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Pre-anthesis drought is expected to greatly increase yield losses in wheat (Triticum

aestivum L.), one of the most important crops worldwide. Most studies investigate

the effects of pre-anthesis drought only at maturity. The physiology of the plant before

anthesis and how it is affected during drought is less studied. Our study focused on

physiological patterns in wheat plants during pre- and post-anthesis drought. To this end,

we measured leaf xylem water potential, osmotic potential and water content in different

plant parts at a high temporal frequency: every 3 days, three times a day. The experiment

started just before booting until 2 weeks after flowering. Drought stress was induced by

withholding irrigation with rewatering upon turgor loss, which occurred once before and

once after anthesis. The goal was to investigate the patterns of osmotic adjustment,

when it is used for protection against drought, and if the strategy changes during the

phenological development of the plant. Our data gave no indication of daily osmotic

adjustment, but did show a delicate control of the osmotic potential during drought in

both leaves and stem. Under high drought stress, osmotic potential decreased to avoid

further water loss. Before anthesis, rewatering restored leaf water potential and osmotic

potential quickly. After anthesis, rewatering restored water potential in the flag leaves, but

the osmotic potential in the stem and flag leaf remained low longer. Osmotic adjustment

was thus maintained longer after anthesis, showing that the plants invest more energy

in the osmotic adjustment after anthesis than before anthesis. We hypothesize that

this is because the plants consider the developing ear after anthesis a more important

carbohydrate sink than the stem, which is a carbohydrate sink before anthesis, to be

used later as a reserve. Low osmotic potential in the stem allowed turgor maintenance,

while the low osmotic potential in the flag leaf led to an increase in leaf turgor beyond the

level of the control plants. This allowed leaf functioning under drought and assured that

water was redirected to the flag leaf and not used to refill the stem storage.

Keywords: plant stress, leaf water potential, source-sink, turgor, Van’t Hoff equation, osmotic adjustment, osmotic

potential, carbohydrate mobilization
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1. INTRODUCTION

Globally, wheat is contributing for 20% of the caloric and protein
intake of the human population (Lobell and Gourdji, 2012;
Shiferaw et al., 2013; Cosgrove, 2021). Food demand is expected
to double by 2050 (Tilman et al., 2011). Meanwhile, climate
change is not only endangering the global food productivity,
but also local food security (Lobell and Gourdji, 2012). Drought
affects 60% of the wheat production in high-income countries
and 30% in least developed countries (Chen et al., 2012; Ahmad
et al., 2018). Up to 70% of yield losses can occur due to drought
(Nouri-Ganbalani et al., 2009). To keep up with the demand,
strategies need to be developed to increase wheat yield under
this changing environment (Ray et al., 2013; Hunter et al.,
2017). This will require the collaboration of plant physiologists,
plant breeders, geneticists, agronomists, computer scientists and
more. There is a necessity to understand the physiology more
in depth and how this physiology is impacted by drought stress.
With a better understanding, crop management decisions can be
improved or new targets for breeding can be discovered.

Drought affects wheat differently depending on the growth
stage (Fischer, 1973; Villegas et al., 2001; Del Pozo et al., 2007;
Tatar et al., 2016). Most of the research on drought is done at
the grain filling stage, also named terminal drought or post-
anthesis drought (e.g. Nicolas et al., 1985; Shah and Paulsen,
2003; Pradhan et al., 2012), since this stage is very drought
sensitive. However, in Mediterranean areas, where a lot of the
wheat cultivation is rain-fed (El Hafid et al., 1998; Tatar et al.,
2016), dry periods are expected to increase (IPCC, 2018). So
not only terminal drought will become a major yield limiting
factor, but also drought during the elongation phase (or pre-
anthesis drought). A considerable smaller amount of research
is performed on pre-anthesis drought, even though it is an
important stage to study drought stress. Since flower initiation
takes place in this stage, some sources say it is more sensitive
than the grain filling stage (Fischer, 1973; Tatar et al., 2016;
Ahmad et al., 2018; Dietz et al., 2021). The known effects of pre-
anthesis drought are a reduced height, tillering, leaf area, biomass
and yield (e.g. Kadam et al., 2014; Mwadzingeni et al., 2016;
Qaseem et al., 2019) and early flowering (Foulkes et al., 2007).
Most sources report these post-anthesis effects of pre-anthesis
drought, such as yield and water-use efficiency (e.g. Inoue et al.,
2004; Mwadzingeni et al., 2016; Hlavacova et al., 2018; Qaseem
et al., 2019; Lou et al., 2021). Yet the exact physiology of the plant
during this stage is not as well characterized.

