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The timing of flowering is a key determinant for plant reproductive. It has been demonstrated 
that microRNAs (miRNAs) play an important role in transition from the vegetative to 
reproductive stage in cotton; however, knowledge remains limited about the regulatory 
role of miRNAs involved in flowering time regulation in cotton. To elucidate the molecular 
basis of miRNAs in response to flowering time in cotton, we performed high-throughput 
small RNA sequencing at the fifth true leaf stage. We identified 56 and 43 miRNAs that 
were significantly up- and downregulated in two elite early flowering cultivars (EFC) 
compared with two late flowering cultivars (LFC), respectively. The miRNA targets by RNA 
sequencing analysis showed that GhSPL4 in SBP transcription factor family targeted by 
GhmiR156 was significantly upregulated in EFCs. Co-expression regulatory network 
analysis (WGCNA) revealed that GhSOC1, GhAP1, GhFD, GhCOL3, and GhAGL16 act 
as node genes in the auxin- and gibberellin-mediated flowering time regulatory networks 
in cotton. Therefore, elucidation of miRNA-mediated flowering time regulatory network 
will contribute to our understanding of molecular mechanisms underlying flowering time 
in cotton.
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INTRODUCTION

MicroRNAs (miRNAs) are a class of endogenous small non-coding RNA molecules. In plants, 
miRNAs post-transcriptionally regulate gene expression by mediating the degradation of target 
mRNAs or by inhibiting the translation of target mRNAs (Fei et  al., 2013; Iwakawa and 
Tomari, 2013; Ren et  al., 2014; Song et  al., 2019). For example, most miRNAs guide Argonaute 
(AGO) proteins cleave the target mRNAs on the basis of near-perfect sequence complementarity 
by forming an RNA-induced silencing complex (RISC; Eamens et  al., 2009; Yu et  al., 2017). 
It is now clear that miRNAs play an important role in plant development such as regulation 
of abiotic stress responses, meristem organization, and leaf morphology and size (Song et al., 2019).

Flowering time is a key trait that is strongly associated with crop yield (Itoh et  al., 2010). 
Strict regulation of flowering time is critical for reproductive success, enabling the completion 
of plant generation under appropriate environmental conditions (Purugganan and Fuller, 2009). 

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.761244&domain=pdf&date_stamp=2022--�
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.761244
https://creativecommons.org/licenses/by/4.0/
mailto:wangyuan07@caas.cn
mailto:zhangrui@caas.cn
https://doi.org/10.3389/fpls.2022.761244
https://www.frontiersin.org/articles/10.3389/fpls.2022.761244/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.761244/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.761244/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.761244/full


Frontiers in Plant Science | www.frontiersin.org 2 March 2022 | Volume 13 | Article 761244

Zhou et al. MicroRNA Regulation of Flowering Time in Cotton

There are several miRNAs that have been shown to function 
in controlling flowering. For example, miR156 and miR172 
regulate the vegetative to reproductive phase transition as part 
of the age-dependent flowering pathway (Wu et  al., 2009). A 
decline in the miR156 expression level coincides with the 
upregulation of SQUAMOSA-PROMOTER BINDING PROTEIN-
LIKE (SPL), which activates LEAFY (LFY), FRUITFULL (FUL), 
and APETALA1 (AP1; Yamaguchi et  al., 2009). The miR172 
represses the expression APETALA2 (AP2) by activation of 
SPLs, which further represses the floral inducer FT (Mathieu 
et  al., 2009; Xie et  al., 2020). In addition to miR156 and 
miR172, miR159, miR319, and miR399 also play important 
role in controlling flowering time. The miR159 represses the 
expression of miR156 by targeting MYB33 which binds to the 
LFY promoter (Gocal et  al., 2001), and miR319 regulates the 
TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) to promote 
flowering by binding to the CO promoter and activating 
transcription (Liu et al., 2017). MiRNA also plays an important 
role in flowering regulation of other crops. Monocot-specific 
miR528 promotes flowering under long-day conditions by 
targeting RED ANDFAR-RED INSENSITIVE 2 (OsRFI2) in 
rice (Yang et  al., 2019). APETALA2-like gene targeted by 
miR172 promotes vegetative phase change in maize (Lauter 
et  al., 2005). In Brachypodium distachyon, pooideae-specific 
miR5200 targets FT in flowering time regulation (Wu et al., 2013).

