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Leaves are the primary photosynthetic structures, while photosynthesis is the direct
motivation of crop yield formation. As a legume plant, peanut (Arachis hypogaea) is one
of the most economically essential crops as well as an important source of edible oil
and protein. The leaves of A. hypogaea are in the tetrafoliate form, which is different
from the trifoliate leaf pattern of Medicago truncatula, a model legume species. In A.
hypogaea, an even-pinnate leaf with a pair of proximal and distal leaflets was developed;
however, only a single terminal leaflet and a pair of lateral leaflets were formed in the
odd-pinnate leaf in M. truncatula. In this study, the development of compound leaf
in A. hypogaea was investigated. Transcriptomic profiles revealed that the common
and unique differentially expressed genes were identified in a proximal leaflet and a
distal leaflet, which provided a research route to understand the leaf development in
A. hypogaea. Then, a naturally occurring mutant line with leaf developmental defects in
A. hypogaea was obtained, which displayed a pentafoliate form with an extra terminal
leaflet. The characterization of the mutant indicated that cytokinin and class I KNOTTED-
LIKE HOMEOBOX were involved in the control of compound leaf pattern in A. hypogaea.
These results expand our knowledge and provide insights into the molecular mechanism
underlying the formation of different compound leaf patterns among species.

Keywords: Arachis hypogaea, compound leaf pattern, pentafoliate, tetrafoliate, cytokinin, KNOXI

INTRODUCTION

Leaves are the major organs of plants for photosynthesis and serve as their prime mediator with
the environment above the soil surface. There are many forms of leaves, but they can be classified
as simple leaves or compound leaves according to the number of blades. Simple leaves supported
by a petiole have a single blade unit, whereas compound leaves attached to a rachis by leaflets
have multiple blade units. Genetic evidence shows that the occurrence of leaflet primordia during
compound leaf development is similar to that of simple leaf primordia (Hasson et al., 2010).

Compared to simple leaves, compound leaves suffered much less pressure or resistance to wind
and rain, which significantly improves the ability of the plant to adapt to harsh conditions (Vogel,
2009). Moreover, the development of compound leaves requires the establishment of leaf properties
and polarity according to different development patterns, rather than the simple addition of single
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leaves. Compound leaves were initiated from the periphery zone
(PZ) of the pluripotent shoot apical meristem (SAM). Leaf
morphogenesis occurs in three successive stages: (1) initiation
of the leaf primordium which is recruited from the PZ of the
SAM, (2) primary morphogenesis, i.e., the primordium of each
principal component of the compound leaf was divided, while
the adaxial-abaxial, mediolateral, and proximal-distal axes were
established, and (3) expansion and secondary morphogenesis,
i.e., intercalation growth occurred throughout the entire leaf
blade, resulting in an overall expansion of leaf area in multiple
directions (Dengler and Tsukaya, 2001; Du et al., 2018).

Auxin plays a crucial role in leaves. In shoot, auxin efflux
carrier PINFORMED1 (PIN1) actively directs the transportation
and distribution of auxin (Reinhardt et al., 2003). The inhibition
of auxin activity or transportation resulted in simplified leaves
in Cardamine, tomato, and pea (Bar and Ori, 2015). Moreover,
the downregulation of IAA9, a distinct subfamily of Aux/IAA
genes, results in simple leaves in tomato (Wang et al., 2005; Zhang
et al., 2007). In Medicago truncatula, MtPIN10/SLM1 loss-of-
function mutant shows the impaired auxin distribution, resulting
in increased terminal leaflets and reduced lateral leaflets (Zhou
et al., 2011). In addition, shoot apices treated with the auxin
transport inhibitor N-1-naphthylphthalamic acid (NPA) lead to
a pin-like structure without leaves (Reinhardt et al., 2000). The
external application of indole-3-acetic acid (IAA) to the apices in
NPA-treated and pin1 mutant restores leaf formation (Reinhardt
et al., 2000). These findings demonstrate that auxin is tightly
correlated with leaf development.

