cm2 to ensure uniform
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TABLE 1 | Cultivars geographical origins, harvest time, and monthly meteorological data from August to early September 2018 in Northern Morocco, Meknes
(Ain-Taoujdate experimental station -INRA).

Cultivars Code Geographical
origin

August September

[1–5] [6–10] [11–15] [16–20] [21–25] [26–30] [31–4] [5–9]

Local El Quoti Lbied G13 Morocco

Nabout G18

Fassi G14

Noukali G19

Ghoudan G15

Chetoui G11

Bioudie G7

Chaari G10

Ournaksi G20

INRA 1305 G3

INRA 2105 G4

INRA 1302 G2

INRA 2201 G5

INRA 2304 G6

INRA 1301 G1

Introduced Snowden G23 United States

White Adriatic G25 Italy

Kadota G17 Italy

Troiana G24 Italy

Cuello Dama Blanca G12 Spain

Breval Blanca G9 Spain

Palmeras G21 Spain

Herida G16 Spain

Breba Blanca G8 Spain

Total rainfall (mm) 0 0 0 0 0 26.4 0 0

Average temperature (◦c) 25.84 28.5 27.56 29.24 29.44 23.64 25.6 25.42

Average solar radiation (W/m2) 169.29 208.74 243.83 238.28 185.35 123.5 270.21 271.38

Soil type Sandy clay loam with an average organic matter of 1% [0–30 cm soil layer]

Soil pH 7.2

Climatic data collected from meteorological station installed next to the orchard.

distribution of the sample across the crystal and to achieve a
high-resolution of the acquired IR spectra (Szakonyi and Zelkó,
2012). Prior to sample measurements, a background spectrum
was collected from an empty germanium crystal surface and
automatically subtracted from the spectra of the sample. The
crystal cell was cleaned between spectral collections using ethyl
alcohol and warm water and dried with absorbent paper. The
standard normal variate (SNV) and multiplicative scattering
correction (MSC) were first carried out to correct multiplicative
interferences (Tahir et al., 2017). Then, the raw FTIR spectra
were corrected by the extended ATR correction procedure
using Essential FTIR software (version 3.50.183) (angle of
incidence = 45 degrees; number of ATR reflection = 1; mean
refractive index of sample = 1.5; maximum interaction = 50;
1.8 mm crystal surface). The most important feature of ATR
is the evanescent field, which occurs during the reflection of
IR light at the interface of a material with a high refractive
index (ATR crystal) and a material with a low refractive index
(sample) (de Nardo et al., 2009). The full spectra of fig samples

indicate the presence of some regions corresponding to the
sample fingerprints of which integrated areas were measured
using Essential FTIR software.

Determination of Phenolic Compounds
Extraction Method
For each sample, 1 g of peel and pulp powder were separately
mixed with 10 ml of methanol:water (80:20, v/v). The mixture
was sonicated using an ultra-sonicator UP 400St Hielscher’s (400
W, 24 kHz) and then macerated for 60 min at 4◦C. Afterward,
it was centrifuged for 10 min, 8,000 g at 4◦C (Eppendorf
Centrifuge 5804, Eppendorf, Hamburg, Germany) and the
supernatant was collected and the sediment was mixed with
10 ml of acetone:water (70:30, v/v). The same steps (sonication,
maceration, and centrifugation) were repeated three times, and
the supernatants were mixed together and then evaporated using
a rotary evaporator (Büchi R-205, Switzerland) under a speed of
1,500 rpm and reduced pressure, at 40◦C. Then, 5 ml of methanol
was added to the residue, and the mixture was well shaken in a
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TABLE 2 | Descriptive analysis and multivariate ANOVA of all studied variables over fig peels and pulps.

