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Agricultural crop breeding programs, particularly at the national level, typically consist of a 
core panel of elite breeding cultivars alongside a number of local landrace varieties (or other 
endemic cultivars) that provide additional sources of phenotypic and genomic variation or 
contribute as experimental materials (e.g., in GWAS studies). Three issues commonly arise. 
First, focusing primarily on core development accessions may mean that the potential 
contributions of landraces or other secondary accessions may be overlooked. Second, elite 
cultivars may accumulate deleterious alleles away from nontarget loci due to the strong 
effects of artificial selection. Finally, a tendency to focus solely on SNP-based methods may 
cause incomplete or erroneous identification of functional variants. In practice, integration 
of local breeding programs with findings from global database projects may be challenging. 
First, local GWAS experiments may only indicate useful functional variants according to the 
diversity of the experimental panel, while other potentially useful loci—identifiable at a global 
level—may remain undiscovered. Second, large-scale experiments such as GWAS may 
prove prohibitively costly or logistically challenging for some agencies. Here, we present a 
fully automated bioinformatics pipeline (riceExplorer) that can easily integrate local breeding 
program sequence data with international database resources, without relying on any 
phenotypic experimental procedure. It identifies associated functional haplotypes that may 
prove more robust in determining the genotypic determinants of desirable crop phenotypes. 
In brief, riceExplorer evaluates a global crop database (IRRI 3000 Rice Genomes) to identify 
haplotypes that are associated with extreme phenotypic variation at the global level and 
recorded in the database. It then examines which potentially useful variants are present in 
the local crop panel, before distinguishing between those that are already incorporated into 
the elite breeding accessions and those only found among secondary varieties (e.g., 
landraces). Results highlight the effectiveness of our pipeline, identifying potentially useful 
functional haplotypes across the genome that are absent from elite cultivars and found 
among landraces and other secondary varieties in our breeding program. riceExplorer can 
automatically conduct a full genome analysis and produces annotated graphical output of 
chromosomal maps, potential global diversity sources, and summary tables.

Keywords: crop breeding, deleterious variants, bioinformatics, genomics, elite cultivars, non-focal varieties

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.781153&domain=pdf&date_stamp=2022--29
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.781153
https://creativecommons.org/licenses/by/4.0/
mailto:ctdarwell@gmail.com
https://doi.org/10.3389/fpls.2022.781153
https://www.frontiersin.org/articles/10.3389/fpls.2022.781153/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.781153/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.781153/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.781153/full


Frontiers in Plant Science | www.frontiersin.org 2 April 2022 | Volume 13 | Article 781153

Darwell et al. RiceExplorer Pipeline

INTRODUCTION

Most modern agricultural crop breeding programs feature a 
core panel of elite plant accessions (hereafter termed elite 
cultivars; ECs) that serve as the focal target for improved 
phenotypes (Tokatlidis, 2015). Primarily, a breeding program’s 
goals are to produce higher yield varieties that are also resilient 
to a range of biotic and abiotic stressors commonly encountered 
across the geographical extent of the program (typically national 
boundaries). Alongside endemic ECs, a number of local landrace 
varieties, endemic cultivars, and other non-commercial varieties 
(hereafter termed non-focal varieties; NFVs) provide additional 
sources of regionally apposite phenotypic and genomic adaptive 
variation and contribute as experimental material that provide 
statistical power during investigative evaluation (e.g., in genome-
wide association studies; GWAS) (Tokatlidis and Vlachostergios, 
2016). A key issue is that detailed cataloging that facilitates 
comprehensive understanding of the genomic potential of NFVs 
may be  neglected as breeding programs develop with a focus 
on elite accessions (Azeez et  al., 2018). For example, the value 
of rare variants may be  overlooked, and their functional 
significance buried among results in large-scale experiments 
(Zuk et al., 2014). Furthermore, modern breeding methodologies 
generally exert strong positive selection meaning that ECs 
typically feature reduced levels of genomic variation and elevated 
levels of accumulated deleterious mutants compared to both 
NFVs and wild relatives (Moyers et  al., 2018).

These genomic “costs of domestication” may originate from 
a number of sources. Lu et  al. (2006) noted elevated levels 
of non-synonymous substitutions relative to wild rice lineages 
suggested to have hitchhiked along with the targets of artificial 
selection. Furthermore, domestication inevitably increases 
levels of inbreeding or equivalent processes via induced 
switching from outbreeding mating systems (Kovach et  al., 
2007), reductions in effective population size (Ne), increases 
in linkage disequilibrium (LD; see: Hartfield and Otto, 2011), 
or via artificial selection. In general, these processes increase 
levels of homozygosity and the likelihood of deleterious action 
at affected loci (e.g., Lindblad-Toh et  al., 2005). Inbreeding 
depression via concomitant increases in homozygosity and 
LD (Hufford et  al., 2012), alongside reduced Ne, renders 
selection less efficient at purging moderately deleterious 
mutations and novel beneficial mutations are more likely lost 
to genetic drift.

In general, deleterious effects may disproportionately accumulate 
across the genomes of ECs. Moreover, the large and ever-growing 
numbers of identified genes associated with various key traits 
(Wing et  al., 2018) suggests that influential markers lie scattered 
across the genome, including those that have yet to be functionally 
identified. Thus, although many affected loci may not mediate 
direct functional control over key agronomic traits or targets of 
selection, there may be  a general degradation of the genetic 
background. Moreover, some affected loci may have pleiotropic 
effects on specific targets of selection or other incidental, functional 
traits that are indirectly beneficial to domesticated crops (Darmency, 
2013; Paaby and Rockman, 2013). In order to monitor the progress 
of these dynamics and to understand where useful genomic 

variation may have been (a) eroded, and (b), where recuperative 
variation may reside among a breeding program’s resources, it 
would be  useful to have an automated cataloging system.

A further consideration is that breeding programs may 
be  somewhat insular by nature. Experimental investigation 
uses available materials which may overwhelmingly comprise 
of endemic varieties with a smaller proportion of material 
contributed by external sources (in the case of national 
programs, these may be  from collaborative relationships with 
neighboring countries or from international consortia). For 
example, in a GWAS, genomic variants exhibiting significant 
correlations with investigated phenotypes will be  identified 
in the context of the accession panel being investigated 
(Korinsak et  al., 2021). Other potentially useful variants will 
be  overlooked. Moreover, trying to overcome this issue by 
performing ever larger GWAS experiments may prove logistically 
challenging (in terms of sourcing experimental resources, 
time, or infrastructure) or financially inviable due to labor 
and equipment costs.