During compound leaf development, class I KNOTTED-LIKE
HOMEOBOX (KNOXI) family is required for leaflet formation.
For example, the KNOXI homeobox transcription factor TKN2
antagonizes CLAUSA (CLAU) in regulating the morphogenesis-
differentiation balance of the compound leaf development in
tomato (Israeli et al., 2021). CLAU is a negative regulator of
KNOXI genes, and clau mutant showed excessively divided leaves
(Bar et al., 2016). In M. truncatula, class M KNOX protein FCL1
encodes a truncated KNOX that lacks the homeodomain. FCL1
plays a key role in boundary separation, and fcl1 mutants show
fused leaflets (Peng et al., 2011). The plant hormone cytokinin
(CK) acts downstream of KNOXI proteins to maintain the
prolonged morphogenetic activity of the leaf margin (Shani et al.,
2010). In addition, the shoot and leaf development is retarded
in CK-deficient mutants in Arabidopsis, such as reduced shoot
growth rates, reduced size of SAM, and reduced cell production
in the leaves, indicating that CK is a positive regulator in cell
division (Werner et al., 2003).

Leguminosae is the third largest family of angiosperms and
contains about 19,000 species in about 750 genera. Legumes
are a good source of protein that contains high iron, folate,
potassium, and magnesium. They also contain beneficial fats and
soluble and insoluble fiber. Most plants of legumes have typically
compound leaves, while a few subfamilies have simple leaves.
The compound leaf development in legumes has been studied in
several species, such as M. truncatula, Lotus japonicus, and Vigna
radiata (Wang et al., 2008, 2013; Jiao et al., 2019). Peanut (Arachis
hypogaea) is one of the most economically essential legume crops
(Xu et al., 2021). The leaf in A. hypogaea is tetrafoliate with

a pair of proximal and distal leaflets, which is different from
that in M. truncatula and L. japonicus. However, the regulation
mechanism of compound leaf pattern in A. hypogaea is largely
unknown. In this study, we focused on the ontogeny of leaf
development and characterized a mutant with pentafoliate leaf
form in A. hypogaea. The possible developmental mechanism of
tetrafoliate leaf form in A. hypogaea was proposed.

MATERIALS AND METHODS

Plant Materials and Growth Condition
A cultivated peanut variety Fenghua-1 was used as a wild type.
The plants with pentafoliate leaf form were a naturally occurring
mutant line in the genetic background of the variety Fenghua-1.
The peanut plants were grown in soil with a photoperiod of 16-h
day/8-h night, a temperature of 22◦C, and a relative humidity of
70% in a growth chamber.

Scanning Electron Microscopy
Shoot apices were collected from 4 weeks post-germination of
wild-type and mutant plant. Plant tissues were fixed in a fixative
solution (3.0% glutaraldehyde in 25 mM phosphate buffer, pH
7.0, and 0.1% Trixon-100) by vacuum infiltration for 10 min
and then incubated in 4◦C overnight. On the following day, the
tissues were dehydrated in a series of graded ethanol (30, 50, 60,
70, 85, 95, and 100% three times), each lasting for a minimum
of 20 min. A critical-point drier was used to dry the ethanol in
liquid CO2 to remove the alcohol. The tissues were mounted
on aluminum stubs, dissected under a stereoscopic microscope,
and sputtered with gold. Tissue samples were then examined
using Tecnai G2 F20 Scanning Electron Microscope (SEM) at an
accelerating voltage of 5 kV (FEI).

RNA Extraction and Real-Time PCR
Analysis
Total RNA from different frozen tissues was extracted using
EASYspin Plus Complex Plant RNA Kit (Aidlab). The quality
of RNA was measured by NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific) to detect the concentration and
integrity using RNA Reverse Transcription Kit (Roche). Real-
time PCR was performed using SYBR Green (Roche), while
data acquisition and analysis were performed using Bio-Rad
CFX Connect TM sequence detection system. Three biological
replicates were applied in the assay, and each biological replicate
was technically replicated three times. Gene expression levels
were calculated and normalized by the arithmetic mean with
AhADH3 used as housekeeping genes (Brand and Hovav, 2010).
The single-factor ANOVA method was used to estimate if the
difference in gene expression level is significant.