Variables Mini Max Mean SD Dominance ANOVA p-value

Peel

Gallic acid 0 11.29 0.54 2.24 2 < 0.001

(+)-Catechin 0 24.06 5.89 5.95 24 < 0.001

(−)-Epicatechin 2.61 55.44 17.31 12.89 25 < 0.001

Chlorogenic acid 0 10.67 3.03 2.94 24 < 0.001

Quercetin-3-O-rutinoside 5.3 147.42 58.46 38.66 25 < 0.001

Quercetin-3-O-glucoside 2.52 35.58 11.48 7.76 25 < 0.001

Luteolin-7-O-glucoside 0 18.24 6.75 4.87 22 < 0.001

Quercetin 0 59.61 4.49 12.48 15 < 0.001

Apigenin 0 4.91 0.41 1.04 5 < 0.001

Cyanidin-3,5-diglucoside 0 495.76 48.58 109.91 16 < 0.001

Cyanidin-3-O-rutinoside 0 478.9 46.78 105.29 15 < 0.001

Pelargonidin-3-O-rutinoside 0 12.67 0.67 2.58 2 < 0.001

Pulp

Gallic acid nd nd nd Nd nd –

(+)-Catechin 0 6.65 1.47 1.4 19 < 0.001

(−)-Epicatechin 1.25 19.06 5.23 4.03 25 < 0.001

Chlorogenic acid 0 4.84 0.77 1.09 19 < 0.001

Quercetin-3-O-rutinoside 0 26.85 1.89 5.16 17 < 0.001

Quercetin-3-O-glucoside 0 4.05 0.44 0.95 6 < 0.001

Luteolin-7-O-glucoside 0 4.5 0.21 0.89 2 < 0.001

Quercetin nd nd nd Nd nd –

Apigenin nd nd nd Nd nd –

Cyanidin-3,5-diglucoside 0 28.45 5.82 6.68 24 < 0.001

Cyanidin-3-O-rutinoside 0.94 34.43 9.01 8.67 25 < 0.001

Pelargonidin-3-O-rutinoside nd nd nd Nd nd –

Effect Wilks Lambda’s value F Hypothesis df Error df Significance

Variety 0 477.23 560 1376.367 0

Fruit part 0 496075.72 20 79 0

Variety * Fruit part 0 464.37 440 1242.807 0

nd, not detected; df, degree of liberty; F, refers to Fisher statistic; Sig., signification; Cyan, cyanidin; cy-3-r, Cyanidin-3-rutinoside; dominance, denotes the number of
samples, where the phenolic compound was identified.

Vortex for 2 min. The samples were filtered through a Sep-Pak (c-
18) to remove the sugar content and then were stored at −20◦C
until further use.

Phenolic Compounds Assessment
Polyphenolic profiles of both peel and pulp fruits were
determined by HPLC as described by Genskowsky et al. (2016).
Briefly, a volume of 20 µl of each sample was injected into a
Hewlett-Packard HPLC series 1200 instrument equipped with
C18 column (Mediterranea sea 18, 25 cm × 0.4 cm, 5 cm
particle size) from Teknokroma (Barcelona, Spain). Polyphenolic
acids and flavonoids were assessed in standard and sample
solutions, using a gradient elution at 1 ml/min. The mobile
phases consisted of formic acid in water (1:99, v/v) as solvent A
and acetonitrile as solvent B. The chromatograms were recorded
at 280, 320, 360, and 520 nm. A quantitative analysis of PCs
was carried out by reference to authentic standards: gallic acid,
(+)-catechin, (−)-epicatechin, chlorogenic acid, quercetin-3-
O-rutinoside, quercetin-3-O-glucoside, luteolin-7-O-glucoside,
quercetin, apigenin, cyanidin-3,5-diglucoside, cyanidin-3-O-
rutinoside, and pelargonidin-3-O-rutinoside (Extrasynthese,

Genay, France). Their identification was carried out by
comparing the UV absorption spectra and retention times of each
of them with those of pure standards injected under the same
conditions. Each sample was assessed in triplicate and the results
were expressed as µg/g of the dry weight (dw).

The linearity of the method above described was evaluated
by analyzing the herein used standard solutions at different
concentrations. An average correlation coefficient of 0.987
was obtained through calibration curves for all the standards.
Afterward, the recovery test was performed by spiking samples at
different concentrations with known amounts of each standard.
Spiked and unspiked extracts were then analyzed in triplicate.
With regards to the complexity of the samples, satisfactory
recovery levels were obtained (86–98%) alongside low standard
error values within a narrow range of variation (0.07–1.23%).

