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Starch is a polysaccharide that is stored to be used in different timescales. Transitory
starch is used during nighttime when photosynthesis is unavailable. Long-term starch is
stored to support vegetative or reproductive growth, reproduction, or stress responses.
Starch is not just a reserve of energy for most plants but also has many other roles,
such as promoting rapid stomatal opening, making osmoprotectants, cryoprotectants,
scavengers of free radicals and signals, and reverting embolised vessels. Biotic and
abiotic stress vary according to their nature, strength, duration, developmental stage
of the plant, time of the day, and how gradually they develop. The impact of stress
on starch metabolism depends on many factors: how the stress impacts the rate of
photosynthesis, the affected organs, how the stress impacts carbon allocation, and
the energy requirements involved in response to stress. Under abiotic stresses, starch
degradation is usually activated, but starch accumulation may also be observed when
growth is inhibited more than photosynthesis. Under biotic stresses, starch is usually
accumulated, but the molecular mechanisms involved are largely unknown. In this mini-
review, we explore what has been learned about starch metabolism and plant stress
responses and discuss the current obstacles to fully understanding their interactions.
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INTRODUCTION

Energy management is vital for plant development, and it is diversely regulated across species
depending on life forms and environmental conditions. Photosynthetic reactions in leaves generate
carbohydrates that can be immediately utilised as an energy source. However, part of the
photosynthetic products in most plants will be stored as transitory starch during the daytime
(Figure 1A; Stitt and Zeeman, 2012; Smith and Zeeman, 2020). During the nighttime, the starch is
broken down (Figure 1B) to provide a source of carbon for continued sucrose synthesis and export
and respiration, thus fueling the synthesis of protein and other cellular components, growth and
development throughout the whole 24-h cycle (Figure 2; O’Leary et al., 2017; Smith and Zeeman,
2020). The rate of degradation during the nighttime is regulated so that starch is almost depleted
at dawn when photosynthesis resumes and a new cycle begins (Smith and Stitt, 2007; Graf et al.,
2010). The circadian rhythm highly regulates this carbon management process.

More generally, starch acts as a sugar source when photosynthesis is impaired or unavailable,
not only in the nighttime but also during seed germination, tuber sprouting, tissue regeneration,
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or under stress conditions (MacNeill et al., 2017; Smith and
Zeeman, 2020). Starch can also have specialised roles: e.g., in
the guard cells, starch can be degraded during the daytime to
promote rapid stomatal opening (Valerio et al., 2011; Flütsch
et al., 2020). Accordingly, starch can be stored to be used

as a reserve in different timescales. Usually, transitory starch
is synthesised and degraded within a day. In contrast, long-
term starch is stored, often outside the source organ, to
support vegetative or reproductive growth, reproduction, or
stress responses (MacNeill et al., 2017).

FIGURE 1 | Daily starch metabolism. (A) During the day, CO2 is fixed by the Calvin cycle, and trioses phosphates will be exported out of the chloroplast to the
cytosol through a triose phosphate transporter protein to be converted into sucrose. While fructose 6-phosphate will be converted into glucose 6-phosphate by
phosphoglucose isomerase (PGI), then converted to glucose 1-phosphate by phosphoglucomutase (PGM), later converted to ADP glucose by ADP glucose
pyrophosphorylase (AGPase), after polymerised by starch synthases (SS) and granule bound starch synthases (GBSS) and branched by branching enzymes (BE)
and debranching enzymes (DBE). (B) During the night, the surface of the starch granule is loosed by glucan phosphorylation catalysed by glucan water dikinases
(GWD), and phosphoglucan water dikinases (PDW) followed by the action of β-amylases (BAMs, especially BAM3 with a subsidiary role for BAM1, see Smith and
Zeeman, 2020) and isoamylase 3 (ISA3). Starch breakdown results in the formation of maltose and maltotriose. Maltotriose is converted by disproportionation
enzyme 1 (DPE1) to glucose and longer glucans that can be degraded to maltose by β-amylases. The action of BAM3, ISA3, and PDE1 requires removal of
phosphate by the glucan phosphatases starch excess 4 (SEX4) and Like Sex Four 2 (LSF2). Glucose is exported to the cytosol by glucose transporter (GT), and
maltose is exported out by a maltose exporter 1 (MEX) to be utilised as an energy source for nighttime reactions.
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FIGURE 2 | Plant daily transitory starch carbon management processes. (A) During the day, CO2 is fixed by the Calvin cycle generating sugar that will be promptly
utilised as an energy source for day metabolism, such as nitrite and nitrate fixation and amino acids biosynthesis. Part of the fixed carbon is temporarily stored in the
plastids as starch. (B) During the night, starch is broken down into glucose that respiration will generate energy for nighttime metabolism reactions, such as protein
biosynthesis and plant growth.