Gibberellic signaling pathway widely determines the flowering 
time in plants (Yamaguchi, 2008). Earlier studies showed that 
DELLA proteins (DELLAs) are negative regulator of gibberellin 
target genes such as REPRESSOR OF ga1-3 (RGA), 
GA-INSENSITIVE (GAI), RGA-LIKE 1 (RGL1), RGL2, and 
RGL3 (Achard et al., 2009). A recent study showed that DELLAs 
repress flowering in Arabidopsis through negative regulation 
in expression of CONSTANS (CO) which induce the expression 
of FLOWERING LOCUS T (FT; Wang et  al., 2016; Xu et  al., 
2016). Furthermore, the interaction of CO with NF-YB2 is 
inhibited by the DELLA protein, thus suppressing flowering 
(Xu et  al., 2016). Besides that, gibberellin signaling pathway 
regulates the DELLAs by crosstalk with auxin and cytokinin 
signaling pathway. For example, AUX/IAA proteins also repress 
the stability of DELLAs (Fu and Harberd, 2003). In addition, 
ARFs and IAAs directly regulate the GA metabolic enzymes 
such as GA20ox, GA3ox, and GA2ox (O'Neill and Ross, 2002; 
Frigerio et  al., 2006).

Upland cotton (Gossypium hirsutum L.) is the most 
economically valuable textile crop in the world (Paterson et al., 
2012). A total of 1,500 miRNAs have been identified in different 
cotton species,1 including 315 miRNAs in G. arboreum, 434  in 
G. barbadense, 465  in G. hirsutum, and 286  in G. raimondii. 
RNA sequencing (RNA-seq) is a powerful tool to study gene 
expression and gene regulatory relationships. Recent studies 
have shown that regions located to chromosome A05 and 
chromosome D03 are enriched in early maturity traits, and 
GhCAL regulates flowering time by controlling the transition 
from vegetative to reproductive growth (Ma et al., 2018; Cheng 
et  al., 2020; Li et  al., 2021). GhUCE and GhBRC1 regulate 

1 http://www.plantsrnas.org/

cotton flowering by integrating multiple hormone pathways 
(Ma et al., 2018; Sun et al., 2021). Recent study also demonstrated 
that auxin signaling-associated miR167 also directly affected 
the differentiation of floral in cotton (Arora and Chaudhary, 2021).

Although several studies on molecular mechanism on 
flowering time control have been carried out separately focusing 
on miRNAs and transcriptome sequencing, association analysis 
combining both omics methods has not been reported yet. 
Here, we  performed an association analysis for mRNAs and 
miRNAs in four different varieties to gain a better understanding 
of gene expression and their regulation of this process.

MATERIALS AND METHODS

Plant Growth and Treatment Conditions
The early-maturing upland cotton cultivars CZ-3 and 4-5-26 
and the late-maturing cultivars S25 and 48xi were planted at 
the Biotechnology Research Institute of the Chinese Academy 
of Agricultural Sciences Experimental Field in Beijing City, 
and the plants were managed using general field management 
practices. The two early-flowering varieties CZ-3 and 4-5-26 
belong to different background. However, S25 and 48xi belong 
to same background. Ten shoot apexes at the fifth true leaf 
stage were collected for one biological replicate, and two 
biological replicates were used for RNA extraction. These samples 
were immediately frozen in liquid nitrogen and stored at −80°C 
prior to use in the experiments.

Small RNA Sequencing and Data Analysis
miRNAs were isolated and purified using the RNAprep Pure 
kit (Tiangen, China) following the manufacturer’s procedure. 
Raw sequencing reads were processed using an in-house 
program, ACGT101-miR (LC Sciences, Houston, TX, 
United  States) to remove adapter dimers, bad reads, low 
complexity reads, common RNA families (rRNA, tRNA, snRNA, 
and snoRNA), and repeats. After this filtering, the obtained 
over 7,800,000 valid reads per library were used for further 
analyses (Supplementary Figure S1). Subsequently, unique 
sequences with lengths of 18–25 nucleotides were mapped to 
specific species precursors in miRBase 22.0 by BLAST searches 
to identify known miRNAs and novel 3p- and 5p-derived 
miRNAs. The differentially expressed miRNAs were selected 
using |log2 (fold change)| > 1 and value of p < 0.05 thresholds. 
Target gene identification was performed with Psrobot.2 These 
sequence data have been submitted to the NCBI databases 
under accession number PRJNA785082.