Data Processing
Prior to statistical analysis, data were tested for normality and
homogeneity. Afterward, one-way ANOVA was performed using
SPSS software V 22 to test significant differences among the
samples (p < 0.05) in both peels and pulps. The principal
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component model was performed to detect any spectral outliers
in the FTIR-ATR data prior to build a prediction model using
PLSR. Interference and overlapping in the obtained spectra may
be overcome by using a powerful multicomponent method,
such as PLSR (Hirri et al., 2016). Therefore, PLSR was used
for building predictive models between the FTIR-ATR spectra
and HPLC-DAD reference data for both fig peel and the pulp
using OriginPro software v 9 (OriginLab Corporation Inc.). The
optimum numbers of factor to be extracted were decided based
on the model with minimum root mean predicted residual sum of
squares (PRESS) by jack-knifing within a cross-model validation
framework to inspect the predictive capability of all calibration

models. Jack-knifing is a cross validation procedure that relies
on uncertainty tests of the regression coefficients to test the
significance of the model parameters (Karaman et al., 2013). The
samples were randomly divided into two subsets. One of them
was used to develop a model (calibration set = 20 samples) and
the second one was used to validate the robustness of the built
model (prediction set = 5 samples). According to Goodhue et al.
(2006) and Sarstedt et al. (2017), PLSR can be applied efficiently
on a small sample size particularly when models are complex.
Besides, many previous studies have performed a PLS regression
model on smaller sample size with satisfactory results (Tenenhaus
et al., 2005; Zheng et al., 2017). The accuracy of PLSR models

A B

FIGURE 1 | Spectra of different fig cultivars. FTIR spectra with absorbance value 450–4,000 cm−1 (before data pre-processing); (A), Fig pulp spectra; (B), fig peels.

FIGURE 2 | Integrated ATR spectra of the major wavenumbers in pulp samples. Each sample IR represent the mean of 3 spectra, which correspond each to the
accumulation of 128 scans using a nominal resolution of 4 cm−1.
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was assessed in the terms of root mean square error (RMSE),
the correlation coefficient (R2) between actual and predicted
values along with the residual predictive deviation (RPD), which
is calculated as the ratio of the SD of the dependent data to
RMSE (Cozzolino et al., 2021). PLSR models were performed
using the FTIR-ATR data within the vibration region of 1,175–
940 cm−1.

RESULTS AND DISCUSSION

Phenolic Profile
Table 2 shows the descriptive statistics (average, range, and
SD) along with the ANOVA for the concentration of phenolic
fractions in the fig peel and pulp of investigated cultivars.
High performance chromatography analysis identified several
PCs belonging to phenolic acids (hydroxycinnamic acid and
hydroxybenzoic acid derivatives) and flavonoids (flavonols,
flavones, and anthocyanidins). Eight PCs were identified over the
pulp samples, mainly (+)-catechin, (−)-epicatechin, chlorogenic
acid, quercetin-3-O-rutinoside, quercetin-3-O-glucoside,
luteolin-7-O-glucoside, cyanidin-3,5-diglucoside, and cyanidin-
3-O-rutinoside. On the other hand, twelve PCs were isolated:
gallic acid, (+)-catechin, (−)-epicatechin, chlorogenic acid,
quercetin-3-O-rutinoside, quercetin-3-O-glucoside, luteolin-
7-O-glucoside, quercetin, apigenin, cyanidin-3,5-diglucoside,
cyanidin-3-O-rutinoside, and pelargonidine-3-O-rutinoside.
These compounds displayed highly significant differences across
cultivars following both fruits parts (p< 0.001) (Table 2). Among

all sampled fruits, the PCs concentrations were higher in peels
compared with pulps extracts. Anthocyanins, particularly
cyanidin-3,5-diglucoside and cyanidin-3-O-rutinoside,
were predominant in peel extracts, of which the average
concentrations were 75.902 ± 18.76 and 77.972 ± 18.95 µg/g
dw, respectively. Regarding flavonols, only (−)-epicatechin,
quercetin-3-O-rutinoside, and quercetin-3-O-glucoside were
identified. Gallic acid and pelargonidin-3-O-rutinoside were
only detected in two cultivars “Chetoui” and “Nabout,” with the
respective levels of 8.363 ± 1.88 and 6.731 ± 2.019 µg/g dw.
These results agree with those reported in previous research
(Vallejo et al., 2012; Hirri et al., 2016; Cozzolino et al., 2021).
Only one sample (‘1301’) has displayed the highest levels in
almost all identified compounds, especially (−)-epicatechin,
quercetin-3-O-rutinoside, quercetin-3-O-glucoside, cyanidine-
3,5-diglucoside, and cyanidine-3-O-rutinoside, where the
average concentrations were 54.66, 141.08, 35.48, 494.08,
and 478.66 µg/g dw, respectively. Similarly, the Spanish variety
“Cuello Dama Blanca” combined the highest levels of chlorogenic
acid, luteolin-7-O-glucoside, quercetin, and apigenin with 8.76,
17.9, 59.52, and 4.84 µg/g dw, respectively.