Stress can affect carbon metabolism by affecting
photosynthetic rate, carbon allocation, and night respiration.
These impacts can reduce plant growth and development
depending on the type of stress and affected tissue. Studies
related to the effects of stress on starch metabolism have faced
significant challenges because the response depends on the
nature, strength and duration of the stress, how gradually it
develops, and plant developmental stage and the time of the day
and (Köhl, 2016). In addition, experiments on stress responses
are usually not standardised, making it difficult to compare
different studies. Furthermore, as transitory starch is in constant
flux, experiments that measure starch at only one or a few time
points may not capture complex responses on the diel rhythms.
Finally, it is now clear that other degradation pathways can
operate under stress conditions in the light in addition to the
daily nocturnal degradation pathway.

STARCH METABOLISM AND ABIOTIC
STRESS

Changes in the plant starch metabolism due to abiotic stress
depend on how the stress affects growth, the relative extent
of the inhibition of growth and photosynthesis, and whether
modifications in C allocation support stress responses. Each of
these factors depends on the type of the stress, its intensity
and duration. Early stress responses require resources to provide
energy and support the synthesis of new molecules to protect,
restore, and acclimate the plant. As photosynthesis is frequently
impaired by stress, an important role is played by carbon
reallocated from starch, avoiding a significant reorganisation of

metabolism (Hummel et al., 2010). Starch synthesis is decreased
in water and temperature stress, mainly due to stomatal closing
and lower rates of photosynthesis (Zrenner and Stitt, 1991;
Thitisaksakul et al., 2012). However, there are also situations in
which the stress arrests growth without affecting photosynthesis,
leading to an overall increase in starch reserves (Hummel et al.,
2010; de Morais et al., 2019).

As recently reviewed, transitory starch content is usually
observed to decline in leaves in response to salt, drought, and cold
stress (Thalmann and Santelia, 2017; Dong and Beckles, 2019),
consistent with the idea that starch is synthesised at lower rates
and/or is broken down more rapidly to redirect carbon for stress
responses. An example of the increased degradation under stress
is the stimulation of starch breakdown even under mild drought
(Zrenner and Stitt, 1991) and by low temperature (Kaplan and
Guy, 2004). Together, this allows carbon to be reallocated to
make osmoprotectants or cryoprotectants that promote osmotic
adjustment and stabilise proteins (Kempa et al., 2008; Krasensky
and Jonak, 2012; Tarkowski and Van den Ende, 2015; Zanella
et al., 2016); scavengers of free radicals (Couée et al., 2006;
Keunen et al., 2013); and signals that refine stress responses
(Rolland et al., 2006; Rook et al., 2006).

Starch degradation in response to stress may use different
combinations of enzymes, while nighttime degradation uses
mainly BAM3 and ISA3. Under water, stress amylase 3 (AMY3)
and BAM1 are induced (Thalmann and Santelia, 2017). BAM1
can be upregulated by temperature, osmotic and salinity stress
in leaf guard cells and roots (Kaplan and Guy, 2004, 2005;
Kempa et al., 2008; Valerio et al., 2011). BAM1 protein is
regulated by reduced thioredoxins, which are light-dependent,
possibly counteracting starch synthesis during the daytime
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(Valerio et al., 2011; Zanella et al., 2016). BAM1 and α-amylase 3
(AMY3) promote daytime starch degradation to support proline
biosynthesis in mesophyll cells under osmotic stress (Zanella
et al., 2016). In guard-cells, BAM1-dependent starch degradation
promotes stomatal opening in diel rhythms in response to
osmotic stress (Valerio et al., 2011).

In some experiments, plants accumulated starch in response
to stress (Thalmann and Santelia, 2017). This apparent
contradiction is associated with the level of stress and timing
of the measurements. For example, in early stress, starch
degradation may predominate as C is mobilised to support
for adaptive responses; in mild drought and salt stress-
responses, starch may accumulate because growth is inhibited,
but photosynthesis not is proportionately affected (Hummel
et al., 2010; de Morais et al., 2019). While in severe stress, such
as high temperatures associated with drought during grain filling,
starch degradation may predominate because carbon assimilation
is heavily affected due to stomata closure or damage to the
photosystems (Bahuguna et al., 2017; Dong and Beckles, 2019).
As an alternative, starch accumulation under salt stress has
been suggested to play a role in capturing Na+ in its granules
(Kanai et al., 2005).