A few sources have measured some physiological parameters
during the elongation phase. Some studies report on a reduced
water content and water potential in this phase due to drought
(Karamanos et al., 1983; Siddique et al., 2000; Inoue et al., 2004;
Qaseem et al., 2019). Stomatal closure has also been observed
and will then prevent the water potential to decline too quickly
(Liang et al., 2002; Inoue et al., 2004; Monneveux et al., 2006;
Subrahmanyam et al., 2006) and protect the plant against severe
dehydration. Plants also have other avoidance and tolerance
mechanisms to cope with drought stress (Blum, 1989), but these
have rarely been measured in wheat during the elongation phase.
Osmotic adjustment is such other protective mechanism. As

the water content in the plant declines, compatible solutes such
as proline (Karamanos et al., 1983; Nazarli and Faraji, 2011;
Mwadzingeni et al., 2016; Qaseem et al., 2019), non-structural
sugars (Ashraf and Foolad, 2005; Nazarli and Faraji, 2011), and
other organic and non-organic solutes (Ahmad et al., 2018) are
being imported into the cells to decrease the osmotic potential.
This avoids more water loss. Turgor is thus maintained within
the cells as long as possible, avoiding wilting and enabling growth
(Ashraf and Foolad, 2005; Ahmad et al., 2018). Restoration
of turgor allows the stomata to re-open partially under mild
drought stress (Ahmad et al., 2018). Not much research was
found on osmotic adjustment specifically in the elongation phase,
but Karamanos et al. (1983) reported a differential increase in
proline content due to drought stress when comparing before
and after anthesis. This suggests a differential strategy of osmotic
adjustment in the presence of the ear as a new sink.

The present study focused on drought-induced patterns of
several physiological parameters in a phenological context. A
drought sensitive wheat cultivar (Triticum aestivum L. cultivar
Viking) was subjected to severe drought stress that started
before booting and lasted 2 weeks after flowering. The plants
were rewatered when they started visually wilting to maintain
growth: once before and once after anthesis. Water content, leaf
xylemwater potential and osmotic potential were measured three
times a day, every 3 days. By comparing the osmotic to the
xylem water potential and water content, we could differentiate
between a changing water content and a changing osmolyte
content. By measuring the osmotic potential, instead of sugar
or proline content alone, all osmolytes were taken into account
and therefore represent the osmotic adjustment best. We wanted
to assess when osmotic adjustment is occurring, specifically if
there were diurnal patterns or phenological influences, and how
it is affected by drought stress. Because the two rewatering events
took place before and after flowering, we could examine if there
was a difference in strategy when the developing ear was present
as a new carbohydrate sink.

2. MATERIALS AND METHODS

2.1. Plant Material and Environment
A drought sensitive spring wheat cultivar (Triticum aestivum
L. cultivar Viking) was selected from a screening experiment
(data not shown). The seeds were sown on June 3, 2020 (Days
After Sowing, DAS 0) in 4 L pots filled with equal amounts of
commercial potting mix (Structural nr1, Schebbout M., Kaprijke,
Belgium: DM30%, pH 5-6.5, EC 350µS.cm−1 withNPK fertilizer
14-16-18 1.25 kg.m−3). In 56 pots, ten seeds per pot (n = 560)
were sown at a depth of 3 cm and irrigated immediately with 100
mL water. Seed germination was over 90%. The pots were placed
on two adjacent table beds in a growth chamber (WEKK 10.40.8L
SN 40816000381001, Weiss Technik, Reiskirchen-Lindenstruth,
Germany), where the environment was controlled. During the
first 4 weeks of plant development (DAS 0-33), the temperature
was set at 21/ 16 ◦C day/ night cycle (8 a.m. to 8 p.m.). The
day was simulated by allowing the environment to linearly
come to a temperature of 21 ◦C at 12 p.m. The temperature
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started declining at a constant rate again from 2 p.m. to reach
a temperature of 16 ◦C at 8 p.m. After 4 weeks of growth (DAS
33; trefoil stage), the temperature was increased to a 23/ 17 ◦C
day/ night cycle with a similar daytime increase. The plants were
illuminated with artificial light (T5 Reflex Cool White, Philips,
Eindhoven, Netherlands). The photoperiod was set at 12 h/ 12 h,
matching the temperature. In the first 4 weeks the lamps were set
at 200µmol.m−2.s−1 during the day, with a temporary increase
to 300µmol.m−2.s−1 between 12 and 2 p.m. After 4 weeks this
was increased to 300 and 400µmol.m−2.s−1 respectively. The
relative humidity (RH) was controlled between 40 and 60%, but
data showed that RH reached 75% during the days and 90%
during the nights.