Furthermore, while GWAS methodologies have become a 
commonplace tool in identifying key functional variants they 
suffer from some inherent drawbacks. These include 
low-informativeness of SNP markers (Collard et  al., 2005), the 
influence of rare variants associated with extreme phenotypes 
(Wray et  al., 2013), and the confounding influence of linkage 
disequilibrium (Platt et  al., 2010; Korte and Farlow, 2013). 
Additionally, they do not account for epistatic interactions that 
may account for functional effectiveness (Clark, 2004; Bardel 
et  al., 2005). Thus, haplotype mining facilities offer potentially 
augmentative technologies in genomics-assisted breeding (Bhat 
et al., 2021). Haplotype identification has been shown to benefit 
from both increased informativeness (Hamblin and Jannink, 
2011), and also incorporates epistatic relationships within 
identified genomic regions. Thus, functional haplotype 
identification has been proposed as an important tool in 
genomics-assisted breeding that can improve genomic prediction 
capabilities (Liu et  al., 2019; Robertsen et  al., 2019; Yu et  al., 
2019; Bhat et  al., 2021).

In Thailand, rice is the primary staple food crop, and the 
country has a well-developed rice improvement research 
infrastructure spanning several large institutions. Thailand has 
fully embraced the omics age and also has ongoing genetic 
modification/editing programs in operation involving rice and 
other crops (Napasintuwong, 2019). In recent GWAS studies 
performed on Thai rice, study materials comprise landrace or 
other local NFVs alongside around 35 elite lines that are the 
primary focus of rice improvement strategies at the national 
and export market levels (Sattayachiti et  al., 2020; Korinsak 
et  al., 2021). Significant SNP markers have been identified 
that tally with those identified in previous studies based on 
different panels while further SNPs have been identified which 
may eventually lead to the identification of novel genes involved 
in biotic and abiotic stress responses.

However, it is unknown whether the genomic potential of 
the Thai rice resource (TRR) is maximally capable of achieving 
optimal agricultural performance required to continue to feed 
the national population, increase its value to local farmers, 
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and increase its commercial output by capitalizing on its status 
as the planet’s number one rice exporter (Warr, 2008). As the 
TRR includes hundreds of NFVs, it is difficult to know whether 
potential genomic treasure troves are being overlooked or 
whether it is necessary or otherwise desirable to seek additional 
non-native cultivars in rice development breeding programs.

With respect to this, we developed a bioinformatics pipeline 
that is able to evaluate haplotype diversity across the TRR 
in the context of a global rice resource. The International 
Rice Research Institute (IRRI) is the curator of the ongoing 
3,000 Rice Genomes project (3KRG) (Li et  al., 2014). This 
publicly accessible resource has successfully sequenced more 
than 3,000 rice accessions from all rice producing regions 
of the world. In addition, this project features numerous other 
data, including phenotypic measurements for numerous traits 
(often for several thousand of the cultivars) in the project. 
We focused on the critically important phenotype, grain length 
(GL), an obvious correlate of crop yield. Forty-one key genes 
have been identified associated with grain size (Li et  al., 
2018), while at least 189 genes influence yield (Wing et  al., 
2018), among which several have been found to harbor 
significantly advantageous haplotypes across the 3KRG (Abbai 
et  al., 2019). We  developed a pipeline that first searches a 
subset of representative accessions from the IRRI database 
for functional haplotypes within all known annotated rice 
genes (Kawahara et  al., 2013) that are statistically associated 
with large (and small) GL phenotypes. Subsequently, the 
pipeline searches within the TRR for these identified haplotypes, 
specifically comparing associated haplotypes that are found 
among and between NFVs and ECs. Thus, the pipeline builds 
a catalog of potentially interesting markers among TRR 
accessions, with the aim of identifying valuable genomic 
regions among overlooked accessions that may prove useful 
in future breeding strategies in developing high yield, stress 
tolerant cultivars.

Finally, to be of optimal utility for crop breeding programs, 
it is necessary that a user may interpret catalogued functional 
haplotype information contextually by evaluating findings 
with respect to diversity relationships among accessions across 
investigated panels. Moreover, relatedness reconstruction may 
permit further analyses such as predictive genetics (Reyes-
Herrera et  al., 2020). For domesticated rice, it has been 
established that Oryza sativa is likely an amalgam of two 
distinct lineages hailing from two wild Oryza species that 
largely delineate distinct indica and japonica variety types 
(Stein et  al., 2018). Thus, disparate genomic architectures 
may dictate that any identified variants of interest may 
function differentially according to their biological source. 
This has relevance to the TRR as the overwhelming majority 
of rice varieties cultivated in Thailand are of the indica 
ecotype. To facilitate informed evaluation regarding this, the 
riceExplorer pipeline automatically performs several diversity 
evaluation analyses. These include an annotated linkage 
disequilibrium (LD) map across all chromosomes that 
graphically indicates potential LD relationships of both 
identified haplotypes of interest juxtaposed against positions 
of key genes previously identified as functionally impacting 

the evaluated phenotype, construction of a neighbor-joining 
phylogenetic tree, structure-type plots evaluating population 
genomic relationships, and whole-genome and individual 
chromosome site-frequency spectrum plots. Finally, 
riceExplorer generates several data files formatted for use 
with various publicly available software permitting subsequent 
analyses of diversity relationships.

Our riceExplorer pipeline (available on GitHub) is 
based on previously published, free-to-use software. It is 
piped together via the Bash programming language with 
elements of custom-made Python programs that format 
files between different software applications and perform 
both quantitative and database search analyses. Thus, it 
renders an easy-to-understand outputted record along with 
numerous graphical figures that can be  applied to any 
agricultural focal species (not only rice) with appropriate 
genotype–phenotype data. Aside from initial stages that 
require the downloading of publicly available sequence data, 
our pipeline is straightforward to use, being able to run as 
a single utility. Importantly, our pipeline represents a 
financially prudent method by which the user may search 
their own genomic resources for potentially useful functional 
variants. This is possible because a full evaluation of a 
locally held sequenced accession panel can be  searched for 
associated haplotypes without any monetary or logistical 
investment into large-scale experimental projects requiring 
phenotypic evaluation. Fundamentally, riceExplorer provides 
a descriptive database resource that can inform breeding 
program strategies that may range from traditional breeding 
methods to modern state-of-the-art genomics-assisted 
breeding technologies.