The hormone abscisic acid (ABA) promotes stomatal
closure under water, temperature, and osmotic stresses,
lowering the internal leaf CO2 and inhibiting photosynthesis.
However, in these conditions, starch degradation in the
light allows maintenance of Calvin-Benson Cycle metabolite
levels and, hence, rapid flux in the Calvin-Benson cycle to
generate RuBP that supports rapid oxygenation of RuBP and
photorespiration (Weise et al., 2006; Sharkey, 2019; Stitt et al.,
2021). Photorespiration can aid energy dissipation under stress
by regenerating ADP and NADP, avoiding ROS formation and
overreduction of the chloroplastidal electron transport chain,
which results in photoinhibition (Kozaki and Takeba, 1996;
Timm et al., 2019; Timm and Hagemann, 2020).

Starch can also be stored outside source organs as a reserve
to be used in a situation of longer-term low carbon assimilation.
Reproductive organs seeds or tubers can accumulate large
amounts of starch to support the growth of the next generation.
However, starch is often accumulated outside source leaves
during vegetative growth and can play an essential role in stress
responses. A noteworthy example is starch reserves in the woody
tissues of the trees, in the xylem-ray parenchyma cells (Noronha
et al., 2018). While little is known about the genes involved in
the synthesis and degradation of starch in these tissues, starch
reserves are pivotal for cold tolerance in the winter and budding
in the spring (Sauter, 1988; Witt and Sauter, 1994; Noronha
et al., 2018). Embolised conduits can be refilled at nighttime,
but this requires much energy and solutes, provided from starch
degradation, especially when the soil is dry and photosynthesis
is inhibited (Zwieniecki and Holbrook, 2009). As drought stress
can lead to hydraulic failure due to cavitation and conduit
embolism, starch has a significant role in preventing tree deaths
(McDowell et al., 2011).

Long term starch can also be stored in source organs. In Zea
mays L. (maize, Poaceae), unlike the starch in mature zones of the
leaves, starch levels in the growth zones are kept high at nighttime

(Czedik-Eysenberg et al., 2016). This starch can be used to
support leaf growth in the first hours when nighttime is extended,
showing that this is a mechanism to buffer against stresses that
limit carbon assimilation (Czedik-Eysenberg et al., 2016).

During the late reproductive phase, plants under stress
may use vegetative starch reserves to guarantee the complete
development of their seeds (Trouverie et al., 2006; Cuellar-
Ortiz et al., 2008). In grain crops, reallocation of carbon in
response to abiotic stress can also lead to grain abortion and a
decrease in grain starch (Andersen et al., 2002; Mangelsen et al.,
2011). The regulation of starch synthesis in seeds may differ
from that in leaves. For example, AGPase stability is drastically
reduced by high temperature in maize and Hordeum vulgare
L. (barley, Poaceae), reducing grain starch (Singletary et al.,
1994; Wallwork et al., 1998; Linebarger et al., 2005). In Triticum
aestivum L. (wheat, Poaceae) and Oryza sativa L. (rice, Poaceae),
high temperatures reduced the transcript levels of several starch
synthesis genes, which are correlated with a reduction in seed
size (Hurkman et al., 2003; Yamakawa and Hakata, 2010). Thus,
changes in starch metabolism due to abiotic stress can also affect
the quality and productivity of crops.

STARCH METABOLISM AND BIOTIC
STRESS

Biotic stress can also impact starch metabolism. In contrast to
most abiotic stresses, starch is accumulated, often characterised as
a symptom of pathogen infection. Abnormal starch accumulation
has been described in different types of plant-pathogen responses,
such as Puccinia hordei Otth. (brown rust, Basidiomycota)
infecting barley (Scholes and Farrar, 1987), Plasmopara
viticola (Berk. and M.A. Curtis) Berl and De Toni (downy
mildew, Oomycota) infecting Vitis vinifera L. (grapevine,
Vitaceae) (Gamm et al., 2011), Plasmodiophora brassicae
Woronin (clubroot disease, Cercozoa) infecting Brassicaceae
(Ludwig-Müller and Schuller, 2008), as well as tobacco mosaic
virus (mottled browning) in Nicotiana tabaccum L. (tobacco,
Solanaceae) (Allan et al., 2001; Zhao et al., 2016).