In pulps extracts, (−)-epicatechin and cyanidin-3-O-
rutinoside were the major compounds, which were identified
in all samples at high levels:1.25–19.06 and 0.94–34.43 µg/g
dw, respectively. Cyanidin-3,5-diglucoside were the third
predominant compound that ranged from 0.81 to 28.45 µg/g dw,
with a mean of 6.06 ± 6.71 µg/g dw, followed by (+)-catechin
and chlorogenic acid (1.93 ± 1.29 and 1.01 ± 1.16 µg/g dw,
respectively). However, luteolin-7-O-glucoside was detected in

FIGURE 3 | Integrated ATR spectra of the major wavenumbers in peels samples. Each sample IR represent the mean of 3 spectra, which correspond each to the
accumulation of 128 scans using a nominal resolution of 4 cm−1.
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only two cultivars, “Chetoui” and “Palmeras,” with the following
average concentrations: 0.75 ± 0.35 and 4.47 ± 0.04 µg/g dw,
respectively. These results are, generally in agreement with
those of Del Caro and Piga (del Caro and Piga, 2008), who
used the same method on the Italian varieties “Mattalona” and
“San Pietro.” These levels, mainly of (+)-Catechin, cyanidin-
3-O-rutinoside, and luteolin-7-O-glucoside, are much higher
compared with bananas, pears, and apples, however, similar to
black grapes (Rothwell et al., 2013). Contrary to our findings,
Palmeira et al. (2019) reported that rutin (quercetin-3-O-
rutinoside) was the predominant PC in fig peel. In our samples,
cyanidine-3,5-diglucoside and cyanidine-3-O-rutinoside were
apparently predominant.

Fourier Transform Infrare-Attenuated
Total Reflectance Spectral Features
Fourier transform infrared spectra of fig peel and pulp
samples are shown in Figure 1. The bands observed between
4,000 and 450 cm−1 displayed six fingerprints around the
following absorption regions: 3,700–3,000, 3,000–2,800, 1,775–
1,725, 1,700–1,550, 1,500–1,300, and 1,175–940 cm−1 (Figure 1).
The first region is most likely assigned to fibers, which are highly
present in fresh figs. The broadband in this region is probably due
to the O-H stretching vibrations arising from hydrogen bonding
in cellulose. The absorbance at the region 3,000–2,800 cm−1

is most likely assigned to C-H, O-H, and NH3, which may be
referred to carbohydrates, carboxylic acids, free amino acids, and
phenolics (Schwanninger et al., 2004; Baranowska-Wójcik and
Szwajgier, 2019; Palmeira et al., 2019). It is noteworthy that this
band was divided into two peaks at 2,925 and 2,855 cm−1 (Bouafif
et al., 2008). The first one is probably related to C-H stretching of
a lipid’s methylene group. While the peak raised approximately at
2,855 cm−1 is possibly due to C-H stretching (symmetric) of CH2
from lipid acyl chains.