MATERIALS AND METHODS

The Thai Rice Resource (TRR)
The TRR comprises hundreds of rice germplasm accessions 
that have undergone whole-genome sequencing. For this 
study, we  used 279 available sequenced accessions 
(Supplementary Table S1). Thirty five are elite cultivars 
(EC) of which several decades of breeding program resources 
have been devoted to develop lines that provide high yield, 
good cooking quality, and pest resistance to Thai endemic 
biotic stressors, and are suitable for use within the main 
environmental regions within Thailand’s rice-growing areas. 
A further 190 are local landraces and other varieties developed 
by the Thai Rice Department. Whole-genome resequencing 
data were generated using Illumina HiSeq  2,500 System at 
Novogene (Beijing, China) under the whole-genome 
resequencing project at the Rice Gene Discovery, National 
Center for Genetic Engineering and Biotechnology, Thailand 
(unpublished data). The SNPs were called using the standard 
GATK pipeline called against the Nipponbare reference 
genome (Kawahara et  al., 2013) to produce SNP calls in 
the gvcf format. The remaining samples are of external 
origin sourced from various foreign research agencies 
(e.g., IRRI).
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Primary Evaluation of Known Grain Length 
Gene Diversity Within the TRR
It order to initially assess Thai rice resource (TRR) panel 
genomic diversity with respect to grain length, we  used the 
nucleotide diversity (π; Nei and Li, 1979) metric to compare 
between the TRR and the IRRI 3000 Rice Genomes (3KRG) 
database among the 41 grain length (GL) genes identified by 
Li et  al. (2018) Supplementary Table S2. We  sampled all 
variants within the 41 GL genes among samples on the IRRI 
database, according to start–stop positions from the Michigan 
State University Rice Genome Annotation Project (http://rice.
uga.edu/). As π is sensitive to sample size, we  used rarefied 
sampling to control for this confounding factor and reported 
π directly from the 279 sample TRR panel against the distribution 
of 100 estimates of π from 279 randomly selected accessions 
from 2,103 accessed IRRI samples.

Summary of Pipeline Functionality and 
Implementation Across 55,000 Annotated 
Rice Gene Regions
The riceExplorer pipeline comprises an initial, semi-
automated first step followed by a fully automated analysis 
when run in a Linux environment (https://github.com/ctdarwell/
riceExplorer contains downloadable scripts and comprehensive 
details about pipeline functionality and implementation). It 
can be  implemented on any agricultural focal species with 
appropriate genotype–phenotype data whose annotated gene 
database is incorporated in the snpEff software suite (Cingolani 
et  al., 2012).

The first step is to decide an appropriate reference library 
for initial inquiry. For our TRR, the IRRI 3KRG project (Li 
et al., 2014) is appropriate, although the pipeline can be applied 
to any global (or other) database that provides both whole-
genome sequenced material (gvcf format) and associated 
phenotypic values for individual accessions. Despite the 
availability of more than 3,000 sequenced accessions, 3KRG 
recommends (for obvious reasons of tractability and computing 
constraints) that a core set of 72 accession that best represent 
global rice diversity is primarily used for analyses. However, 
despite this recommendation, the 72-accession core panel does 
not have a complete set of associated phenotypic assays that 
are also curated under 3KRG (see: https://snp-seek.irri.org/_
variety.zul). Of the 72 core accessions, only 49 have data for 
grain length (GL), the trait which we  focus on in this paper.

For this initial step, we  have therefore developed the 
sampleSelector.py script (available on the GitHub pages). As 
input, it takes the full available GL data from the 3KRG pages 
(here, accession name and phenotypic assay of 2,103 samples). 
In order to maximize phenotypic diversity and genetic 
representation among the reference library, the program identifies 
the held accessions that have maximal and minimum phenotypic 
values both within all designated regions (here: South Asia, 
East Asia, Southeast Asia, Africa, Indo-Pacific, Europe and the 
Middle East combined, the Americas, and Australasia) and 
rice variety types (designated as: indica, japonica, aus, aromatic, 
admix). Consequently, for our analysis, sampleSelector.py indicated 

a further 151 varieties’ gvcf files to download from 3KRG 
(Supplementary Table S3), alongside the 49 samples from the 
recommended core accessions that have associated GL data 
(i.e., 200 files; e.g., https://3kricegenome.s3.amazonaws.com/
Nipponbare/IRIS_XXX-XXXXX.snp.vcf.gz). From this, a data 
file featuring accession name and associated GL phenotype 
can be  compiled for input to the main pipeline.

The main pipeline requires five key data elements: a 
downloaded reference library (in gvcf format), associated 
phenotypic measurements of the reference library, a sequenced 
focal library (i.e., of breeding program data, e.g., TRR; gvcf 
format), an associated population file describing sample variety 
types, and a list of genomic regions of interest. For this last 
item, we  use the Michigan State University rice annotation 
project list of ca. 55,000 annotated genes (http://rice.
plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/
annotation_dbs/pseudomolecules/version_7.0/; as both our 
reference and focal sequence libraries’ SNP calls derive from 
the Nipponbare rice reference genome). In addition, the 
pipeline can accept a list of annotated genes known to have 
primary function associated with the focal trait, in order to 
annotate the final graphical output. For this, we  included 
the 41 genes identified by Li et  al. (Li et  al., 2018) as know 
grain length genes.

Pipeline implementation is as follows. First, the bcftools 
software suite (Danecek et  al., 2021) is used to call all variants 
from our grain length reference library (i.e., 3KRG). Next, a 
Python script (vcf4snpeff.py) reformats the bcftools output 
ready for the next step. For all generated files containing SNP 
information, we use the snpEff software suite (Cingolani et al., 
2012) to evaluate the functional impact of all identified SNP 
calls. Our pipeline then uses the bash ‘grep’ command to 
select only SNPs called as moderate or high by snpEff—
these SNPs being identified as having a likely functional impact 
on any biological function of the organism. Figure  1 outlines 
the basic pipeline workflow.