Temperature and relative humidity were measured with
a RH/T sensor (type EE08, E+E Elektronik, Engerwitzdorf,
Austria) in the middle of each table bed. Photosynthetic Active
Radiation (PAR) was measured with a quantum sensor (SQ-
110-SS, Apogee Instruments, Logan, UT-US) also in the middle
of each table bed, and atmospheric CO2 concentration was
monitored with a carbon dioxide probe (CARBOCAP GMP343,
Vaisala, Vanha Nurmijärventie, Finland). The sensors were
placed at the height of the canopy. The data was logged every
2 min with a data logger (CR1000 and AM16/32 Multiplexer,
Campbell Scientific, Logan, UT-US) and collected in the
PhytoSense software (Phyto-IT, Ghent, Belgium).

2.2. Watering and Drought Treatment
The pots were randomly reorganized in the growth chamber
every 2 weeks (on DAS 12, 26, 42 and 54) until the start of
the drought treatment (on DAS 58) to avoid positional artifacts.
To minimize inter-pot variability, the plants did not receive any
fertilizer, nor were they treated with pesticides. No pests were
detected during the experiment. Every 2–3 days the plants were
irrigated manually at field capacity, which corresponded to a
Volumetric Water Content (VWC) of 35%. This was confirmed
by regular measurements with a soil moisture sensor (SM 300
Moisture Sensor and HH2 Moisture Meter, Delta-T Devices,
Cambridge, UK). On DAS 54 (at flag leaf appearance), one bed,
containing half of the pots (n = 280) was assigned to the control
treatment and received irrigation to field capacity as described
before. The other bed (n = 280) was assigned to the drought
treatment and received irrigation at 50% field capacity on DAS
54 and 56 to initiate the drying process. By DAS 58, the drought
treatment was started and irrigation was withheld. The drought
stressed plants were irrigated to field capacity again on DAS 66
and 75, when the plants started wilting and turgor was lost, after
which the drought treatment continued.

2.3. Measurements
Measurements were performed from the start of the drought
treatment (DAS 58, 3 days after flag leaf appearance) until the
end of the experiment (DAS 84, 10–12 days after flowering) every
3 days. Each measurement day constituted three measurement
periods: predawn (6–7:30 a.m.), midday (12–1:30 p.m.) and
afternoon (5–6:30 p.m.). The measurements were performed in
five repetitions for each treatment and included: stem fresh
and dry weight, xylem water potential of the bottom leaf and

flag leaf and osmotic potential of the stem base and flag leaf.
Plant material was weighed within 2 h after excision with a
precision balance (ML104T/00, Mettler Toledo, Columbus, VS)
and then dried at 60 ◦C for at least 7 days after which the dry
weight was determined. For the water potential measurements,
the leaves were excised and stored for a fewminutes in an air tight
doubled plastic bag with elevated humidity by enclosing a moist
paper towel between the outer and inner bag and by breathing
in the bag a few seconds before introducing plant material in
the inner bag. This ensured equilibrium of any water potential
gradient within the leaf (Trueba et al., 2019) and prevented
dehydration (Corso et al., 2020). The leaf water potential was then
measured with a Scholander pressure chamber (model 600, PMS
Instrument Company, Albany, OR-USA). The osmotic potential
was measured by cutting a small piece of the base of the stem,
or the base of the flag leaf. These samples were flash frozen in
liquid nitrogen and stored at –80◦ C until they were analyzed
with a thermocouple psychrometer (HR 33T,Wescor, Logan, UT-
US) according to the manufacturer’s instructions. Leaf and stem
samples were taken from the main shoots of the plants that were
furthest in their development (while still omitting outliers) to
limit the biological variation in phenology at each sampling.

2.4. Data Analysis
The data was processed and visualized in R. Relative water
content (RWC, -) was calculated as

RWC =
FW − DW

FW
(1)

with FW the fresh weight in g and DW the dry weight in g. Since
both the total (xylem) water potential and osmotic potential were
measured in the flag leaf, the turgor could be calculated as the
difference between these two variables. To visualize the osmotic
adjustment, the osmolyte content was calculated according to the
Boyle - Van ’t Hoff equation (Nobel, 1969):

ROC =
ψπRWC

RgT
(2)

with ψπ (MPa) the osmotic potential, Rg the ideal gas constant
(8.314 J.K−1.mol−1), T (K) the temperature in the psychrometer
chamber, and ROC (mol.g−1) the relative osmolyte content, since
the water volume is expressed relatively to the fresh weight.
ROC is an approximation of the osmolyte content, since there is
usually a need for a correction factor as the cellular content is not
an ideal solution (Yokozeki, 2006).