Transcriptomic Analysis
For the transcriptomic analysis of proximal and distal leaflets,
the newly emerged folded leaflets and petioles at the early
developmental stage were harvested from 40-day-old wild-type
plants. For the transcriptomic analysis of leaf development in the
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mutant, the shoot buds were harvested from 40-day-old wild-
type and pentafoliate mutant plants. Three biological replicates
of each sample were prepared. Total RNA of each sample
was extracted, and all samples were sequenced on a BGISEQ-
500 platform at the BGI Genomics Institute (BGI-Shenzhen).
Differentially expressed genes (DEGs) were determined using
an upregulated/downregulated more than twofold and a false
discovery rate (FDR) < 0.01. The FDR method was used to
adjust the hypergeometric test of the p-value to evaluate the
enrichment degree of the Gene Ontology (GO) items and the
KEGG pathway. The heatmap was created by Helm software
(Heatmap Illustrator, version 1.0).

Phenotypic Analysis
For leaf morphology analysis, wild-type and mutant plants were
photographed by the Nikon D300 camera. Nikon SMZ 1500
stereomicroscope (Nikon) was used to image the close-up view of
the leaf. At least 10 samples were observed from each experiment.

Phylogenetic Analyses
The candidate KNOXI proteins were identified in Arabidopsis
thaliana, M. truncatula, and A. hypogaea. Amino acid sequences
were downloaded from the websites of Phytozome and NCBI.
All confirmed amino acids sequences were aligned using the
ClustalW program. The neighbor-joining phylogenetic trees
were constructed using the MEGA7 software, with 1,000
bootstrap iterations.

Cytokinin Treatment
Of note, 4-week-old wild-type plants growing in soil were sprayed
with a solution containing 0.1, 0.25, and 0.5 mM 6-benzyladenine
(6-BA) with 0.01% Tween 20, respectively. The pentafoliate
mutants were sprayed with lovastatin (Lov) at a concentration of
0.01 and 0.05 µM with 0.01% Tween 20. The same concentration
of Tween 20 was applied in the mock treatments. Twelve plants
were used in each group for analysis. 6-BA and Lov were sprayed
every 2 days for five times, and the leaf phenotypes were analyzed
with three biological replicates.

RESULTS

Ontogeny of Compound Leaf
Development in Arachis hypogaea
To investigate the compound leaf development in peanut, we
first compared the leaf patterns between M. truncatula and
A. hypogaea. As a model legume species, M. truncatula has
a typical trifoliate leaf pattern (Figure 1A). The degree of
compoundness in M. truncatula is much simpler than other
compound leaf species, which develops a pair of lateral leaflets
and a terminal leaflet (Wang et al., 2008). The SEM analysis
showed that a common leaf primordium and a pair of stipule
primordia were initiated at stage 2 (Figure 1B). At stage 5, a pair
of lateral leaflet primordia and one terminal leaflet primordium
were observed (Figure 1C). Subsequently, the leaflet primordia
and trichomes were developed at stage 6 (Figure 1D).

The leaves of A. hypogaea plant are in tetrafoliate form,
displaying the pinnately compound leaf with two pairs of leaflets
(Figure 1E). It is noted that unique even-pinnate leaflets were
formed in A. hypogaea, which are significantly different from
the odd-pinnate leaflets in M. truncatula (Figure 1F). SEM
observation showed that a common leaf primordium was formed
from the flank of SAM at stage 1 (Figure 1G). At stage 2, a pair
of stipule primordia have emerged at the proximal end of the
common leaf primordium (Figure 1H). Then, the boundaries
between the two stipules and the common leaf primordium were
established at stage 3 (Figure 1I). At stage 4, the common leaf
primordium was differentiated into a pair of proximal leaflet
and distal leaflet primordia (Figure 1J). Subsequently, at stage
5, the proximal and distal leaflet primordia separated away from
each other so that the boundaries were established, and spherical
trichomes were initiated (Figure 1K). At stage 6, the proximal
leaflet and distal leaflet primordia became folded. Trichomes
were differentiated further as tubular trichomes. Finally, a pair
of proximal leaflets and distal leaflets were formed (Figure 1L).