The next pipeline process uses outputted snpEff information 
indicating predicted functional impacts of all evaluated SNPs 
to build functional haplotypes for each examined annotated 
gene. For each gene, a Python script (hapXphenoPredictorSNPs.
py) reconstructs the functional haplotype occurring in each 
accession. For each accession, the program builds the haplotype 
according to whether the reference or alternative allele is present 
at each identified functional SNP location. For example, if an 
annotated gene region contains four functional SNPs, different 
functional haplotypes are considered that contain any 
combination (i.e., reference or alternative) of those four SNPs 
(and featuring a minimum of one functional alternative allele 
relative to the Nipponbare reference genome) within that gene 
for each accession. For each reconstructed haplotype, the mean 
associated phenotype is calculated across all 3KRG individual 
accessions carrying that haplotype. This is done because the 
large number of possible haplotype alleles (that have no scalable 
magnitudes) means it is not possible to conduct a meaningful 
analysis against individual phenotype scores (cf. GWAS which 
exploits bi-allelic SNP collapsibility to binary values to implement 
regression analyses). If the mean associated phenotype for those 
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accessions (and the haplotype is found across a minimum of 
five accessions) is greater or less than (both are recorded in 
case the optimal phenotype is at lower values) the user-stipulated 
percentile range from the distribution of the phenotypic data, 
that haplotype is recorded as being associated with extreme 
phenotypes (here our interest lies with large grain associated 
haplotypes; hereafter LGHs) within the reference library panel. 
For our analysis, we  chose a percentile value of 0.866 which 
represents 1.5 standard deviations from the mean (NB while 
the user may select a percentile value of 0.975 to represent 
full significance, it represents an unreasonable value because 
the pipeline evaluates mean values across accessions for each 
identified haplotype—thus, it would be highly unlikely to yield 
such extreme outlier haplotypes).

The final pipeline step then searches the focal (i.e., breeding 
program) sequence data (using bcftools) to: (i) identify 
presence/absence of the identified haplotypes, and (ii) evaluate 
whether that haplotype is present/absent among elite cultivars 
(ECs), or more pertinently, non-focal varieties (NFVs) in the 
breeding program panel using the potential_rgd_sourcesLoop.
py Python script. Finally, the pipeline outputs a number of 
summary tables and annotated graphical outputs according to 
evaluated chromosomes in the analysis.

Putative Function of Identified Genes
To assess the most commonly identified gene functions identified 
by our pipeline, we  converted all identified MSU annotated 
genes into their GOSlim assignments (http://rice.uga.edu/
downloads_gad.shtml). To easily visualize common functional 
types, we  removed common technical terms from the GOSlim 
putative function assessments and performed word cloud analyses 
based on number of hits using the Python library “wordcloud” 
(https://pypi.org/project/wordcloud/). Full results are also tabulated.

Auxiliary Analyses of Relationships Among 
Accessions
In order that the user may evaluate the potential value of 
identified LGHs, the riceExplorer pipeline performs a number 
of subsequent analyses to evaluate diversity relationships between 
accessions and linkage disequilibrium patterns within 
chromosomes across both the reference and focal sequencing 
libraries. Additionally, the pipeline also outputs formatted files 
that may be  used as input for more robust phylogenetic and 
demographic analyses. Alongside publicly available software, 
an additional 12 custom Python scripts are included with 
the GitHub pages for these analyses (described below).

FIGURE 1 | Flowchart representation of workflow performed by the riceExplorer bioinformatics pipeline. Orange filled boxes represent data inputs; black 
bordered boxes represent publicly available, previously published software integrated into the workflow; blue bordered boxes represent custom-made Python 
programs developed for this pipeline; red bordered diamonds represent program/workflow outputs; red-filled box indicates final outputs via scripts developed to 
automate figure production; dashed green arrows indicate continued flow from bottom to top.
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SNP Selection
To minimize computation time, the pipeline first identifies 
SNPs with high coverage across accessions. We  assume that 
the employed reference library is of high quality and therefore 
coverage across the focal library is evaluated. A single SNP 
with the highest coverage that passes several quality criteria 
(minimum coverage across accessions >80%; minimum allele 
frequency < 5%; maximum of two alleles per site; variants 
recorded as low quality are rejected) is selected from each 
examined gene region. SNPs across accessions are then called 
using Bcftools. vcf files are compiled for individual 
chromosomes and then also merged for a whole genome 
summary. Across the genome from our investigated libraries, 
a total of 16,596 SNPs were recovered that passed the quality 
control criteria.

Linkage Disequilibrium Relationships
First, the R packages LDheatmap (Shin et  al., 2006) and 
snpStats (Clayton and Clayton, 2012) are used to calculate 
linkage disequilibrium (LD) between recovered SNPs for each 
of the generated individual chromosome vcf files. As indica 
is by far the favored rice variety type in Thailand and our 
focal panel consists of 257 out 279 cultivars, LD was only 
calculated among indica accessions to (a) provide appropriate 
analyses, and (b) to avoid incorporating distinct and potentially 
confusing LD relationships likely to be found among different 
variety types. From the resultant matrices, a custom Python 
script then plots the LD heat maps. However, this script also 
incorporates the LGH data generated from the primary pipeline 
in order to annotate the LD plots so that identified LGHs 
are positionally marked according to the chromosomal location. 
Graphical outputs are generated for all chromosomes with 
individual plots generated according to whether LGHs are 
high or low extreme values or whether they have been identified 
within elite cultivars or non-focal varieties, and their positions 
relative to previously identified genes of interest.

Phylogenetic Relationships
First the pipeline constructs a neighbor-joining tree. The whole 
genome vcf is converted into Fasta format retaining the 
reference/alternative allele base calls. Next, custom Python 
scripts calculate pairwise Kimura-2-parameter (K2P) distances 
(Kimura, 1980) between all accessions. This matrix is then 
converted into a dendrogram using Ward’s clustering method 
(Ward, 1963) and subsequently converted into Nexus tree 
format for visualization in external tree-viewing software. A 
graphical output of the dendrogram and an accompanying 
data file is also generated indicating Ward’s assessment of 
cluster number.