After checking normality with the Shapiro-Wilk’s test, Student
t-tests were performed at each time point to detect significant
differences between the control and drought treatment of
the different variables. To detect significant trends over time,
multiple linear regression analyses were performed for the xylem
water potential (ψx, MPa), osmotic potential (ψπ , MPa), relative
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water content in the stem (RWC, -) and turgor in the flag leaf (ψp,
MPa):

ψx = ψsoil + DAS ∗ Leaf + Time ∗ Leaf (3)

ψπ = ψsoil + DAS ∗ Organ+ Time ∗ Organ (4)

RWC = ψsoil + DAS+ Time (5)

ψp = ψsoil + DAS+ Time (6)

with ψsoil the soil water potential in kPa, DAS the day after
sowing, Time a dummy variable indicating the time of day
when the measurements were taken (predawn, midday or
afternoon) with midday as the base (to be able to easily compare
the changes predawn-midday and midday-afternoon), Leaf a
dummy variable indicating the bottom or flag leaf with the flag
leaf as the base and Organ a dummy variable indicating the flag
leaf or stem with the stem as the base. To detect daily osmotic
adjustment, another regression analysis was performed linking
the osmotic potential to the RWC:

ψπ = RWC + Treatment ∗ Time (7)

with Treatment a dummy variable indicating the control or
drought treatment with the drought treatment as the base.

3. RESULTS

The present study focused on assessing the physiology, and more
particular the osmotic adjustment, of a drought sensitive wheat

cultivar experiencing both pre- and post-anthesis drought. The
plants were grown in a growth chamber which allowed control
of the environment so that the conditions in the field could
be simulated without much fluctuation. Figure 1A shows the
vapor pressure deficit (VPD) in the growth chamber. Nighttime
VPD fluctuated around 0.2 kPa and 0.3 kPa toward the end of
the experiment. Daytime average VPD increased steadily from
0.5 to 1.0 kPa. The increase is mostly due to a slow decrease in
relative humidity (data not shown) due to the decreasing number
of transpiring plants, since plants were removed every 3 days
for measurements. Around noon, VPD was highest due to an
increase in temperature and radiation, simulating the influence of
the sun. In Figure 1B, the stress imposed on the drought treated
plants is visualized. The soil water potential reached values of –
100 kPa (corresponding to 0%VWC) after withholding irrigation
for a week. Values lower than –80 kPa should be interpreted
with care because of the measurement range of the sensors. The
true soil water potential was probably lower than –100 kPa at
these points, and hence the stress on the plant more critical.
The blue dotted lines indicate where the drought treatment was
rewatered. The control plants also showed some fluctuation in
soil water potential. However, the lowest soil water potential
values still corresponded to 2–4% VWC (data not shown) and
do not indicate drought stress yet.

The xylem water potential was measured in the flag
(Figure 2A) and bottom leaf (Figure 2B) with a pressure
chamber. There was a continuous overall decline in the water
potential of the bottom leaves (Figure 2B) that is significant

FIGURE 1 | Growing environment of the wheat plants. (A) Vapor pressure deficit (VPD, kPa, n = 2) present in the growth chamber. (B) Soil water potential (kPa, n = 4)

measured with tensiometers. Darker lines represent the mean while the lighter band the standard error. Rewatering events are marked with a blue dotted line.
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FIGURE 2 | Development of different physiological variables in time, expressed as “days after sowing” (DAS): xylem water potential in the flag leaf (A) and bottom leaf

(B), osmotic potential in the flag leaf (C) and in the stem (D) and water content in the stem (E). Above the graphs, different phenological periods or events are

visualized on the same timeline as the data. Rewatering events are marked with a blue dotted line. The control and drought treatment are depicted in blue and orange,

respectively. Every 3 days, these variables were measured at predawn, midday and afternoon. Mean (n = 5) and standard error are depicted and the means are

connected with lines to improve the visibility of the trends. Significant differences between the control and drought treatment are indicated below the measurements.

Significance levels: *p < 0.05, **p < 0.01, and ***p < 0.001.