The peak at 1,775–1,725 cm−1 was associated to ester carbonyl
band stretching (C=O). This vibration region is within the

range of 1,800–1,700 cm−1, which is most probably correlated
to the elongation of C=O of the ester type carboxylic (Oh et al.,
2005; Bouafif et al., 2008). In case of the pulp samples, this
vibration is most likely linked to the lipids contained in the
fruit seeds (Vongsvivut et al., 2013). However, in the previous
study by Terpugov et al. (2016) the peak was attributed to
proteins. The vibration in the region of 1,700–1,550 cm−1

is typically originated to stretching band of carbonyl groups
C=O and C=C (Tahir et al., 2017). The vibration bands in
the region of 1,500–1,300 cm−1 corresponds to phosphodiester
groups. This band is probably a result of several weak peaks
that could not be differentiated among investigated samples.
According to previous studies, this absorption band usually
includes, among others, a vibration around 1,392 cm−1 that is
most likely assigned to carbohydrates, fatty acids, or amino acids
side chain (Vongsvivut et al., 2013), the 1,315 cm−1 vibration
is associated with CH2 rocking (Schwanninger et al., 2004), and
a vibration approximately at 1,155 cm−1, which is a result of
C–O stretching (Vongsvivut et al., 2013). Finally, the vibrations
in the regions 940–1,175 cm−1 marks a very strong and sharp
peak, which is probably assigned to C–OH group as well as
the stretches C–C and C–O in the carbohydrate structure and
C–O in the phenol. In this region, quercetin-3-O-rutinoside
was reported to record the highest vibration intensity around
the wavenumber of 1,149 cm−1 (Paczkowska et al., 2015). It is
noteworthy that this compound was found to be the major PC in
all samples particularly in peel extracts (Table 2). The vibration
at 1,149 cm−1 was assigned to C-C-H bending in benzene and
dihydroxyphenyl aromatic rings (Paczkowska et al., 2015).

Since the entire spectra of screened samples present a high
overlapping level, the abovementioned major vibration range
was plotted separately in Figures 2, 3 for both pulp and
peel extracts, respectively. For pulp extracts, the bands around
1,775–1,725, and 3,000–2,855 cm−1 were remarkably clear for
the variety “Nabout,” which recorded the highest absorbance
intensity. In the bands corresponding to proteins (1,700–
1,550 cm−1), organic acids (1,500–1,300 cm−1), and phenols

TABLE 3 | Calibration and cross-validation results of multivariate models developed by using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra in
the regions of 1,175–940 cm−1 in both fig peel and pulp.

Phenolic
compounds
(µg g−1)

Peel extracts Pulp extracts

LV R2-Cal R2-Val RMSE-Cal RMSE-Val RPD-Cal RPD-Val LV R2-Cal R2-Val RMSE-Cal RMSE-Val RPD-Cal RPD-Val

((+)-Catechin) 5 0.97 0,76 0.73 2.49 2.38 1.86 8 0.85 0.81 0.9 1.9 2,52 2.23
(−)-Epicatechin 5 0.95 0.84 0.9 1.14 2.14 2.24 7 0.94 0.7 0.9 1.05 2.72 1.75
Chlorogenic acid 6 0.92 0.89 0.91 0.12 3.47 2.56 6 0.91 0.84 0.5 2.05 2.47 2.03
Quercetin-3-O-
rutinoside

7 0.95 0.83 1.05 1.04 2,95 2.44 6 0.98 0,87 0.46 1.21 3.21 2.36

Quercetin-3-O-
glucoside

7 0.87 0.74 0.97 1.21 3.72 2.3 – – – – – – –

Quercetin 6 0.99 0.83 0.82 1.09 2.44 2.62 – – – – – – –
Cyanidin-3,5-
diglucoside

6 0.99 0.75 0.07 1.83 4.47 2.15 8 0.95 0.81 0.5 1.08 4.13 2.49

Cyanidin-3-O-
rutinoside

8 0.96 0.86 0.04 1.54 3.84 2.43 7 0.96 0.88 0.6 0.23 4.21 2.67

R2-Cal, coefficient of determination of calibration; RMSE-Cal, root mean square error of cross-validation.
R2-Val, coefficient of determination of validation; RMSE-Val, root mean square error of cross-validation.
LV, latent variable (orthogonal factors that provide maximum correlation with dependent variable).
RPD-Cal, residual predictive deviation of calibration; RPD-Val: residual predictive deviation of cross-validation.
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FIGURE 4 | Variables importance in projection (VIP) plot showing the
contribution of each wavenumber in the PLSR model total variance for both
peel (blue) and pulp (red).