Population Genomic Analyses
riceExplorer employs the sNMF software package (Frichot 
et  al., 2014) to infer individual admixture coefficients and 
generate population structure graphical output from the 
previously generated whole genome vcf. After initial analyses, 
a custom Python script employs the cross-entropy evaluation 

method of Evanno et al. (2005) which is employed to establish 
the most likely number of distinct genetic demes (populations; 
K) present in the panel. For this, a clear value of K can 
be  intimated if a single cross-entropy scores is notably lower 
than for other estimates of K. Finally, a further script 
generates a cluster plot for the evaluated K value. IRRI 
metadata assessment indicates four cultivar variety types: 
aromatic, aus, indica, japonica, as well as a variety identified 
as admix.

Site-Frequency Spectrum Plots and 
Additional Outputs
riceExplorer also employs custom Python scripts to output 
site-frequency spectrum plots both within chromosomes, using 
individual chromosome vcf files, and a plot of frequency 
distributions across the entire genome. Additionally, custom 
Python scripts are also used to generate input files formatted 
for use with the Snapp (Bryant et  al., 2012) and diy abc 
(Cornuet et  al., 2008) programs in order to perform more 
robust phylogenetic and demographic analyses.

RESULTS

Genomic Diversity Across Key Grain 
Length Genes
Twenty-eight out of the 41 genes previously identified (Li et al., 
2018) as having direct functional influence on rice grain size 
show reduced nucleotide diversity across the Thai rice resource 
(TRR) germplasm panel when compared with the IRRI 3000 
Rice Genomes (3KRG) global database (Figure 2). Additionally, 
four genes show increased nucleotide diversity in Thailand 
when compared with the IRRI samples. This indicates that 
the TRR has limited potential to improve grain size at the 
majority of key grain length loci.

Identification of Large Grain Length 
Haplotypes (LGHs) Across the TRR
After investigating the 3KRG database to identify extreme grain 
size-associated haplotypes, our riceExplorer bioinformatics 
pipeline identified 8,983,562 SNPs of which 906,899 across 28,303 
annotated genes were functionally impactful. At the 1.5 standard 
deviation threshold, these generated large grain size-associated 
haplotypes (LGHs) at 295 MSU annotated genes across all accession 
types (Table  1). Among Thai landraces and Rice Department 
varieties (i.e., non-focal varieties; NFVs), 268 LGHs were identified, 
of which 47 are unique to these accession types. Moreover, 114 
LGHs are found among NFVs that are not found among core 
TRR elite breeding line accessions (ECs). Chromosomes 1–4 and 
6–8 feature the most LGHs, while chromosomes 9–12 are notably 
sparse. Additionally, the 35 EC accessions provided 159 annotated 
LGH genes (4.54 per accession), while 190 NFV accessions yielding 
295 genes equates to 1.41 per accession.

For each chromosome, our riceExplorer pipeline outputs 
graphical maps indicating the location of both LGHs and small 
grain size-associated haplotypes across the chromosomal regions 
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of both NFV and EC accessions (Supplementary Figure S1). 
Inspection of these outputs indicate repeated occasions where 
NFV chromosomal regions display clusters of LGHs in which 
the corresponding EC regions exhibit a dearth or absence of 
such loci (e.g., chromosomes 1–3, 6 and 7). For example, the 
chromosomal region between 12.65–26.47 Mb on chromosome 
7 features 27 LGHs (Figure  3). Notably, these are found on 
a chromosomal region encompassing the five known grain 
length genes on this chromosome (Li et al., 2018). EC accessions 
have only six LGHs on this region.

Potential Origins of LGHs Across the TRR
In order to: (i) understand the distribution of LGHs found 
within NFVs: (ii) further understand the origins of genomic 
diversity among Thai rice; and (iii) catalog genomic diversity 
among Thai rice, our bioinformatics pipeline outputs a summary 
figure that breaks down potential geographic haplotype origins 
according to rice variety group (i.e., indica, japonica, aromatic, 
aus, admixed; Figure 4) across each chromosome. First, focusing 
on LGHs across chromosome 7, the majority of haplotype 

records (n = 323) are found among indica varieties within the 
3KRG database, with a large contribution of samples from 
African and the Americas, contributed at 3.1 and 5.7 haplotypes 
per accession, respectively. However, controlling for sample 
bias, and despite contributing around 10% of haplotypes, 
European samples contribute the most (6.7) haplotypes per 
sampled accession on chromosome 7. The Americas and Southeast 
Asian samples contributed the most to japonica LGHs (around 
50%) at 6.7 and 4.7 haplotypes per sampled accession, respectively. 
The Americas and the Subcontinent contribute most to admix 
LGHs are (4.8 and 4.4 haplotypes per sampled accession, 
respectively), while African samples contributed most (7.0) per 
accession. Few LGHs were identified on aus and aro 3KRG 
samples. This pattern on chromosome 7 of mostly indica LGH 
contributions is typical across all other chromosomes 
(Supplementary Figure S2). Finally, a cursory word cloud 
inspection of MSU gene annotation descriptions for all LGH 
loci indicates a subset of prominent gene functionality types 
that riceExplorer identified (Figure  5; Supplementary  
Table S4).

A

B

FIGURE 2 | Boxplots comparing nucleotide diversity (π) at 41 genes across the rice genome known to exert functional influence on rice grain size. Red dots 
indicate π across 279 Thai accessions, while boxplots indicate distributions of 100 subsampled (n = 279) estimates of π across 3KRG samples. Thai accessions have 
significantly reduced π at 28 gene regions compared with global diversity at these loci, while four genes show significantly elevated π among Thai accessions 
compared with the global database. See Supplementary Table S1 for full information regarding GL genes.
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Investigation of Individual Accessions
Our pipeline analyses indicate that particular Thai NFV cultivars 
feature high numbers of LGHs across all 12 rice chromosomes 
(Table  2). For example, the Rice Department accession Ai-Tai 
(code W00223) has 15 LGHs on chromosome 7 (Figure  6) 
as well 25 LGHs across other chromosomes. It warrants particular 
attention because its LGHs are clustered around 17.9–24.4, 
surrounding the region containing five known grain length 
genes and which possesses a sparse record of LGHs among 
EC accessions. It is also noteworthy that Thai EC accessions 
contain seven small grain length associated haplotypes within 
the 20.1–23.4 Mb region. Our software can output figures for 
specified individual samples in order to view their potential 
contribution to agricultural breeding programs.