(β = −0.023 ± 0.0004MPa.day−1, p = 2.63 × 10−8, df =

461, coefficient of the interaction term DAS × Leafbottom in
Equation 3). This is probably an indication of the senescence
of the bottom leaves, that gradually lost water. Predawn water
potentials were close to zero as the plant was filled with water
and no transpiration was occurring yet. During the day, the water
potential declined in all leaves. This decline was much stronger
in the flag leaves (β = 0.82 ± 0.05MPa, p < 2 × 10−16,
coefficient of the term Timepredawn) than in the bottom leaves
(β = 0.41± 0.12, p = 1.06× 10−8, difference in the coefficients
of Timepredawn and Timepredawn × Leafbottom), as the flag leaf is
most active. In the afternoon, the water potential did not change
significantly any longer (p = 0.659, coefficient of Timeafternoon).
Drought stress had a significant impact on the water potential

(p < 2 × 10−16, coefficient of Soil). The time points where the
control and drought treatment differed significantly are marked
in Figure 2. Even though the flag leaf is more active and its water
potential values were generally lower, the bottom leaves showed
the stress much earlier. After rewatering, the water potential was
restored quickly, within 3 days, with no difference before or
after anthesis.

The osmotic potential was measured in both the flag leaf
(Figure 2C) and the stem (Figure 2D) with a thermocouple
psychrometer. This time, not the bottom leaf, but the stem
itself was sampled giving a better insight into the management
of stem reserves. An overall decline can be seen in the stem
(β = −0.020 ± 0.004MPa.day−1, p = 9.54 × 10−8, df =

443, coefficient of the interaction term DAS × Organstem in
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Equation 4). This is most likely the result of stem carbohydrate
mobilization (Bidinger et al., 1977; Blum, 1998), where sugars
are imported into the stem as a reserve for the grain filling.
The diurnal variation that was present in the xylem water
potential, was less pronounced in the osmotic potential. In the
morning, the osmotic potential in the flag leaves was 0.12 ±

0.05MPa higher than at midday (p = 7.07 × 10−3, coefficient
of Timepredawn). This decline in the morning was not present
in the stem (β = 0.005 ± 0.11MPa, p = 0.0663, difference
in the coefficients of Timepredawn and Timepredawn × Organstem).
The osmotic potential did not change significantly between
midday and afternoon measurements (p = 0.544, coefficient of
Timeafternoon). Drought had a significant impact on the osmotic
potential (p < 2 × 10−16, coefficient of Soil). The time points
where the control and drought treatment differ significantly
are marked in Figures 2C,D. And, as with the xylem water
potential, the effects of drought on the osmotic potential were
also more noticeable at the base of the plant than in its flag leaf.
Figure 2C also shows that before anthesis, the osmotic potential
was restored in the flag leaves within 3 days after rewatering
(DAS 69). After anthesis, however, the osmotic potential was not

yet fully restored 3 days after rewatering (DAS 78). In the stem
(Figure 2D), the osmotic potential was only partially restored
before anthesis (DAS 69), while it remained low after anthesis
(DAS 78, 81 and 84).

Figure 2E shows the relative water content (RWC) in the
stems of the wheat plants. There was a general decline in RWC
over time that is significant (β = −0.0040 ± 0.0002MPa.day−1,
p < 2 × 10−16, df = 224, coefficient of DAS in Equation
5). This decline was much stronger after anthesis and is due
to a strong increase in dry weight, while the absolute water
content decreased (data not shown). The regression showed
no significant changes in RWC in the morning (p = 0.278,
coefficient of Timepredawn), nor in the afternoon (p = 0.216,
coefficient of Timeafternoon). The effect of drought on the RWC
was significant (p = 1.24 × 10−15, coefficient of Soil).
Rewatering before anthesis slightly increased the RWC again
(DAS 69), but after anthesis (DAS 78), no effect of rewatering was
visible.

The turgor in the flag leaf (Figure 3) increased slightly over
time (β = 0.016± 0.003MPa.day−1, p = 2.01× 10−6, df = 220,
coefficient of DAS in Equation 6). After a significant decrease in

FIGURE 3 | Calculated turgor (MPa) present in the flag leaves of the wheat plants. Rewatering events are marked with a blue dotted line. The control and drought

treatment are depicted in blue and orange, respectively. Mean (n = 5) and standard error are depicted and the means are connected with lines to improve the visibility

of the trends. Significant differences between the control and drought treatment are indicated above the measurements. Significance levels: *p < 0.05.
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the morning (β = 0.68 ± 0.06MPa, p < 2 × 10−16, coefficient
of Timepredawn), the turgor remained unchanged in the afternoon
(p = 0.482, coefficient of Timeafternoon). Interestingly, drought
had no significant impact on the turgor (p = 249, coefficient
of Soil). When looking at the difference between the control
and drought treatment at each time point (Figure 3), it can
be seen that the drought treated plants had a lower turgor at
predawn only when drought was severe (DAS 66 and 75). This
caused wilting and led us to rewater the plants at the end of
that day. Rewatering before anthesis restored the turgor to the
same level as the control treatment. Rewatering after anthesis
led to a significant increase in turgor in the drought treated
plants (DAS 78).