Transcriptome Sequencing and Data 
Analysis
RNA was extracted from two early flowering varieties, CZ-3 
and 4-5-26, and two later flowering varieties, S25 and 48xi. 
Total RNA was isolated and purified using TRIzol reagent 
(Invitrogen, Carlsbad, CA, United  States) following the 

2 http://omicslab.genetics.ac.cn/psRobot/
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manufacturer’s instructions. The RNA concentration and purity 
were determined using a NanoDrop ND-1000 spectrophotometer 
(NanoDrop, Wilmington, DE, United  States). The RNA was 
sequenced (150-base paired-end reads) using an Illumina 
Novaseq™ 6000 instrument following the manufacturer’s 
recommended protocol. After removing the adaptor sequences, 
duplicated sequences, ambiguous reads, and low-quality reads, 
a total of 41,509,692 (CZ-3), 44,302,944 (4-5-26), 49,553,584 
(S25), and 51,455,996 (48xi) valid reads were used in the 
analyses (Supplementary Figure S1). Gene expression levels 
were determined using the fragments per kilobase of transcript 
per million mapped reads (FPKM) method. The differentially 
expressed mRNAs were selected with fold change >2 or fold-
change <0.5 and value of p < 0.05 using the R package edgeR.3 
Functional annotation of the DEGs was conducted through 
the Cotton Functional Genomics website4 with a significance 
level of 0.05 and a minimum gene number for each analyzed 
term = 3. These sequence data have been submitted to the NCBI 
databases under accession number PRJNA785082.

Weighted Correlation Network Analysis 
and Functional Enrichment Analysis
The WGCNA package was used to analyze the co-expressed 
genes5 with all parameters set as defined: “soft_power = 26, 
minModuleSize = 30 and mergeCutHeight = 0.25.”

cDNA Preparation and Gene Expression 
Analysis
miRNA was reverse-transcribed using SuperScript™ II Reverse 
Transcriptase (Invitrogen, Carlsbad, United  States) according 
to the manufacturer’s instructions. For quantitative real-time 
PCR (qRT-PCR), SYBR Green I  was added to reaction mix 
and amplifications were performed on a CFX96 Real-Time PCR 
Detection System (Bio-Rad, Hercules, CA, United  States). The 
ubiquitin gene GhUBQ7 (Ghir_A11G011460) was used as internal 
reference control, and the relative expression levels were calculated 
using the modified 2−ΔΔCT method. Values are means ± SD of 
three biological replicates. Student’s t-test was used for statistical 
analysis. Asterisks indicate statistically significant differences 
compared with the wild type (*p ≤ 0.05; **p ≤ 0.01).

Plasmid Construction and Transformation
For cotton transformation, the pCLCrV:VIGS constructs were 
constructed by a method modified from Gu et  al. (2014). The 
basic constructs, pCLCrVA, pCLCrVB, and CLCrV-CHLI, were 
obtained from them. The fragment of pre-miR156 and a small 
tandem target mimic (STTM) sequence containing two imperfect 
binding sites separated by a 48 bp spacer, both were synthesized 
(Sangon) and inserted into the plant expression vector pCLCrVA 
by SpeI and PacI to get OE-miR156 and STTM-miRNA vectors. 
The above pCLCrVA vectors and pCLCrVB construct were 

3 http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
4 https://cottonfgd.org/
5 https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/
WGCNA/Tutorials/

introduced into the Agrobacterium tumefaciens strain EHA105. 
The Agrobacterium cultures were pelleted and resuspended. 
After 3 h incubation at room temperature, Agrobacterium strains 
harboring different pCLCrVAs were mixed with an equal volume 
of Agrobacterium harboring pCLCrVB separately. The mixed 
Agrobacterium solutions were infiltrated into the abaxial side 
of cotyledons of 2-week-aged cotton seedlings by needleless 
syringes through small wounds. Keep the plants at 24°C for 
3 weeks till CLCrV-CHLI plants grew out white leaves; then 
move all plants to the environment at 28°C under long-day 
conditions (16 h light/8 h dark).

For Arabidoposis transformation, the fragment of pre-miR399e 
was synthesized (Sangon) and inserted into the plant expression 
vector pCAMBIA 2,300 using KpnI and PstI. The floral-dip 
method was used for transformation (Bent, 2006).

RESULTS

Cotton Cultivars Have Distinct Flowering 
Time Phenotypes
In this study, two elite early-flowering cultivars, CZ-3 and 
4-5-26, and two elite later flowering cultivars, S25 and 48xi, 
were used at the fifth true leaf stage in cotton (Figures 1A–D). 
Compared with the S25 and 48xi, average node of 3.6–5.3  in 
first fruiting branch in EFC was lower than LFC. Flowering 
time was 15 days early in both CZ-3 and 4-5-26 (Figure  1E). 
Previous study showed that four flowering time genes such 
as GhFT, GhMADS22, GhCAL, and GhUCE promote the cotton 
flowering (Zhang et  al., 2013; Guo et  al., 2015; Ma et  al., 
2018; Cheng et al., 2020). Therefore, we conducted the expression 
level of those genes in early and late flowering cultivar at fifth 
leaves stage. Quantitative real-time PCR (qRT-PCR) analysis 
revealed that the expression level of GhFT, GhMADS22, GhCAL, 
and GhUCE was 6.75-, 10.2-, 67.07-, and 116.77-fold higher 
in CZ-3 than in 48xi, respectively (Figure  1F). These results 
suggest that there is a significant transition between early- and 
later-flowering cotton varieties at the fifth true leaf stage.