Transcriptomic Analysis Between the
Developing Proximal Leaflet and Distal
Leaflet
To compare the proximal leaflet and distal leaflet of A. hypogaea,
the RNA-seq transcriptomic analysis was performed using newly
developed folded proximal leaflet, distal leaflet, and petiole at
the vegetative stage as materials. Genes with more than twofold
expression changes and p-values < 0.05 were identified as DEGs.
Compared with the petiole, 4,617 upregulated DEGs and 8,885
downregulated DEGs were identified in the distal leaflet, while
6,504 upregulated DEGs and 8,959 downregulated DEGs were
identified in the proximal leaflet (Supplementary Tables 1, 2).
Then, we compared the DEGs in a proximal leaflet and a
distal leaflet using petiole as a control. The results showed
that 2,354 DEGs were exclusively detected in developing distal
leaflets. The KEGG analysis showed that plant hormone signal
transduction, glycerolipid metabolism, and mismatch repair were
significantly enriched, in which 69 DEGs were involved in plant
hormone signal transduction (Figure 2A). Among 69 DEGs,
33 DEGs were involved in auxin signaling pathways, while 4
DEGs were involved in the CK pathway. Moreover, the exclusive
DEGs in the proximal leaflet were enriched in plant hormone
signal transduction, starch and sucrose metabolism, plant-
pathogen interaction, and MAPK signaling pathway (Figure 2B).
Among them, 67 DEGs were involved in plant hormone signal
transduction, including 18 DEGs in auxin signaling pathways
and 13 DEGs in the CK pathway. Furthermore, in auxin signal
transduction pathways, there were 143 DEGs in common in
both proximal and distal leaflets, while 18 and 33 DEGs existed
exclusively in the proximal and distal leaflet, respectively. In CK
signal transduction pathways, there were 46 DEGs in common in
both proximal and distal leaflets, while 13 and 4 DEGs existed
exclusively in the proximal and distal leaflet, respectively. In
addition, the DEGs enriched in auxin and CK pathway were
compared between proximal leaflet and distal leaflet, and part
of them displayed the different expression levels (Figure 2C and
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FIGURE 1 | The ontogeny of compound leaf development in Medicago truncatula and Arachis hypogaea. (A) The mature leaf morphology of M. truncatula. (B–D)
Different stages of compound leaf development in M. truncatula. (B) Stage 2. A pair of stipule primordia (ST) were initiated from leaf primordium. (C) Stage 5. The
common leaf primordium differentiated into a pair of lateral leaflet primordia (LL) and a terminal leaflet primordium (TL). (D) Stage 6. Trichomes were developed on
terminal leaflet primordium. (E,F) Fully expanded compound leaf of A. hypogaea. A close-up view is shown in panel (F). (G–L) The Scanning Electron Microscopy
(SEM) analysis of the ontogeny of leaf development in A. hypogaea. (G) Stage 1. Leaf primordium (asterisk) initiates and grows to enwrap the SAM. (H) Stage 2.
A pair of stipule primordia (ST) were initiated from the proximal end of the leaf primordium. (I) Stage 3. The boundaries formed between the common leaf primordium
and stipule leaflet primordia. (J) Stage 4. A pair of proximal leaflet primordia (PL) and a pair of distal leaflet primordia (DL) were formed. (K) Stage 5. Trichomes were
developed. (L) Stage 6. The leaflet primordia became folded. Bars = 0.5 cm in panels (A,E), 20 µm in panels (B–D), 0.2 cm in panel (F), and 50 µm in panel (G–L).

Supplementary Table 3). These results imply that auxin and CK
signal transduction may play different roles in the developing
proximal and distal leaflets. These data indicate that most genes
related to auxin and CK signal transduction pathways play
similar roles during the development of both proximal leaflet
and distal leaflet.