(1,175–940 cm−1), the higher absorptions and integrated areas
were recorded by “2201,” “Snowden,” and “1305,” respectively.
These cultivars have combined, as previously mentioned, the
promising levels of PCs, mainly (+)-catechin, quercetin-3-O-
rutinoside, and quercetin-3-O-glucoside (Table 2). This makes
sense, since these compounds record high vibration intensity at
the wavenumber around 1,034 cm−1, which is mainly attributed
to C–O stretching between mannopyranosyl and glucopyranosyl
aromatic rings (Robb et al., 2002; Paczkowska et al., 2015).

Regarding peels extracts (Figure 2), the cultivars ‘Palmeras’
and ‘Breval Blanca’ revealed the highest absorption in the
region of 3,000–2,800 cm−1. ‘Breval Blanca’ and ‘Ghoudane’
showed the highest absorption at the ester vibration region
(1,775–1,725 cm−1), whereas, the cultivars ‘1301’ and ‘EL
Quoti Lbied’ had the highest vibration in the proteins’ region
(1,700–1550 cm−1). The vibration at the region of 1,500–
1,300 cm−1 was superior in ‘Snowden’ compared with the other

cultivars. In the phenols’ region (1,175–940 cm−1) ‘Chaari’ had
the highest vibration intensity. Obviously, some dissimilarities
between the both fingerprinting techniques are due to the fact
that phenolics compounds revealed by HPLC-DAD could not
totally explain the pattern yielded by FTIR fingerprinting between
peel and pulp (Harvey et al., 2009).

Results of Partial Least Squares
Regression Models
Partial least square is a particular method because it can construct
predictive models with highly collinear, noisy, and numerous
factors, and also at once model several targeted variables (Wold
et al., 2001). The robust model must combine a high R2, low
RMSE, and a minimum number of latent variables (LVs), if at all
possible less than ten (Liang et al., 2016; Table 3).

Partial least square regression models were built using the
FTIR-ATR spectra set both in jack-knifing cross-validation and
prediction set. These models were performed using IR data in
the vibration region of 1,175–940 cm−1, corresponding to the C–
OH group and the stretches C–O in the phenol structure. Within
this region, the vibration band 1,540–1,175 cm−1 corresponds
to flavanol and phenol (deformations of O–H, C–O, C–H, and
C=C) (Masek et al., 2014; Nickless et al., 2014). It is noteworthy
that gallic acid and pelargonidin-3-O-rutinoside were not
involved in the PLSR for peel samples since these compounds
were detected only in few cultivars. Similarly, quercetin-3-o-
rutinoside and luteolin-7-o-glucoside were scarcely detected and
then excluded in PLSR analysis.

The number of LVs revealed by the models oscillated between
5 and 8 for the peel samples, whereas it was in the range of
6–8 in the pulp samples. Most of the number of LVs obtained
by models built using pulp extracts were smaller than nine,
henceforth demonstrating that the constructed models were not
overfitting the data (the data used in observations fitting based
on the learning set might not be practical to fit new observations)
(Notions, 2010). In Figure 4, we see the contribution [variables
importance in projection (VIP)] of each wavenumber within the
wavenumber range of 1,175 and 940 cm−1 where the samples
were scanned using the FTIR-ATR. The high value of VIP score
indicates a great contribution to the model building. For peel
samples, in order of importance, the following wavenumbers 940,
1,030, 1,081, 936, and 1,067 cm−1 had the highest VIP scores
(> 1.2) and therefore, the main contribution to the built model
total variance. Thus, the bands at 940 and 936 cm−1 are most
likely assigned to C–C and C–O vibration (Movasaghi et al.,
2018), while the peak at 1,030 cm−1 is attributed to C–O vibration
(Paluszkiewicz and Kwiatek, 2001). At 1,081 cm−1, the peak is
probably assigned to the ring stretching mixed strongly with
CH in-plane bending (Chiang et al., 1999). The absorbance at
1,067 cm−1 is assigned to (C=O)–O– stretching, which is most
likely an ester spectral peak (Armenta et al., 2005; Dong et al.,
2013). On the other hand, the main loading for pulp samples
were observed around the following wavenumbers 536, 541,
509, 524, 558, and 561 cm−1, which are most likely originated
from strong deformation of C-C-C and C-C-O. These bands
displayed the greatest VIP scores (>2.5) indicating a highest
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FIGURE 5 | (Continued)
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FIGURE 5 | Correlation plots for the prediction of phenolic compounds in the peel samples using PLSR based on the FT-IR spectra.

contribution to the model total variance. It should be noted that
the VIP scores were much greater for the model built based
on the pulp extracts compared with the peel samples prediction
model (Figure 4).