Comparison of miRNAs Involved in 
Flowering Time Regulation in Cotton
To analyze the fluctuation of endogenous miRNA expression 
level in early- and late-flowering cotton varieties, we constructed 
four sRNA libraries from CZ-3, 4-5-26, S25, and 48xi and 
performed small RNA sequencing. After low-quality reads were 
removed from the raw data, the most abundant length of 
miRNA was 24 nt (Supplementary Table S1). This size accounted 
for over 68%, 69%, 70%, and 70% of the sRNAs in the CZ-3, 
4-5-26, S25, and 48xi sequencing libraries, respectively 
(Supplementary Table S2). Novel miRNAs were identified using 
the MIREAP software based on their precursors, and the hairpin 
RNA structures containing sequences by using Mfold software. 
Minimal folding energy (dG in kcal/mol ≤ −17) was considered 
as novel miRNAs.

A total of 99 differentially-expressed miRNAs were obtained, 
including 79 known miRNAs and 20 novel miRNAs (log2 (fold 
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change) >1 or <−1; thresholds of p < 0.05). Among these, 
56 and 43 miRNAs were significantly up- and downregulated 
in the two EFCs, respectively (Figure  2A; 
Supplementary Table S3). Over 59.60% (59) of the mature 
miRNA sequences were 24 nt in length and 37 precursors 
were 101–150 length (Figures  2B,C). We  also found that 
63 miRNAs (including 15 novel miRNAs) map to the 
D-subgenome (Figure  2D). Besides known miRNA, the 
lengths of these novel miRNAs varied from 20 to 24 nt. The 
calculated minimal folding energy ranged from −30.90 to 
−121 with an average of −70.88 (Supplementary Figure S1). 
The length of precursor miRNA from 64 to 191 nt 
(Supplementary Table S3). The correlation assay of 
differentially expressed miRNA (DEmiRs) between two 
biological process was strong positive correlation (R2 > 0.9489) 
in four varieties (Supplementary Figure S2). To validate 

these miRNAs, qRT-PCR assays were performed for nine 
randomly selected miRNAs and consistent the results with 
miRNA-seq (Figure  3).

Our results showed that seven miRNAs were uniquely 
expressed in the two EFCs including gra-MIR7506b, two 
gra-MIR8771b, two gra-MIR8780, and two novel miRNAs. 
While six miRNAs were only expressed in the two LFCs 
including tcc-miR398a, two gra-MIR8674b and three novel 
miRNAs (Supplementary Table S3). Fourteen members of 
miR6300 family and nine miR7489 family members were 
significantly upregulated in the two EFCs, whereas nine 
members of miR399 family were downregulated in the two 
LFCs. In addition, two conserved miRNAs, miR156 and 
miR319, which are known to function in flowering  
time regulation in plants, were significantly downregulated 
in two EFCs compared with the LFCs, while one miR164 

A B E

C D F

FIGURE 1 | Different phenotypes in the fifth true leaf stage between two early- and two later-flowering cotton varieties. (A,B) Early-flowering CZ-3 and 4-5-26. 
(C,D) Later-flowering S25 and 48xi. The arrows point to the flower buds. Scale bars = 10 cm. (E) Node of first fruiting branch and flowering times in the four cotton 
varieties. (F) Expression levels of the flowering time regulatory genes GhCAL, GhMADS22, GhUCE, and GhFT in the cotton shoot apex. Values are means ± SD 
(n = 3).
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and one miR166 showed the reverse expression pattern 
(Supplementary Table S3).

Predicting the Target Genes of Identified 
miRNAs
To better understand the molecular mechanism of miRNA 
regulation in cotton flowering time, we  performed miRNA 
target gene prediction using the psRNATarget website.6 Combined 
with our RNA sequencing data, we  retained 273 overlapping 
genes (Figure 4A). To better understand the functions of these 
overlapping genes, Gene Ontology (GO) analysis was performed 
for candidate target genes using the CottonFGD database, which 
provides annotation information for the “biological process,” 
“molecular function,” and “cellular component” GO categories 
(see footnote 4). As shown in Figure  4B, the “DNA binding” 
GO term was over-represented in the “molecular function” 
category. Consistently, genes in the GO term “nucleuses” were 
over-represented in the “cellular component” category. “DNA 
binding function” with 62 genes was predominant in the main 
“molecular function” category. The GO terms “response to 
hormone” and “sodium ion transport” represented major terms 
in the “biological process” category. This further suggests that 
miRNA target genes functioned in transcription and in response 
to hormones in cotton.