Figure 4 shows the relation between the osmotic potential and
the RWC. The RWC clearly influenced the osmotic potential
(β = 7.26 ± 0.35MPa, p < 2 × 10−16, df = 230, coefficient
of RWC in Equation 7). This means that most of the changes
in osmotic potential can be explained by a changed RWC
and not necessarily a change in osmolyte content. No clear
pattern is visible when looking at the data divided in predawn,
midday and afternoon measurements, which is confirmed by the
regression analysis (p = 0.531, 0.317, 0.298, 0.216, respectively
for coefficients of Timepredawn, Timeafternoon, Treatmentdrought ∗
Timepredawn and Treatmentdrought ∗Timeafternoon). This means that
the time of day does not explain any additional differences in
osmotic potential and hence, a diurnal pattern in sugar content
is not present in the wheat plants. However, drought did have
a significant effect (β = −0.25 ± 0.05MPa, p = 5.739 ×

10−6, coefficient of Treatmentdrought). Specifically, at the same
RWC, the drought treated plants had an osmotic potential of
0.25±0.05MPa lower than the control treatment. The relative
osmolyte content (ROC), as calculated in Equation 2, is visualized
over time in Figure 5. This figure shows a constant increase
in osmolytes in the control, which is likely due to the sugar
mobilization. Under drought stress, the osmolytes are increased
significantly. Rewatering before anthesis showed a quick decline
to nearly the level of the control plants again at DAS 69. After

anthesis, however, the osmolyte concentration remained high
(DAS 78, 81 and 84).

4. DISCUSSION

This work aimed to unravel whether and when osmotic
adjustment takes place in wheat plants and, more specifically,
how the osmotic adjustment is affected when the plants
are subjected to drought. The plants were grown in a
growth chamber, minimizing the day-to-day variation in the
environment (Figure 1). This is convenient because that means
the temporal differences in the plant variables are due to
changes in the physiology of the plant and not because of
environmental fluctuations. These physiological changes are
driven by phenology in the control plants and by both phenology
and drought stress in the drought treatment. Because of
rewatering events before and after anthesis, we could differentiate
between osmotic adjustment before and after the presence of the
developing ear as a carbohydrate sink.

Diurnal osmotic potential patterns have been observed in a
few species, e.g. in maize (Acevedo et al., 1979), barley (Koroleva
et al., 2002), sorghum (Acevedo et al., 1979; Girma and Krieg,
1992), grapevine (Sancho-Knapik et al., 2016), and trees (Rada
et al., 1985; Tixier et al., 2018; Gersony et al., 2020). It is thought
to be a drought adaptive mechanism to maintain turgor above
the threshold for stomatal closure (Rada et al., 1985). Species
displaying daily osmotic adjustment increase their sugar content
in the morning to build up turgor by noon (Sancho-Knapik et al.,
2016). Because of the frequency of our measurements, we could
study the diurnal patterns of the osmotic potential in wheat. By
combining it with the xylem water potential and relative water
content (RWC) of the plants, any change in osmotic potential
due to changes in the water content could be identified. Thus,
any differences in osmolyte content could be distinguished from
changes in water content.

As the flag leaf is the most important source of photosynthesis
(Evans et al., 1972; Makunga et al., 1978), it was expected

FIGURE 4 | Relation between the osmotic potential and relative water content in the stems of wheat plants. The control treatment is represented by open circles while

the drought treatment by full circles. Different colors represent different timeslots during the day.
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FIGURE 5 | Relative Osmolyte Content (ROC) over time in wheat stems, visualizing the osmotic adjustment. Rewatering events are marked with a blue dotted line.

The control and drought treatment are depicted in blue and orange, respectively. Mean (n = 5) and standard error are depicted and the means are connected with

lines to improve the visibility of the trends. Significant differences between the control and drought treatment are indicated below the measurements. Significance

levels: *p < 0.05, **p < 0.01, ***p < 0.001.

that, because of a higher stomatal conductance (Del Pozo
et al., 2007), the xylem water potential in the flag leaf declined
significantly in the morning, and more than in the bottom
leaf (Figure 2A, both before and after anthesis). This elevated
negative pressure resulted in a significant decline in the RWC
of the plant (Figure 2E). The osmotic potential in the flag leaf
showed a significant drop in the morning as well, although less
pronounced than the xylem water potential drop (Figure 2C). A
drop in osmotic potential means that the osmolyte concentration
increased. This can be due to either a decrease in water content,
an increase in osmolyte content, or a combination of both.
The severe drop in xylem water potential suggests that any
change in osmotic potential could be explained by a decrease
in its water content. This is confirmed by Figure 3 that shows
a decline in turgor pressure in the flag leaf in the morning,
which means that the osmolyte content was not increased to
uphold the turgor. Figure 5 does not show any decrease during
the morning either. Consequently, the photosynthesis products
that were synthesized in the flag during the morning were being
transported toward sinks. In the stem, the osmotic potential did
not decline significantly in the morning.