Partial least square regression models statistics showed various
levels of accuracy depending on targeted variables (PCs) and
their partitioning in both fruit parts (peel and pulp). For
peel samples, a good calibration model was achieved. Thus,
the statistics displayed a coefficient of determination (R2-Cal)
ranging between 0.87 and 0.99, along with root mean square error
(RMSE-Cal) values in the range of 0.73 and 1.05. Similarly, the R2

for cross-validation was important for all PCs and was oscillating
between 0.75 and 0.89 coupled with relatively low RMSE that was
in the range of 0.12 and 2.49.

The highest levels of prediction were particularly observed for
chlorogenic acid (R2-Val = 0.86, RMSE-Val = 0.12), followed

by (−)-epicatechin (R2-Val = 0.84, RMSE-Val = 1.14) (Table 3).
Scatter plots for the reference (y-axis) vs. predicted values (x-axis)
for phenolic acids and flavonoids over the peel powders using
FTIR-ATR spectroscopy shown in Figures 5, 6, displayed the
accuracy of predicting these compounds. The models constructed
for pulp samples displayed good calibration and validation
statistics (Table 3 and Figure 6). Thus, the R2 and RMSE were
generally similar to those found in models constructed based on
the peels’ extracts. In calibration models, the R2 values ranged
between 0.85 and 0.98 along with RMSE values in the range of
0.46 and 0.9. For the validation models, R2 and RMSE were in
the range of 0.7–0.88 and 0.23–0.05, respectively. The highest
performance of prediction was mainly observed for quercetin-3-
O-rutinoside and cyanidin-3-O-rutinoside of which the R2-Val
were higher than 0.87 with the respective RMSE of 0.23 and
1.21 (Table 3). RPD has different interpretations in the literature.
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FIGURE 6 | Correlation plots for the prediction of phenolic compounds in the pulp samples using PLSR based on the FT-IR spectra.

Frontiers in Plant Science | www.frontiersin.org 12 March 2022 | Volume 13 | Article 782159

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-782159 March 10, 2022 Time: 15:58 # 13

Hssaini et al. Phenols Prediction Using FTIR-ATR With PLSR

FIGURE 7 | (A) PLS-DA plot showing the distribution of scanned peel samples. The variance explained by the factor1 and 2 are 77.40 and 15.44%, respectively. G1
to G25 refer to the cultivars codes as given in the Table 1. (B) PLS-DA plot showing the distribution of scanned pulp samples. The variance explained by the factor1
and 2 are 80 and 10.78%, respectively. G1 to G25 refer to the cultivars codes as given in the Table 1.

Hence, according to Morgan et al. (1994), an RPD value in
the range of 2.5 and 3 seems adequate for screening and an
interval of 3–5 is assumed better for quality assurance. On the
other hand, Chang et al. (2001) assumed that the RPD greater

than 2 is sufficient for a high throughput resolution, while the
RPD < 1.4 may not lead to a reliably prediction. The results in
Table 3 showed the RPD in the range of 2.14–3.84 and 1.86–
2.62 for peel samples calibration and validation, respectively,
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TABLE 4 | Loadings of phenolic compounds in the partial least squares
discriminant analysis (PLS-DA) factors for both peel and pulp extracts.