6 http://plantgrn.noble.org/psRNATarget/home

Furthermore, how transcription factors (TFs) influence cotton 
flowering time, we  performed functional analysis of predicted 
transcription factor genes. The results showed that 66 TF genes 
were differentially expressed, with 43 upregulated and 23 
downregulated in the EFCs. Among (66) TF genes, bHLH (2), 
ERF (2), C3H (1), and MADS (1) TF genes were significantly 
enriched in the upregulated DEG group, while LSD (1) TF 
genes were enriched in the downregulated overlapping group. 
Except TF families mentioned above, genes encoding SBP-, 
MYB-, and ARF-type TFs showed both up- and downregulated 
expression profiles (Figures  4C,D). Interestingly, 30 (45%) of 
the genes encoding SPL family TFs were significantly upregulated 
in the EFCs, such as GH_D01G054600 (GhSPL4), GH_
A03G089200 (GhSPL6), GH_D11G041400 (GhSPL13B), GH_
A10G019300 (GhSBP1), and GH_A01G147900 (GhSPL17); the 
homologs of these gene in Arabidopsis are targeted by miR156 
(Supplementary Table S4). To validate the expression levels 
in different cotton lines, qRT-PCR assays were performed for 
the six SPL TF genes which were upregulated in EFC compared 
with the LFCs, while miR156 expressed the downregulation 
in EFC (Figure  5A). To further characterize the miR156 and 
SPL4 expression level during cotton flowering, we  analyzed 
the time-course expression from 14 to 42 days. As shown in 
Figures 5B,C, the relative expression level of miR156 in 28 days 
of CZ-3 was 1, while that of 48xi was 6-fold. At the same 
time, the expression level of SPL4 gene in SAM of CZ-3 was 
upregulated by 32.5 times from 35 to 42 days after sowing, 

A B

C D

FIGURE 2 | Overview of small RNA sequencing. (A) Relative changes in gene expression profiles of the DEmiRs between the early flowering varieties and the later 
flowering varieties. (B) The length distribution of 99 mature miRNAs. (C) The length distribution of 99 miRNA precursors. (D) Distribution of 99 mature miRNAs in the 
cotton A- and D-subgenomes.
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while the expression of SPL4  in 48xi was only upregulated by 
1 time during the same period.

Genome-Wide Validation of Expression 
Profiles of Identified miRNA Target Genes
To confirm the function of the miRNA target genes involved 
in cotton flowering regulation, we  further conducted RNA 
sequencing (RNA-seq) analysis to identify the gene expression 
levels using apical meristems from the EFCs and LFCs. The 
correlation assay of DEGs between two biological process was 
strong positive correlation (R2 > 0.9945) in four varieties 
(Supplementary Figure S3). A total of 1,008 differentially 
expressed genes (DEGs; |log2FC| > 1 and value of p < 0.05) were 
identified, where 633 and 375 genes were significantly up- and 
downregulated in the ELCs, respectively (Figure 6A). Enrichment 
analysis of all the DEGs identified the significant GO function 
in “response to auxin” and “cytokinin metabolic process” 
(Figure  6B). Further analysis showed that the DEGs were also 

enriched in the GO terms “iron ion binding,” “ADP binding,” 
and “heme binding.” The 24 genes associated with “iron ion 
binding” included 15 cytochrome-related genes, 16 genes 
encoding ADP binding proteins, and 23 genes encoding heme 
binding proteins. These results exhibited that iron and heme 
binding activity play a pivotal role in the cotton flowering 
transition. Except for the above regulation, 46 and 27 genes 
were associated with oxidoreductase activity and protein 
dimerization activity, respectively. These results indicated that 
iron ion, heme, and ADP also function in the control of cotton 
flowering time.

The phytohormones such as auxin, cytokinin, and gibberellin 
involve in control of flowering time. The expression of 12 
genes was significantly upregulated in the EFCs, and six auxin 
pathway genes were significantly downregulated in the LFCs. 
These include seven small auxin upregulated RNA (SAUR) 
members, four auxin-responsive Gretchen Hagen 3 (GH3) 
members, three auxin/indole-3-acetic acid (Aux/IAA) protein 