Identification of the Mutant Line With
Pentafoliate Leaf Form in Arachis
hypogaea
During the cultivation of cultivated peanut variety Fenghua-1,
a naturally occurring mutant with leaf defects was isolated in
the same genetic background. About 46.1% of leaves in mutant
showed pentafoliate leaf form, and this phenotype could be
stably inherited. Compared with wild type, a distally oriented

terminal leaflet (TLd) was developed between two distal leaflets
in the mutant (Figures 3A,B). SEM analysis showed that leaf
primordium was initiated at stage 1, and a pair of stipule
primordia had emerged at stage 3, which is similar to those in
wild type (Figures 3C,D). At stage 5, the TLd primordium has
emerged between a pair of distal leaflet primordia in the mutant
(Figure 3E). At stage 6, the boundaries were established between
the TLd and distal leaflet primordia, but the development of TLd
was slower than that of the distal leaflet (Figure 3F).

Transcriptomic Analysis Between Wild
Type and Mutant
To gain insight into the developmental mechanism of the
pentafoliate mutant, the transcriptomic analysis was performed
using RNA-seq. The transcriptomes of shoot apices were
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FIGURE 2 | Analysis of differentially expressed genes (DEGs) in proximal and distal leaflets in A. hypogaea. (A) KEGG enrichment analysis of DEGs in distal leaflets.
(B) KEGG enrichment analysis of DEGs in proximal leaflets. (C) A heatmap of DEGs enriched in auxin and cytokinin (CK) signaling transduction pathway between
proximal and distal leaflets. PL, proximal leaflet, DL, distal leaflet, PE, petiole.

acquired from wild type and mutant, and a total of 2,252
DEGs were identified (Supplementary Table 4). Among
them, 1,150 DEGs were upregulated, and 1,102 DEGs were
downregulated (Figure 4A). The GO term enrichment analysis
showed that the most enriched GO terms were transmembrane
transporter activity, transporter activity, and oxidoreductase
activity (Figure 4B). The KEGG analysis showed that plant-
pathogen interaction, starch and sucrose metabolism, and
plant hormone signal transduction were significantly enriched
(Figure 4C). There are 61 DEGs involved in plant hormone signal
transduction, such as auxin, CK, and gibberellin (GA) signaling
and other hormone pathways (Supplementary Table 5). CK can
alter leaf differentiation by changing its concentration (Bar et al.,
2016). In the transcriptomes of the CK signaling pathway, 9
DEGs were enriched, including 2 DEGs in the CK receptor, 5
DEGs in the B-ARR family, and 2 DEGs in the A-ARR family
(Figure 4D and Supplementary Table 6). B-ARRs act as key
players and positive regulators in CK signal transduction, while

A-ARRs are the targets of B-ARRs (To et al., 2004; Mason et al.,
2005). Most of them were upregulated in the mutant, implying
that increased CK activity may be related to the additional
TLd in the mutant.

Cytokinin Plays a Key Role in the
Compound Leaf Development in Arachis
hypogaea
The KNOXI family has been reported to be involved in
promoting the extended morphogenesis in leaves in many plant
species (Barth et al., 2009; Rast-Somssich et al., 2015). In previous
studies, the gene regulatory network in leaf development was
identified in tomato and two related wild species, indicating
that KNOX homeobox genes are located in the bottleneck
position (Ichihashi et al., 2014). In addition, Class I KNOX
genes in M. truncatula were isolated (Di Giacomo et al.,
2008; Zhou et al., 2014) and increased the expression levels
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FIGURE 3 | Characterization of pentafoliate mutant in A. hypogaea. (A) About 46.1% of leaves showed pentafoliate leaf form in the mutant. (B) The close-up view of
the leaf in panel (A). (C,D) The leaf primordia were emerged at stage 1 (C), and the stipule primordia were formed at stage 3 (D). (E,F) Distally oriented terminal
leaflet (TLd) primordium was emerged and developed between the distal leaflet primordia (DL) at stage 5 (E) and stage 6 (F). Bars = 0.5 cm (A), 0.2 cm in panel (B),
and 50 µm in panels (C–F).