Starch accumulation due to biotic stress has been explored
in detail in Citrus spp. L. (Rutaceae) infected with Candidatus
Liberibacter, which causes citrus greening or Huanglongbing
(HLB), due to the economic impact of this disease in worldwide
orange production (Etxeberria et al., 2009; Fan et al., 2010;
Gonzalez et al., 2011). HLB is known to cause abnormal callose
accumulation in citrus phloem tissues impairing source to sink
flux, leading to decreased fruit production and eventually tree
decay (Koh et al., 2012; Wang et al., 2017; Achor et al., 2020).
Different starch biosynthetic genes were upregulated in response
to HLB in leaves, such as starch synthases, granule bound
starch synthase, and ADP-glucose pyrophosphorylase (Albrecht
and Bowman, 2008; Martinelli et al., 2012; Mafra et al., 2013).
Excessive starch accumulation in the chloroplasts is hypothesised
to damage them and restrict CO2 diffusion (Lemoine et al., 2013).
It has also been proposed that excessive starch accumulation
is due to the stimulated entry of carbon from the cytosol
via a plastid envelope glucose-6-phosphate transporter protein
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(Martinelli et al., 2012). The putative crucial role of this transport
protein is supported by the lack of regulation of this gene in
symptomatic fruits, where starch is not accumulated (Martinelli
et al., 2012, 2013; Martinelli and Dandekar, 2017).

Curiously, HLB is associated with the induction of starch
biosynthesis proteins and with the induction of α-amylase, β-
amylase, and phosphoglucan dikinase in leaves (Albrecht and
Bowman, 2008; Martinelli et al., 2013; Balan et al., 2018).
In healthy plants, these enzymes are commonly expressed at
nighttime (Graf and Smith, 2011; Lloyd and Kötting, 2016)
but can be expressed more strongly to generate soluble sugars
in response to stress (Doyle et al., 2007). In contrast, when
quantifying sugars, an increase in maltose was identified in
symptomatic leaves, with a decreased expression of MEX1 (Fan
et al., 2010). Therefore, it is difficult to formulate a clear account
of how HLB affects the daily rhythms of leaf starch without a
full time course.

Transient expression of the truncated effector of Las15315
bacteria in Nicotiana benthamiana Domin (Solanaceae) resulted
in excessive starch accumulation and overexpression of genes
related to the starch synthesis (Pitino et al., 2018). Likewise,
fungal volatiles emitted by Alternaria alternata (Fr.) Keissl.
(leaf spot, Ascomycota) induce abnormal starch accumulation
in Arabidopsis thaliana (L.) Heynh. (Brassicaceae) and Solanum
tuberosum L. (potato, Solanaceae) (Ezquer et al., 2010; Li et al.,
2011), that is linked with induction of potato SS classes III and
IV, and plastidial changes in redox status of plastidial enzymes
mediated by NADP-thioredoxin reductase (Ezquer et al., 2010; Li
et al., 2011).

CIRCADIAN RHYTHMS AND STRESS
RESPONSES

Starch levels and gene expression are often analysed only once
a day, and the actual time of day is rarely specified, with few
exceptions (Quick et al., 1992; Thalmann et al., 2016). However,
starch metabolism and plant stress responses typically underly
rhythms with a period close to 24 h. Many related biological
processes, such as photosynthesis, resistance to abiotic and biotic
stresses, floral induction by photoperiodism, petal movement and
floral fragrance exhibit circadian rhythms. Further, it is known
that disorders in circadian function reduce plant growth and
function (Dodd et al., 2005; McClung, 2019).

The circadian clock synchronises endogenous events with
environmental rhythms, including responses to stress. For
example, in gating, the same environmental signal may lead
to different responses at different times of the day (Hotta
et al., 2007; Seo and Mas, 2015). A study in Arabidopsis
found 33 genes differentially expressed in dry conditions at
midday, but 508 genes differentially expressed at the end of
the light period, just 6 h later (Wilkins et al., 2010). In turn,
responses to stress can also regulate the circadian oscillator.
ABA may be part of a small regulatory loop, as the central
oscillator component LATE ELONGATED HYPOCOTYL (LHY)
regulates ABA biosynthesis (Adams et al., 2018), while ABA
upregulates another central oscillator component, TIMING OF

CAB EXPRESSION 1 (TOC1), in a clock-controlled manner
(Legnaioli et al., 2009). The expression of the central oscillator
COMPONENT CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)
is affected by induction with the flg22 peptide and P. syringae
infection, while LHY and TOC1 show salicylic acid-induced
increased gene expression (Lai et al., 2012; Zhang et al., 2013).