FIGURE 3 | Quantitative real-time PCR verification of seven significantly expressed miRNAs at the fifth true leaf stage in the cotton shoot apex. Values are 
means ± SD (n = 3).
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family members, and three auxin-binding protein (ABP) 
members. Notably, four cytokinin dehydrogenase (CKX) family 
genes were significantly downregulated in the EFCs. In addition 
to auxin and cytokinin, gibberellin also functions in cotton 
flowering time control. Two gibberellin 2-beta-dioxygenase 
(GA2OX) family genes, two GhGAI and one gibberellin oxidase 
showed significant expression in the EFCs (Figure  7A). These 
results indicated that auxin, cytokinin, and gibberellin function 
in cotton flowering time control, and the functions of auxin 
and cytokinin might be  diverse. We  confirmed the expression 
level differences between EFCs and LFCs by qRT-PCR and 
consistent with the result of RNA-seq (Figure  7B). In further 
study of how flowering marker genes are differentially expressed 
in the fifth true leaf, 14 genes that participate in cotton flowering 
time control including GhGI, GhAGL5, GhAGL6, GhGAI, GhAP1, 
GhAGL16, GhSOC1, GhCOL3, and GhCAL. GhAGL5, GhAGL6, 
GhAP1, GhSOC1, GhCOL3, GhCAL, and GhMADS6 showed 
higher expression levels in the EFCs, which is consistent with 
previous research. Among these genes, GhSOC1 and GhCAL 
both showed two-fold increase in expression in the EFCs. Most 
strikingly, expression of GhMADS6, GhAP1, GhAGL5, and 

GhAGL6 increased six-, six-, 10-, and 12-fold in the EFCs, 
respectively, although GhGAI was downregulated by 21-fold 
compared with the LFCs. These results imply that GhAGL6, 
GhAP1, GhAGL16, GhSOC1, GhCOL3, and GhCAL may 
be  potential key regulators of flowering time in cotton.

GhmiR156 and GhmiR399e Negatively 
Regulated Flowering
To confirm whether the differentially expressed miRNAs were 
involved in regulating flowering time, we  used the virus-
based miRNA silencing (VbMS) strategy to generate 
Gh-miR156 silenced and overexpressed plants. The OE-miR156 
and STTM-miRNA vectors were constructed, containing the 
fragment of pre-miR156 and a small tandem target mimic 
(STTM) sequence including two imperfect binding sites 
separated by a 48 bp spacer, respectively. The positive control, 
G. hirsutum magnesium chelatase subunit I  (CHLI) gene 
was well-silenced, resulting in a photobleaching phenotype 
in the third true leaf (Figure 8A). Compared with the control 
plants inoculated with the empty vector (CLCrV) in squaring 

A B

C D

FIGURE 4 | Overview of predicted target miRNA genes. (A) Venn diagram showing the overlapping genes between the total transcripts and the predicted target 
genes. (B) Histogram of gene ontology annotation in the three major gene ontology (GO) categories: black, “molecular function”; orange, “cellular component”; and 
blue, “biological process.” (C) Distribution of transcription factor (TF) families in the overlapping genes. (D) Distribution of up- and downregulated TF family genes.
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A

B C

FIGURE 5 | Expression analysis of selected SPL and miR156. (A) Quantitative real-time PCR verification of miR156 target gene expression at the fifth true leaf 
stage in the cotton shoot apex. Values are the means ± SD (n = 3). (B,C) qRT-PCR analysis of miR156 and SPL4 in CZ-3 and 48xi.
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stage, the silenced plants (STTM-miR156) begun to flower, 
while the overexpressed ones (OE-miR156) were still in 
vegetative stage at same time (Figure  8B). The squaring 
time of CLCrV, STTM-miR156, and OE-miR156 plants was 
36, 30.5, and 40.3 DAG (Figure  8C), and the node positions 
of first fruit branch were 5, 4, and 6 (Figure  8D). These 
results suggested that Gh-miR156 participated regulating 
flowering time in cotton.

To determine whether miR399e mediated cotton flowering 
as well, we  performed expression analyses in four cultivars by 
qRT-PCR. Compared with early flowering cultivars, the expression 
levels of miR399e of two later flowering cultivars were increased 
18.6-fold and the target gene GhUBC24 reduced expression 
for 2.36-fold in average. We  further introduced miR399e into 
Arabidopsis wild type (WT). The OE-miR399e plants showed 
the phenotype of delaying flowering compared to WT 

A B

FIGURE 6 | Overview of significantly expressed genes in the fifth true leaf in cotton. (A) Changes in gene expression profile between early flowering varieties and 
later flowering varieties. DEGs, differentially expressed genes. (B) Histogram showing GO annotation of the DEGs. URGs, upregulated genes and DRGs, 
downregulated genes.

FIGURE 7 | Expression analyses of hormone-related gene in DEG. (A) Expression heat map of hormone-related genes. (B) Quantitative real-time PCR verification of 
the expression of eight hormone-related genes in the four cotton varieties at the fifth true leaf stage in the shoot apex. Values are means ± SD (n = 3).
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(Supplementary Figure S4). These results indicated miR399e 
negatively regulated flowering in cotton.