of STM/BP-like KNOXI genes in plants exhibited higher-order
leaflets, suggesting their conserved roles in regulating leaf
complexity in M. truncatula (Zhou et al., 2014). The phylogenetic
analysis of KNOXI protein from A. thaliana, M. truncatula,
and A. hypogaea indicated that 10 AhKNOXI proteins existed
in A. hypogaea (Figure 5A). According to the relationship of
the KNOXI proteins in M. truncatula, we named AhKNOXI
in A. hypogaea. To investigate whether AhKNOXI genes are
involved in the leaf development of mutant, their expression
levels derived from the data of transcriptomic profiles were
analyzed. The results showed that all of them were upregulated in
pentafoliate mutant plants, while AhKNOX1-3, AhKNOX2-1, and
AhKNOX2-3were significantly upregulated than otherAhKNOXI
(Figure 5B). Previous reports showed that KNOXI proteins are
able to activate CK biosynthesis in SAM, and CK can partially
rescue the loss-of-KNOXI function in A. thaliana (Yanai et al.,
2005; Sakamoto et al., 2006). Therefore, these data imply that the
increased expression levels of AhKNOXI genes probably result in
the CK-related DEGs in the mutant.

To further investigate the relationship between CK and leaf
pattern in A. hypogaea, wild-type plants were treated with
6-BA at a concentration of 0.1, 0.25, and 0.5 mM for five
times at 2-day intervals, and the same concentration of Tween
20 was applied as a control. The observations showed that
0.5 mM 6-BA treatment could induce the additional terminal
leaflet between two distal leaflets. About 10.8% of wild-type
leaves were changed from tetrafoliate form to pentafoliate form,
which mimicked the mutant phenotype (Figures 5C–G). These
data indicate that exogenous CK treatment is sufficient for

increasing leaf complexity in A. hypogaea. Lov is an effective
inhibitor of the mevalonate pathway and has been used to
eliminate the biosynthesis of CK (Hartig and Beck, 2005).
However, the mutants treated with Lov at a concentration
of 0.01 and 0.05 µM for five times at 2-day intervals
did not recover the defects (Supplementary Figures 1A–D).
These observations imply that the CK signal transduction
pathway, instead of the CK biosynthetic pathway, was probably
defective in the mutant.

DISCUSSION

Leaves are vital to plants for their ability to process
photosynthesis. The diversity of leaf shapes has evolved to adapt
to the environment, by maximizing the ability to absorb sunlight
(Liu et al., 2021). Most legume species have compound leaf
structures. M. truncatula is composed of a pair of lateral leaflets
and a single terminal leaflet, which is similar to Glycine max and
L. japonicus (Wang et al., 2008, 2013; Jiao et al., 2019). However,
the compound leaf pattern in A. hypogaea is different from those
species, which is the tetrafoliate form with a pair of proximal and
distal leaflets. It is surprising that 2,354 DEGs were exclusively
involved in the distal leaflet, and 2,315 DEGs were only shown
in the proximal leaflet, implying that the development between
proximal leaflet and distal leaflet is different. The KEGG pathway
analysis showed that DEGs were significantly enriched in plant
hormone signal transduction, which is coincidental with their
important role in leaf development. These data imply that
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FIGURE 4 | The DEG analysis in wild type and mutant. (A) The heatmap of Fragments Per Kilobase of transcript per Million mapped reads (FPKM) values of 2,252
DEGs between the wild type and the mutant shoot buds in three biological replicates. (B) Gene Ontology (GO) enrichment analysis of DEGs. (C) KEGG enrichment
analysis of DEGs. (D) The heatmap of expression levels of CK-related DEGs.

different hormone-related genes are involved in the formation of
both proximal leaflet and distal leaflet.

The investigation of mutants helps us better understand the
developmental mechanism of leaves. In this study, we discovered
a naturally occurring mutant plant with an extra terminal leaflet
in A. hypogaea, leading to the transformation of the compound
leaf pattern from tetrafoliate to pentafoliate form. Transcriptomic
and KEGG pathway analyses suggest that plant hormone signal
transduction plays a crucial role in regulating leaf development
in the mutant, in which CK signal transduction-related genes are
changed. CK is essential for multiple developmental processes
in plants (Kieber and Schaller, 2018), such as organ initiation,
SAM size, and phyllotaxis (Giulini et al., 2004; Leibfried et al.,
2005; Besnard et al., 2014). Arabidopsis CK biosynthesis gene
ISOPENTENYL TRANSFERASE7 (IPT7) and CK degradation
gene CYTOKININ OXIDASE3 (CKX3) under the control of

FILpro lead to super-compound leaves and simplified leaves
in tomato, indicating that CK regulates the morphogenesis of
compound leaves, and different CK levels result in the alterations
in leaf complexity (Shani et al., 2010).