Linkage Disequilibrium Relationships
Figure  7 indicates linkage disequilibrium (LD) relationships 
across chromosome 7 (Supplementary Figure S3 for details 
regarding other chromosomes). Notably, there are regions of 
high linkage (12.65–20.22 and 25.98–28.37 Mb) surrounding the 
clusters of LGHs among NFVs identified by riceExplorer 
(Figure 3), as well as the four previously identified genes associated 
with grain length (Li et  al., 2018). Further, these highlighted 
regions of high LD are shown to have a relatively low number 
of LGHs among ECs. Similarly interesting regions are apparent 
on chromosomes 1, 3 and 6 (Supplementary Figures S3A,C,F). 
riceExplorer further outputs tables referencing all pairwise 
LD estimates between both identified LGHs and any inputted 
previously known genes. For example, on chromosome 7, the 
LGH loci, LOC_Os07g23970 and LOC_Os07g22930 display 
linkage greater than 0.8 with locus LOC_Os07g22494.

Phylogenetic Relationships Among 
Accessions
From the combined libraries, 454 samples passed quality control 
criteria and are included in subsequent analyses. A 

neighbor-joining tree generated using the K2P distance metric 
indicates that virtually all indica variety types, from both the 
reference (IRRI) and focal (TRR) panels, cluster together in 
a monophyletic clade, with IRRI aus and adm biotypes forming 
sister clades (clade I; Supplementary Figure S4). Most japonica 
accessions are in the distinct major clade II from indica biotypes, 
although they display paraphyletic relationships. However, the 
single RGD japonica accession that passed quality control 
criteria was placed among IRRI ADM samples among a sister 
clade of indica samples in clade I.

Population Genomic Analyses
Cross-entropy analyses indicate no obvious number of demes 
among our combined libraries although the lowest score 
indicates 13 populations (Supplementary Figure S5). This is 
not unreasonable as IRRI metadata indicates 15 distinct 
subpopulations among five variety types. However, for our 
purposes, we  consider the breakdown of relationships for 
K = 4 (following IRRI metadata assessment of variety type 
number; Figure  8). Among IRRI samples, there appears to 
be  three distinct populations: aus and indica largely forming 
the same deme, japonica, and admix (identified as featuring 
mixed demes). However, in contrast to phylogenetic findings 
(Supplementary Figure S4), RGD indica do not cluster with 
IRRI indica, while the single RGD japonica sample does not 
cluster with IRRI japonica. Further evaluation of our genome 
wide vcf file indicates only a 4% differential in missing data 
between IRRI and RGD samples suggesting unequal sampling 
is not the reason for the disparity. This may be  a result of 
large data artifact between different NGS sequencing protocols 
used in generating the two libraries.

Site-Frequency Spectrum Analyses
Figure  9 shows the site-frequency spectrum across all 
chromosomes. Data are skewed indicating a predominance of 
alternative alleles. This pattern is ubiquitous across individual 
chromosomes (Supplementary Figures S6). This no doubt 
reflects that our data matrix solely contains SNP loci from 
only gene coding regions and predominantly indica cultivars 
called against a japonica reference genome.

DISCUSSION

Agricultural crop breeding programs, potentially conducted 
at the national level, may primarily focus on the performance 
and development of elite focal cultivars (ECs). Attention will 
normally focus on development and improvement of ECs in 
the forms of marker-assisted selection, gene-editing and other 
forms of selective breeding that may have encouraged powerful 
directional selection. Such anthropologically mediated 
evolutionary forces may induce a plethora of incidental outcomes 
that encourage the accrual of non-lethal deleterious mutations 
across nontarget regions of the genome (Moyers et  al., 2018). 
This has the potential to cause a weakened genetic background 
due to pleiotropy (Darmency, 2013; Paaby and Rockman, 2013) 

TABLE 1 | Large grain size associated haplotypes (LGHs) distributions across 
the chromosomes of the Thai rice panel. Column names indicate: “Total”—LGHs 
identified across all accessions; “nNFV”—number identified among NFVs; “nNFV 
unique”—number identified uniquely among NFVs; “nNFV unique (EC)”—number 
identified among NFVs but not among ECs.

Chromosome Total nNFV nNFV unique nNFV unique (EC)

Chromosome 1 31 25 4 14
Chromosome 2 27 25 5 11
Chromosome 3 46 43 6 16
Chromosome 4 36 34 6 13
Chromosome 5 17 15 0 5
Chromosome 6 22 19 3 8
Chromosome 7 42 38 14 23
Chromosome 8 31 30 2 9
Chromosome 9 9 7 0 3
Chromosome 10 7 7 2 3
Chromosome 11 13 12 2 6
Chromosome 12 14 13 3 3
Total 295 268 47 114
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or other mechanistic processes. Furthermore, despite their 
utility in providing statistical power to large-scale genome-
wide experimental studies, the potential utility of non-focal 
varieties (nominally landraces and other locally endemic 
varieties; NFVs) may have been unwittingly neglected (Tokatlidis 
and Vlachostergios, 2016). Additionally, typically employed 
SNP-based methods have potential pitfalls emanating from 
nonaccounting of epistatic dynamics (Clark, 2004; Bardel et al., 
2005), low informativeness (Hamblin and Jannink, 2011), and 
disproportionate influence of rare variants on extreme 
phenotypes (Wray et  al., 2013). Our riceExplorer 

bioinformatics pipeline offers a powerful, low-cost, and easily 
employed tool to both explore the comparative genomic variation 
among NFV accessions (relative to EC or alternatively stipulated 
accessions) and provide a useful catalogued record of their 
untapped potential genomic contribution.