In the afternoon, there was no change in activity in the
wheat plants. Xylem and osmotic potential values, and thus
also turgor, remained unchanged in the flag leaves, despite a
high VPD present in the growth chamber. These results indicate
that stomatal conductance was increased during the morning
and remained constant for the remainder of the day. In the
afternoon, no more additional water was lost which is shown
by the xylem water potential. Also in the stem, no significant
changes in water potential or water content were detected in
the afternoon. When visualizing the osmotic potential relative
to the RWC (Figure 4 and Equation 7), the absence of daily
osmotic adjustment in the stem was confirmed. At a given
RWC, the osmotic potential was the same at predawn, midday
or in the afternoon. Diurnal osmotic adjustment would have
resulted in variation in osmotic potential measurements that
could not be explained by the RWC and the treatment alone.
Our research thus shows that diurnal osmotic adjustment does
not occur in wheat plants. Photoassimilates that are being
produced are most likely immediately transported to sinks under
well-watered conditions or even mild drought stress. During
stem mobilization, the stem is the main sink (Ehdaie et al., 2006;
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Saint Pierre et al., 2010). In the stem, the sugars are converted
to sucrose, fructans and starch (Takahashi et al., 2001; Scofield
et al., 2009) to avoid osmotic potentials becoming too low. After
anthesis, the ear becomes the main sink (Maydup et al., 2010).

When the plants do not experience severe drought stress,
low water potentials are not favored. The plants allow a more
intense use of their water storage since they maintain a high
osmotic potential (Figures 2C,D). However, when drought stress
becomes severe, as on DAS 66 and 75, the osmotic potential
is lowered by osmotic adjustment. The xylem water potential
started low at predawn (Figures 2A,B), indicating that the water
storage was not refilled properly during the night. On DAS 66
the osmotic potential declined more than the xylem potential in
the flag leaf (Figures 2A,C) which indicates osmotic adjustment.
On DAS 75, the data in the afternoon was influenced already by
the rewatering event. In the stem, the osmotic potential declined
significantly as well when the plants experienced severe drought
(Figure 2D). Osmotic adjustment due to drought in the stem
is also confirmed by Equation 7, where the drought treatment
explained a significant part of the variation in osmotic potential
that could not be explained by the RWC, and Figure 5, which
shows a significant increase in Relative Osmolyte Content (ROC)
due to drought on several days. The low osmotic potentials
enforced water flow from the soil to the stem and the leaves.
Our data thus show a significant osmotic adjustment during the
elongation phase and at the beginning of the grain filling due to
drought.

Karamanos et al. (1983) found a strong correlation between
leaf water potential and proline content in different wheat organs,
confirming the osmotic adjustment during drought stress as well.
Moreover, the authors found that the proline content increased
more readily upon a decreasing water potential before anthesis,
suggesting a quicker response and osmotic adjustment compared
to after anthesis. In our experiments, the inverse was measured.
Before anthesis, the osmotic potential started declining at the
day of turgor loss, which was the day of rewatering (DAS 66,
Figure 2), while after anthesis, the osmotic potential in the
drought treated plants was already significantly lower than the
control at DAS 72, which was 3 days before the turgor loss.
This does not match the findings of Karamanos et al. (1983).
However, it is likely that the plants recovered only partially after
the first rewatering. Figure 2E shows that on DAS 69, the RWC
of the drought stressed plants did not yet reach the level of
the control, when the drought stress started progressing again.
Our data therefore cannot clearly distinguish the response to
drought before or after anthesis. The recovery after rewatering,
however, does show distinct differences. Siddique et al. (2000)
saw a complete recovery of the water content when the drought
was limited to the vegetative stage. While the RWC in the stem of
the drought stressed plants did not reach the level of the control
before anthesis in our experiment (Figure 2E), the xylem and
osmotic potential in de flag leaf did (Figures 2A,C). Also the
xylem water potential in the bottom leaf recovered completely.
Figure 5 shows a fast decline in ROC in the stem after the first
rewatering as well. Our data thus show that before anthesis the
recovery is quick: within 3 days, possibly faster. The second
rewatering took place after anthesis. The xylem water potential