In previous studies, CK biosynthesis is positively regulated
by KNOXI proteins (Sakamoto et al., 2006), and CK acts
downstream of KNOXI proteins to maintain the prolonged
morphogenetic activity (Shani et al., 2010). KNOXI proteins are
required in the leaf primordia to produce a dissected leaf form in
compound leaf development (Hay and Tsiantis, 2006). In tomato,
the overexpression of KNOXI leads to increase leaf complexity
(Hareven et al., 1996). It has been reported that CK and KNOXI
have a positive correlation (Hay et al., 2004). In this study, the
expression levels of multiple AhKNOXI genes were increased in
mutant plants, implying that CK level may be correlated with the
extended morphogenesis in leaves of mutants. According to this,

Frontiers in Plant Science | www.frontiersin.org 7 February 2022 | Volume 13 | Article 749809

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-749809 February 4, 2022 Time: 15:25 # 8

Sun et al. Compound Leaf Development in Peanut

FIGURE 5 | AhKNOXI and CK are involved in the compound leaf pattern of A. hypogaea. (A) Phylogenetic analysis of KNOXI genes in A. thaliana, M. truncatula, and
A. hypogaea. (B) A heatmap analysis of AhKNOXI genes expression in wild type and mutant. (C) Adult leaf of wild type. (D) Adult leaf of wild type treated with the
same concentration of Tween 20 as control. (E,F) Adult leaves of wild type treated with 6-benzyladenine (6-BA). (G) Adult leaf of the pentafoliate mutant. Bar = 1 cm
(C–G).

the increasing CK level in wild type is able to induce the extra
terminal leaflet, which is similar to that in the mutant. Therefore,
CK is probably a key regulator in the control of compound leaf
patterns in A. hypogaea. However, mutant treated with Lov did
not recover its defects, implying that CK signal transduction
instead of the biosynthetic pathway is probably defective in the
mutant. Moreover, the transcriptomic data showed the DEGs
enriched in several plant hormone pathways such as auxin and
GA signaling pathways, suggesting that these hormones also
probably contribute to the mutant phenotype.

The relationship between lateral leaflet and terminal
leaflet development has been reported in several studies. In
M. truncatula, sgl1 mutant exhibits simple leaves due to the
failure of the initiation of lateral leaflet primordium, indicating
that SGL1 plays important roles in the lateral leaflet development
(Wang et al., 2008). Moreover, slm1 mutant shows multiple
terminal leaflets and reduced lateral leaflet number associated
with lower SGL1 expression in M. truncatula (Zhou et al., 2011).
Previous reports also show that the morphogenetic activity of
the terminal leaflet is suppressed by the BLH protein PINNA1

in M. truncatula (He et al., 2020). Additionally, M. truncatula
Cys(2) His(2) zinc finger transcription factor PALM1 binds to
and downregulates the expression of SGL1, and the loss-of-
function mutant shows five leaflets clustered at the leaf tip (Chen
et al., 2010). The characteristics of these mutants indicate that
the distinct developmental domains between the terminal and
lateral leaflet formation existed. In A. hypogaea, exogenous CK
treatment in wild type results in the additional terminal leaflet
between a pair of distal leaflets, instead of the proximal leaflet,
indicating that the developmental response to CK is different
between proximal leaflet and distal leaflet.

CONCLUSION

In this study, we analyzed the ontogeny of compound leaf
development inA. hypogaea. The transcriptomic profiles between
different leaflets are clarified, providing the potential gene
networks for regulating leaf development in legumes. The
characterization of a pentafoliate mutant suggested that CK plays
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a critical role in compound leaf patterns in A. hypogaea. Leaf area
affects the efficiency of photosynthesis and thus influences yield.
Therefore, the investigation of the developmental mechanism
of compound leaves in peanut may contribute to improve its
production by the molecular design of leaf patterning.
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