The circadian clock also regulates starch metabolism (Lu
et al., 2005; Mugford et al., 2014; Seki et al., 2017; Flis et al.,
2019). Such regulation avoids starvation stress at the end of the
nighttime while providing abundant sucrose for maintenance
and growth across different photoperiods (Flis et al., 2019). The
amount of starch accumulated and its rate of mobilisation are
regulated such that starch is consumed at around dawn, which the
circadian clock can anticipate (Graf and Smith, 2011; Scialdone
et al., 2013). Mutants of different circadian clock components
fail to distribute starch mobilisations correctly, either consuming
reserves too quickly, leading to late-night-time carbon deficits
and transient starvation, or too slowly, leading to accumulation
of starch (Eimert et al., 1995; Messerli et al., 2007; Graf and
Smith, 2011; Scialdone et al., 2013; Flis et al., 2019). Thus,
any circadian clock changes caused by stresses may affect the
dynamics of starch rhythms.

Transcriptomic studies of Arabidopsis and sugarcane leaves
showed that the transcription of genes associated with starch
degradation enzymes peak at dusk and decrease at dawn (Harmer
et al., 2000; Smith et al., 2004; Usadel et al., 2008; Hotta
et al., 2013). However, gene expression may not correlate with
protein abundance or enzyme activity. In particular, whilst many
transcripts show marked oscillations, the abundance of their
encoded proteins are often relatively stable across the 24 h
cycle, raising questions about the biological function of these
oscillations in transcript abundance (Baerenfaller et al., 2012;
Ponnala et al., 2014; Graf et al., 2017). In addition to regulating
expression, the circadian clock also buffers the starch metabolism
against sudden fluctuations in light and temperature (Graf et al.,
2010; Pyl et al., 2012; Pilkington et al., 2015; Flis et al., 2019).

There are two models to explain how rhythms in starch
metabolism are generated: one that integrates starch abundance
and timing information (Scialdone et al., 2013; Pokhilko et al.,
2014) and one that proposes continuous regulation of the
circadian clock by signals from sucrose or related metabolites
(Webb and Satake, 2015; Seki et al., 2017). In addition, it has been
proposed that increased rates of starch mobilisation with time in
the light result in an endogenous glucose-6-phosphate oscillation
(Flis et al., 2019) that serves as a buffer to regulate carbon reserves
from photosynthesis at dusk. Even so, the molecular mechanisms
of this control are poorly understood.

Low-carbon availability regulates the REVEILLE family,
regulating many circadian clock genes (Moraes et al., 2019).
Carbon starvation can also regulate the circadian clock, triggered
by growth under low light or low CO2 (Haydon et al., 2013;
Frank et al., 2018). In these conditions, basic leucine zipper
63 (bZIP63) upregulates the circadian oscillator gene pseudo-
response regulator 7 (PRR7) (Frank et al., 2018). As the circadian
clock and SnRK1 regulate bZIP63, it may connect the circadian
clock and sugar signalling (Mair et al., 2015; Viana et al., 2021).
Mutants of bZIP63 exhibit impaired growth under light/dark
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cycles but not under constant light, possibly because starch
degradation is accelerated, leading to starvation stress by the
nighttime’s end (Viana et al., 2021). Interestingly, bZIP63 is also
regulated by ABA (Matiolli et al., 2011). Considering that bZIP63
forms heterodimers with other family members, like bZIP1 (Kang
et al., 2010), and OsZIP23 may play a similar role in rice (Kim
et al., 2017), the bZIP family of transcription factors may be at
the centre of three major regulatory networks.

FUTURE PROSPECTS

Starch can be an essential carbon source when photosynthesis
is inhibited at night and under many stress conditions. The
carbon derived from starch may help support some continued
growth, but it is probably even more critical because it supports
metabolic and cellular responses that ameliorate stress. While
the pathways of starch degradation are pretty well-understood
in source leaves, less is known about the enzymes involved
in starch metabolism in sink tissues under abiotic stress.
Furthermore, little is known about the interaction between starch
turnover and stress responses, especially when another regulatory

pathway, the circadian clock, is involved. In biotic stresses,
the molecular mechanisms involved in starch accumulation are
mainly unknown. In general, a better understanding of the
dynamics of regulators of starch metabolism under different types
of stress and at different stress intensities is needed, especially
post-transcriptional regulators. A better understanding of how
starch is used during different stresses could allow breeding
programs or genetic engineering to generate stress-resilient
plants, especially starch-based feedstocks.
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