was again quickly restored in the plant (DAS 78 in Figures 2A,B),
which indicates a restoration of the leaf functioning. These results
match the findings of Tatar et al. (2016), who found that the
photosynthetic rate, gas exchange and transpiration were also
restored upon rewatering at anthesis. However, the recovery of
the osmotic potential in the flag leaf and the stem lags behind
(Figures 2C,D, DAS 78-82). Figure 5 shows a prolonged increase
in ROC in the stem after the second rewatering. After anthesis,
the wheat plants thus maintain a high sugar content in the stem.
This allows the plants to maintain turgor. Bramley et al. (2015)
also showed that wheat is able to preserve stem turgor under
drought, even better than in the flag leaf. The authors attributed
this to osmoregulation with the ultimate goal of directing water
predominantly to the flag leaf. Our data confirms their hypothesis
and reveals that this effect is much stronger after anthesis. The
osmotic potential in the flag leaf was also retained low for longer
after anthesis compared to before anthesis. This is to maintain
turgor with the goal of maintaining a high stomatal conductance
(Ahmad et al., 2018). This led to transpiration in the flag leaf and
a hence a drop in leaf xylemwater potential which results in a flow
of water to the flag leaf instead of the reserves in the stem. This
is confirmed by Figure 2E, where the water content in the stem
remains low despite a decrease in osmotic potential. Figure 3
confirms that the water reaches the flag leaf, as the turgor in the
drought treated plants reaches a level significantly higher than the
control (DAS 78, predawn).

A big difference in physiology before and after anthesis, is the
presence of a new and important sink: the developing ear. We
hypothesize that this is the main difference as to why the osmotic
adjustment is maintained longer after anthesis. The developing
grain requires vast amounts of sugars. These sugars mostly come
from the activity of the flag leaf, the ear itself, when it is still green
and photosynthesizing (Araus et al., 1991; Maydup et al., 2010),
and a small portion originates from stem retranslocation or
remobilization at the end of the grain filling (Bidinger et al., 1977;
Blum, 1989). Under drought, the proportion of remobilization
from the stem storage can increase from 10% up to 40% of the
final grain dry matter (Gent, 1994). The activity of the flag leaf
and the ear still remain the largest contributors to the developing
grain, however.We thus hypothesize that the osmotic adjustment
is more important after anthesis simply because the developing
grain is a more important sink than the stem was before anthesis.
This hypothesis does not coincide completely with the findings
of Karamanos et al. (1983), who discovered a quicker osmotic
adjustment before anthesis. Their results suggest that osmotic
adjustment is more important before anthesis, when the stem
is the main sink. However, they studied osmotic adjustment
by measuring proline content. While proline is often linked
to osmotic adjustment, it is also still under debate whether it
is an adaptive trait or a response to drought stress (Ashraf
and Foolad, 2005). Nonetheless, it is still possible that different
strategies exist for the response to drought vs. the recovery
after rewatering.

Our research gives a broad understanding in the leaf
functioning and osmotic adjustment due to drought during
these two important growth phases. More research is necessary
to confirm our hypothesis that the plant invests more energy
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in osmotic adjustment during grain filling than during stem
mobilization (in the elongation phase). While we only used one
drought sensitive cultivar, genotypic differences are important
to study in future research. The increase in proline content
under drought is known to differ among genotypes (Shao
et al., 2006). Differences in the capacity of osmotic adjustment
between genotypes have also been observed (Zivcak et al., 2009).
Moreover, not only drought will have significant effects on the
physiology of the plants. Climate change will also entail increased
temperatures, and not only drought events. The combined effect
of these abiotic stresses have been studied in wheat (Shah and
Paulsen, 2003; Porter and Semenov, 2005; Prasad et al., 2006;
Pradhan et al., 2012; Kadam et al., 2014; Asseng et al., 2015). Some
studies warn for a higher impact of increased temperatures (e.g.
Semenov and Shewry, 2011). However, these studies all measured
the physiological parameters at only a few time points, often
even only at maturity. As demonstrated in this study, higher
frequency measurements can distinguish differences in different
growth phases.

In conclusion, wheat plants do not show daily osmotic
adjustment. Under drought, sugars are being concentrated
to preserve leaf functioning. Before anthesis, rewatering
restored the xylem and osmotic potential quickly. After
anthesis, the osmotic potential was not completely
recovered in the stem and flag leaf and remained low
for longer. The measurements show that water flow is
prioritized to the flag leaf at the expense of the stem water
reserves.
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