Co-expression Network Analysis Uncovers 
Flowering Gene Interaction Modules
To further describe the miRNA-mediated flowering time 
regulatory network in cotton, we  performed the weighted 
correlation network analysis (WGCNA) using whole-genome 
transcriptome data. We identified three modules (blue, turquoise, 
and brown) that consisted of 920 DEGs which are potentially 
regulated by SPL TFs (Supplementary Figure S5). The blue 
module contained 107 nodes and 968 edges, and GhCAL 

and GhSAUR36 were included in this module. GO analysis 
revealed that 4 (100%), 4 (80%), and 5 (83.3%) DEGs enriched 
in “heme binding,” “calcium ion binding,” and “iron ion 
binding” in the “molecular function” category, respectively, 
were significantly upregulated in the LFCs compared with 
the EFCs (Supplementary Figure S6). The brown module 
contained 61 nodes and 1,449 edges. Three, four, and eight 
of DEGs were enriched in the “flavin adenine dinucleotide 
binding,” “oxidoreductase activity,” and “catalytic activity” 
terms, respectively (Supplementary Figure S6). It is notable 
that the turquoise module contains 750 nodes and 75,160 
edges (Supplementary Table S5). Enrichment analysis of all 
the DEGs identified 16 “molecular function” and seven 
“biological process” terms in the turquoise module. Noticeably, 
45 of the DEGs were enriched in the “regulation of transcription” 
biological process term, and 12 DEGs were associated with 
flowering time pathways (Supplementary Figure S6). These 
include GhAP1C, GhAGL6, GhSOC1, GhMADS6, GhAP1, 
GhFD, GhAGL16, and GhCAL (Figure  9). In addition, four 
genes associated with auxin signal transduction were identified 
in the “biological process” category, including GhIAA14, 
GhIAA27, GhIAA29, and GhAUX22D. We  also found that 
“response to auxin process” was enriched in the “biological 
process” category, and four (66.67%) small auxin upregulated 
RNA (SAUR) genes were upregulated in the EFCs, including 
SAUR24, SAUR32, SAUR50, and SAUR72. These results strongly 

A B

C D

FIGURE 8 | The GhmiR156 negatively regulated plant flowering. (A) Photobleaching phenotype in CHLI silenced plant. (B) Phenotype of GhmiR156 overexpressed 
and silenced cotton. (C) Time of squaring described by days after germination (DAG) in overexpressed and silenced plants. (D) Sketch map for node position of first 
fruit branch in overexpressed and silenced plants.

FIGURE 9 | WGCNA analysis of the hub genes in the turquoise module. 
Red, flowering-related genes and purple, hormone-related genes.
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suggest that auxin and conserved flowering marker genes 
regulated flowering time in cotton.

DISCUSSION

MiRNAs, a class of small RNA molecules, have emerged as 
important regulators of various cellular processes through their 
interactions with their targets at the transcriptional and post-
transcriptional levels (Song et al., 2019). However, the molecular 
mechanisms involved in the regulation of flowering time in 
cotton remain unclear. In this study, to better explore the 
roles of miRNA in flowering time control, we combined sRNA 
and transcriptome sequencing to identify the relationships 
between miRNAs and their target genes. In the upland cotton 
genome, genome-wide bioinformatics analysis predicted 315 
miRNAs.1 In this study from sequencing analysis of sRNA 
libraries in four cotton varieties, a total of 186.8 million clean 
reads included 168 conserved miRNA families and 351 novel 
miRNAs. We  identified 79 conserved miRNAs and 20 novel 
miRNAs that showed the significant differences in expression 
(Supplementary Table S3). The sRNA lengths ranged from 
18 to 25 nt, and among these, the 24-nt sRNAs were the most 
abundant in the sequencing libraries, which was similar to 
previous observations in cotton miRNA sequencing (Li et  al., 
2012; Hu et  al., 2020). It has been reported that many of the 
24-nt sRNAs are heterochromatic siRNAs (hetsiRNAs) which 
mediate transcriptional gene silencing through DNA methylation 
(RdDM; Lu et  al., 2005). Previous studies have shown that 
flowering-related SNPs are located on the cotton D subgenome; 
consistent with this notion, 61.62% of miRNAs that showed 
significant differential expression are located on the D-subgenome 
(Figure  2D; Ma et  al., 2018). However, further studies will 
be  required to verify the relationship between these miRNAs 
and flowering time.