We evaluated the distribution of all haplotypes comprising 
SNPs predicted to have functional impact (predicted by snpEff 
software) (Cingolani et  al., 2012), and associated with extreme 
grain length phenotypes, across all ca. 55,000 MSU annotated 
gene regions (Kawahara et  al., 2013) against our panel of Thai 
rice resource (TRR) accessions using our newly developed 

FIGURE 3 | Map of chromosome 7 showing identified haplotypes associated with large and small grain sizes identified in a global database found across our TRR 
panel. RD varieties and landraces (NFVs)—blue chromosome; RGD targeted breeding accessions (ECs) – green chromosome. Haplotypes associated with large 
grain size are indicated above each chromosome whilst haplotypes associated with small grain size are indicated below. The known grain size gene positions for 
LOC_Os07g32170, LOC_Os07g39220, LOC_Os07g41200*, LOC_Os07g41240* and LOC_Os07g42410 are indicated with orange squares (* adjacent genes 
identified by the same square). Gene annotation names in blue text are found among both NFV and EC accessions.
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pipeline. In particular, we were interested in evaluating whether 
there are significant numbers of LGHs among NFVs that are 
not found among EC accessions. The 35 ECs yielded 159 LGHs 
(4.54 per accession) at almost three times the rate as was 
found among the 190 NFVs (295 LGHs at 1.41 per accession). 
This suggests that the overall impact of elite cultivar breeding 
programs featuring sophisticated technologies and extreme 
selective regimes does not have a disproportionately negative 

impact on nontarget genomic regions among ECs. Although 
without comprehensive pedigree analyses of the accession panel, 
it is impossible to say that Thai breeding programs have had 
no deleterious impacts.

However, our results indicate that NFVs contain numerous 
functionally impactful haplotypes that significantly associate 
with high grain length phenotypes in the 3KRG accession 
panel which are not found among EC accessions. Thus, indicating 
that ongoing breeding programs and focus on ECs may have 
resulted in the breeding potential of NFVs being overlooked. 
Many LGHs can be  found clustered across significant lengths 
of several chromosomal regions in which EC accessions do 
not feature any LGHs (e.g., chromosomes 1–4, 6, 8; 
Supplementary Figure S1). Our results highlight chromosome 
7 (Figure 3), where chromosomal region 12.65–26.47 Mb contains 
27 LGHs located where there are only six recorded among 
ECs and where ECs contain several small grain length associated 
haplotypes. Many of these lie adjacent to known grain length 
genes (Li et  al., 2018) identified as having reduced nucleotide 
diversity on chromosome 7 (LOC_ Os07g39220, LOC_
Os07g41200, LOC_Os07g41240 and LOC_Os07g42410; Figure 2), 
potentially in strong linkage disequilibrium. Furthermore, 
investigation of the output files generated by riceExplorer 
indicate that the landrace accession Ai-Tai (W00223) contains 
15 LGHs in this region (Figure  6). Investigation of the output 
files from riceExplorer identified numerous examples of 
this type from our accession panel across the rice genome 
(Supplementary Table S5).

We also investigated the likely origins or affiliations of LGHs 
found among NFVs. For continuity, we  initially interpret results 
on chromosome 7 (Figure  4). The majority of LGHs originally 
identified as associated with large grain size in the 3KRG database 
and also identified among TRR NFVs are found among IRRI 
indica varieties (n = 323) for this chromosome. This is unsurprising 
as most of the TRR panel comprises indica varieties that is the 
favored staple rice type in Thailand. Most of these (> 50%) 
originate from varieties from Africa and the Americas in the 
3KRG panel. However, our pipeline also controls for sample size 
and evaluates haplotype sources according to the contribution of 
the number of accessions in the original reference (i.e., 3KRG) 
panel. When controlling for this sampling bias, we  show that 
European accessions (which provided only 6% of IRRI accessions) 
associate the most with LGHs (6.7) per accession for indica on 
chromosome 7. This result is likely sensible. If the Thai breeding 
program has mostly focused on endemic accessions and others 
from the nearby regions (e.g., China and other Southeast Asian 
countries), we  may expect that novel LGHs are likely to 
disproportionately come from other regional accession panels. 
Thus, future research within Thailand may consider incorporating 
more European indica accessions into the program in the hope 
that more useful gene regions that are compatible with the TRR 
may be  identified. Such reasoning may prove fruitful, as theory 
dictates that hybrid vigor may yield more useful phenotypes 
(Birchler et  al., 2006).

Finally, riceExplorer conducts a cursory word cloud 
inspection of MSU gene annotation descriptions for all LGH 
loci found among NFVs in order to evaluate which kinds of 

FIGURE 4 | Likely origins of identified large grain size haplotypes on 
Chromosome 7. Proportions indicate geographic origins of accessions in the 
3KRG database, according to rice variety group, of novel identified 
haplotypes (i.e., LGHs identified in 3KRG varieties). Numbers adjacent to 
segments indicate number of haplotypes per accession (i.e., to control 
sampling bias) from that region. NB Sundaland indicates the Indo-Pacific 
region; sub-continent indicates South Asia region.
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genes are most commonly identified and may also offer insight 
as to where future research may be  directed (Figure  5). A 
subset of prominent gene functionality types was identified, 
including cytochrome P450 domains, auxin proteins, phosphate 
dehydrogenases, glutamate synthesis proteins, chalcone synthases, 
and others. It may be  prudent to search for such gene family 
types, to incorporate into EC genomes during future research.

riceExplorer auxiliary analyses of relationships among 
panel accessions permits further evaluation of potential utility 
of identified LGHs. Annotated linkage disequilibrium plots 
inform the user of chromosome-wide linkage patterns relative 
to identified markers alongside those manually inputted as 
known phenotypically relevant genes (Figure 7). This information 
is augmented by tabular outputs highlighting specific relationships 
between markers of interest. Additionally, our riceExplorer 
evaluates phylogenetic (Supplementary Figure S4) and 
population genomic (Figure 8) relationships among accessions. 
For our panel, it is evident that that there are two distantly 
related clades dominated by indica and japonica variety types 
within rice (Stein et al., 2018). Our population genomic analyses 
further separated IRRI and TRR indica accessions, potentially 
due to data artifacts between different NGS sequencing protocols 
when generating the two libraries. Inspection of additional 
riceExplorer output files will inform the user if identified 
LGHs are found among potentially compatible cultivars relative 
to the program’s elite cultivar (EC) panel. Further outputs allow 

evaluation of site-frequency spectrum (SFS) patterns (Figure 9) 
across chromosomes. For our panel, featuring predominantly 
indica varieties with variants called against a japonica reference 
genome, SFS plots are notably left-skewed.