Peel Pulp

Factor 1 Factor 2 Factor 1 Factor 2

Gallic acid 0.48 0.78 – –

(+)-Catechin 15.4 10.26 0.11 −0.03

(−)-Epicatechin 20.28 −11.33 −0.89 3.98

Chlorogenic acid 1.11 −3.36 −0.59 0.85

Quercetin-3-O-rutinoside −30.07 −34.96 −1.27 1.98

Quercetin-3-O-glucoside 6.08 −6.53 −0.51 −0.80

Luteolin-7-O-glucoside 3.20 0.39 −0.24 −0.48

Quercetin 11.21 6.02 – –

Apigenin 0.59 0.99 – –

Cyanidin-3,5-diglucoside 153.04 −207.32 −1.30 8.72

Cyanidin-3-O-rutinoside 137.46 −188.69 −2.31 11.34

Pelargonidin-3-O-rutinoside 2.369 −3.81 – –

whereas, for pulp samples it was in the following ranges 3.52–
4.21 and 1.75–2.67, respectively, for calibration and validation.
Overall, the abovementioned value seemed acceptable and
suggest satisfactory throughput resolution of phenolic acids and
flavonoids over both fruit parts. It is noteworthy that quercetin-
3-O-glucoside and cyanidin-3,5-diglucoside alongwith cyanidin-
3-O-rutinoside, displayed the highest RPD values for calibration
step, which were generally greater than 3. For calibration, the
same compounds displayed acceptable level for validation step
with value greater than 2 for both fruit parts, except quercetin-
3-O-glucoside which was not detected over pulp extracts.

Over all, both fruit parts revealed a reliable throughput
resolution in predicting the concentrations of phenolic acids and
flavonoids in different fig samples. Although the prediction of
some compounds seemed to be slightly lower but remains good,
since they were detected at a very minor levels and were not
identified in all herein involved samples.

In raw material with high moisture content, such as figs
(Farahnaky et al., 2009), the use of mid infrared spectroscopy
is often reliable since it presents a low overlapping probability
with the important bands associated with the measured property
(Cozzolino et al., 2021). Based on the findings, the FTIR-
ATR spectroscopy could be recommended as a simple and
direct technique to assess the phenolic composition of figs,
which does not require a tremendous sample pre-treatment or
processing allowing for the development of a high throughput
analytical method.

Partial Least Squares Discriminant
Analysis
Partial least squares discriminant analysis is a linear classification
approach that combines the properties of PLSR with the high
discrimination feature of a classification method. The principal
advantage of Partial Least Squares Discriminant Analysis (PLS-
DA) is LVs, which model the main sources of variance within
the data, and represent linear combinations of the original
variables. Therefore, it allows the graphical presentation and

understanding of the special distribution of the different data
patterns and relations by LV scores and loadings (Ballabio
and Consonni, 2013). Figures 7A,B shows that the data are
not strongly clustered, particularly for the pulp samples that
showed a strong overlapping around the plot origin. Based on
Table 4, cyanidin-3,5-diglucoside and cyanidin-3-O-rutinoside
had the highest loadings on the first and second factor for
both fruit parts. This is due to the fact that these compounds
are the predominant anthocyanins in fig peel and pulp, as
reported by Russo et al. (2014). The distribution of peel samples,
revealed one main cluster, with two cultivars, classified each as a
single item (Figure 7A). Similarly, the pulp samples distribution
displayed a single main cluster, with high overlapping intensity.
Two cultivars were highly distinguished from the agglomerated
samples (Figure 7B). The low overlapping level observed in the
PLS-DA of peel samples suggest the use of this part of the fruit in
future studies as they may offer better discrimination on fig tree
cultivars. This makes sense, since the fig peels were reported to
held the high levels of PCs compared with the pulp (del Caro and
Piga, 2008; Oliveira et al., 2009; Qin et al., 2015).

CONCLUSION

This study is the first work attempting to examine the ability
of FTIR-ATR spectroscopy combined with chemometrics to
predict phenolic acids and flavonoids in fresh figs, with regard
to their partitioning between the fruit peel and pulp. The
results demonstrated the great potential of such simple and
rapid technique to predict the PCs in the powder samples,
with a satisfactory throughput resolution. All PCs in both fruit
parts displayed high levels of prediction in both calibration
and validation models. Although the prediction of some few
compounds seemed to be slightly lower but still remains good,
since they were detected at a minor level and were not identified
in all herein involved samples. Significant differences were
observed between the models built for the two fruit parts. Similar
divergence was observed based on the distribution revealed by
PLS-DA, where the highest scores were captured by cyanidin-
3,5-diglucoside and cyanidin-3-O-rutinoside. Therefore, the
FTIR-ATR spectroscopic technique represents, particularly when
combined with chemometric approach, a convenient alternative
in terms of time and chemical inputs saving for routine
analyses of large raw material sample length. This approach can
be considered as an affordable methodology, but one of the
limitations of this work is that a larger sample length is required
and further validation must be performed using samples from
other varieties and origins.
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