Among identified miRNAs, more than 10 highly conserved 
miRNA were identified including miR156, miR159, miR319, 
miR399, miR7489, miR6300, miR7492, miR8674, miR8771, and 
miR8780, which is in line with previous study on the development 
of cotton seeds and fruiting branches (Wang et  al., 2015; Sun 
et  al., 2016). Moreover, miR156 was significantly expressed in 
sRNA sequencing data (Supplementary Table S3). Many studies 
showed that miR156 expression switches on in the vegetative 
stage in crops (Chen et  al., 2014; An et  al., 2015; Aung et  al., 
2015; Sun et  al., 2015; Jia et  al., 2017; Zhou et  al., 2021). 
Other studies also stated that miR156 represses the expression 
of SPL that negatively mediate flowering time (Wang et  al., 
2009; Wu et  al., 2009). It is notable that 9 of 111 miRNAs 
belong to the miR399 family (Supplementary Table S3), 
suggesting that there might be additional players in the regulatory 
pathways. It has been reported that miR399 acts to promote 
flowering by targeting PHO2 in response to ambient temperature 
changes (Kim et  al., 2011). It also demonstrated that PHO2 
and GI interact to mediate flowering time and phosphate 
homeostasis in rice (Li et  al., 2017). Therefore, it is possible 
that miR399 may also regulate PHO2 to influence flowering 
time in cotton.

Identification of miRNA targets is important to understand 
miRNA-mediated processes. Bioinformatics analysis revealed 
273 target genes including 30 SBP TF genes, of which 21 
were upregulated and nine were downregulated in the early 
flowering varieties (Figures  4A–D). This result suggests that 
most of the SBP TFs positively regulated flowering progress 
in cotton. The qRT-PCR results also confirm that GhPSPL4, 
GhSBP1, GhSPL6, and GhSPL13B showed the reverse expression 
trends compared with miR156 (Figure  5). This result suggests 
that miR156 potentially repressed SPL gene expression in the 
timing of cotton flowering. A previous study showed that SPL 
functions as a core regulator of flowering time that positively 
mediates flowering in Arabidopsis through actions of the 
SPL-SOC1 module (Jung et al., 2012). Further analysis showed 
that SPL TFs directly bind to the promoters of FUL, LFY, 
and AP1, key genes that are active in regulating flowering 
(Xie et  al., 2020). It is notable that except for the SBP-type 
TFs, MYB-, MIKC_MADS-, and ARF-type TF genes were also 
enriched in the 273 target genes identified (Figures  4C,D). 
Previous studies have shown that these types of TFs play an 
important role in floral organ specificity and the auxin response 
(Smaczniak et  al., 2012; Korasick et  al., 2014). This indicated 
that floral organs and auxin might influence cotton flowering time.

In addition, bioinformatics analysis also identified 920 DEGs 
with SPL binding sites (GTAC motifs) in their promoters including 
GhAP1, GhSOC1, GhAGL6, GhCOL3, and GhFD. WGCNA 
exhibited that GhSOC1, GhAGL16, GhCOL3, GhAGL6, GhAP1, 
GhCAL, and GhFD were enriched in the turquoise module 
(Supplementary Table S5). It has been reported that AGL6, 
SOC1, FD, and COL3 regulate flowering time in Arabidopsis 
thaliana (Moon et  al., 2003; Abe et  al., 2005; Li et  al., 2008; 
Yoo et  al., 2011; Tripathi et  al., 2017; Cheng et  al., 2020). The 
authors also stated the important role of GhCAL, GhAP1, and 
GhSOC1 in mediating cotton flowering (Zhang et al., 2016; Cheng 
et  al., 2020). Hormone actions are intertwined in regulation of 
various plant growth and developmental processes, and auxin 
and gibberellin are the most well-studied phytohormones that 
are necessary for a variety of developmental activities, including 
flowering (Cheng et al., 2007). Previous studies showed that auxin 
directly regulates the expression of genes encoding GA metabolic 
enzymes (O'Neill and Ross, 2002; Frigerio et al., 2006). In addition, 
auxin affects the stability of DELLA proteins (Fu and Harberd, 
2003). Thus, it is expected that the auxin and gibberellin pathways 
might be  important role in regulating flowering time. Consistent 
with this opinion, GhSAUR, GhIAA, GhGH3, and GhGAI genes 
showed significant differential expression in our study (Figure 7B).

Elucidating the flowering time-associated molecular mechanism 
becomes the critical biological question that is not only for 
agricultural significance in shaping juvenile-to-adult transition, but 
also has significance due to increasing world population and 
extreme weather events (Xie et al., 2020). Experiments have shown 
that flowering time in cotton is related to the activities of auxin 
and gibberellins. Because of its significant influence on plant growth 
and development, premature flowering can decrease agricultural 
yield and biomass in major crops and an increase in the length 
of vegetative phase that could lead to reduce the seed set (Teotia 
and Tang, 2015). Understanding of molecular mechanism in 
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controlling flowering pathway could have potential applications 
in many economically important crops.
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