Implications for Breeding Program 
Guidance
In general, riceExplorer identifies LGHs among a large 
number of annotated gene regions. Most of these are unlikely 

FIGURE 5 | Word cloud indicating most prominent terms from MSU GOSlim Assignment putative functions of LGHs among Thai NFVs. After removing technical 
terms, the most prominent gene functionality types include cytochrome P450 domains, auxin proteins, phosphate dehydrogenases, glutamate synthesis proteins, 
and chalcone synthases. See Supplementary Table S3 for full list.

TABLE 2 | Table of individual accessions featuring more than ten large grain 
size-associated haplotypes (LGHs) found among Thai NFV accessions but not 
ECs across all 12 rice genome chromosomes. See Supplementary Table S5 for 
full list.

Thai accession GS No. Type nLGHs

W00269 24841 Landrace 37
W00167 14142 Landrace 33
W00132 24601 RD variety 29
W00223 8100 Landrace 29
W00237 24613 Landrace 26
W00258 23725 Landrace 16
W00306 8113 Landrace 13
W00082 23179 Landrace 12
W00319 14331 Landrace 12
W00159 – Landrace 10
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to be  directly linked to the study phenotype, in this case, 
grain length, although recent advances indicate that markers 
contributing to complex phenotypes are typically numerous, 
scattered widely across the genome, and consequently, often 
uncharacterized (Wing et  al., 2018). There are sound 
theoretical reasons to expect that many of the identified 
LGHs that are not directly associated with grain length 
loci may cause improved phenotypic syndromes in TRR 
accessions. For example, it is likely that the “costs of 
domestication” such as the accrual of slightly deleterious 
mutations (Moyers et  al., 2018) has occurred throughout 

the timespan of TRR breeding programs. This may have 
occurred via genetic hitchhiking of linked loci as desirable 
genotypes have been incorporated into Thai ECs (Moyers 
et  al., 2018). Moreover, many of the identified LGHs may 
have pleiotropic influence on alleles that directly control 
grain length. However, before embarking upon any subsequent 
recuperative breeding strategies, it is also necessary to 
ensure that none of these identified regions carry other 
important functional genes, including those that may exhibit 
negative pleiotropy (Rose, 1982) against large grain 
length phenotypes.

FIGURE 6 | Map of chromosome 7 (0–31.0 Mb) showing all identified LGHs across elite cultivar accessions and LGHs identified on Thai landrace Ai-Tai (W00223). 
Orange square markers show LGHs found on the landrace accession Ai-Tai, while gene positions for known grain length genes LOC_Os07g32170, LOC_
Os07g39220, LOC_Os07g41200, LOC_Os07g41240, and LOC_Os07g42410 are indicated with blue-shaded squares. Ai-Tai features a cluster of 14 LGHs all 
between chromosomal region 17.9–24.4 Mb.
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FIGURE 7 | Annotated linkage disequilibrium map of chromosome 7 (0–28 Mb). MSU gene annotations of LGHs identified by riceExplorer are positionally marked 
(red) alongside genes with known influence on grain length (black) that were initially imported to the program by the user.

FIGURE 8 | Population genomic structure plot following analyses in sNMF software indicating relationships patterns at the four-deme level. There is clear 
delineation according to accession variety types although further variation appears according to library origin of indica samples.
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Cutting-edge technologies employed by modern breeding 
programs typically involve marker-assisted selection that is 
moving toward greater reliance on predictive genetics-based 
breeding (Keller et  al., 2020), requiring understanding of 
species’ responses to abiotic (or other) drivers (Cortés et al., 
2020). However, a reliance on SNP markers has its drawbacks 
and the identification of functional haplotypes has been 
posited as a powerful additional tool in the genomics-assisted 
breeding armory (Bhat et al., 2021). As such, riceExplorer 
will be  of great value in directing researchers to regions 
of the genome that may be  ripe for exploitation. 
riceExplorer’s design functionality means it accounts for 
several problems associated with SNP-based methods by 
encompassing epistatic effects, only focusing on functional 
variants, and by minimizing the influence of rare alleles. 
However, further investigation would be required to establish 
whether identified genes display robust predictive signal 
with respect to key sustainability challenges such as those 
envisaged by future climate change dynamics. Moreover, its 
ability to discern haplotype origins according to population 
origin (e.g., landraces) may aid predictive breeding 
investigations (as shown for rice; Bhandari et  al., 2019) that 
potentially offer powerful solutions for toward the goals of 
sustainable agriculture (Blair and Izquierdo, 2012; Cortés 
et  al., 2020).

We expect that our pipeline has provided a starting point 
to various avenues of research that may lead to the incorporation 
of available genomic resources into TRR ECs. This may 
improve the genetic background of future varieties developed 

to exhibit robust, high-yield stress tolerant phenotypes. With 
respect to our own dataset, it appears that chromosome 7, 
at least, including specific genes identified by the pipeline, 
should be  considered as an area of potential improvement 
within the TRR. Finally, while we  present riceExplorer as 
the full implementable package, we  note that it also offers 
alternative related utility. For example, the implementation 
of the initial steps 1–4 (see Figure  1) against a sequenced 
and phenotyped germplasm panel would facilitate the cataloging 
of functional haplotypes associating with extreme phenotypes 
(while evaluation of the full snpEff outputs would also include 
identification of non-functional haplotypes—see GitHub pages 
for details).

CONCLUSION

Agricultural crop breeding programs are likely to (i) exaggerate 
deleterious alleles at nontarget loci among focal elite cultivars 
(ECs), (ii) overlook the potential genomic resources residing 
in their non-focal variety (NFV) accessions, and (iii) over-
rely on SNP-based methodologies featuring notable drawbacks. 
As a result, it is desirable to have an automated genomic 
cataloging system to monitor crop panels at the haplotype 
level. Our riceExplorer bioinformatics pipeline provides 
such a system that is easy to implement, cheap to use, and 
provides a catalog of potentially useful loci referenced against 
global databases. Our analyses show the potential of 
riceExplorer having identified 114 gene regions where 

FIGURE 9 | Site-frequency spectrum plot across all 12 rice chromosomes. The data are left-skewed as a result of SNP calling a predominantly indica panel against 
a japonica reference genome.
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potentially useful genomic haplotypes associated with a key 
agronomic trait (grain length) are found in NFVs, while 
absent among ECs.
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