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The use of omics techniques to analyze the differences between genetic engineering
organisms and their parents can identify unintended effects and explore whether such
unintended effects will have negative consequences. In order to evaluate whether
genetic engineering will cause changes in crops beyond the changes introduced by
conventional plant breeding, we compared the extent of transcriptome and metabolome
modification in the leaves of three lines developed by RNA interference (RNAi)-based
genetic engineering and three lines developed by conventional breeding. The results
showed that both types of plant breeding methods can manifest changes at the
short interfering RNA (siRNA), transcriptomic, and metabolic levels. Relative expression
analysis of potential off-target gene revealed that there was no broad gene decline in
the three RNAi-based genetic engineering lines. We found that the number of DEGs
and DAMs between RNAi-based genetic engineering lines and the parental line was
less than that between conventional breeding lines. These unique DEGs and DAMs
between RNAi-based genetic engineering lines and the parental lines were not enriched
in detrimental metabolic pathways. The results suggest that RNAi-based genetic
engineering do not cause unintended effects beyond those found in conventional
breeding in maize.

Keywords: RNAi-based genetic engineering maize, unintended effect, insect-resistant, biosafety assessment,
transcriptome, metabolome

Abbreviations: RNAi, RNA interference; dsRNA, double-stranded RNA; siRNAs, short interfering RNAs; HPLC-MS, high-
performance liquid chromatography mass spectrometry; FPKM, fragments per Kb per million reads; FDR, false discovery
rate; DEGs, differentially expressed genes; DAMs, differentially accumulated metabolites; OPLS-DA, orthogonal partial least
squares discriminant analysis; VIP, variable importance for the projection; PCA, principal components analysis; GO, gene
ontology; KEGG, Kyoto encyclopedia of genes and genomes.
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INTRODUCTION

The application of genetic engineering (GE) technology to
develop new crops with excellent biological characteristics was
one of the strategies to ensure food security in the 21st century.
To guarantee global food security, expert practitioners have
applied biotechnology to crop breeding to obtain many GE crops
with disease and insect resistance, abiotic (salt, drought, cold,
and heat) resistance, and nutritional improvement, and some of
these crops that have undergone rigorous biosafety assessment
have been widely planted in some countries worldwide [Ricroch
et al., 2011; Li et al., 2020; International Service for the
Acquisition of Agri-biotech Applications [ISAAA], 2021]. RNA
interference (RNAi)-based insect-resistant crops were transferred
into exogenous fragments of vital pest genes to produce double-
stranded RNA (dsRNA), which was then cut into approximately
21–24 nt short interfering RNAs (siRNAs) in the plant using
Dicer or Dicer-like proteins. By means of base pairing, these
siRNAs can target mRNA sequences in pests and subsequently
degrade for pest control (Mamta and Rajam, 2017). RNAi
can be used in the “in-species” mode of plant genomes to
improve nutritional content by reducing antinutrients, allergens,
and toxins while increasing the level of beneficial nutrients
and inhibiting the growth of undesirable traits to improve
productivity (Ramon et al., 2014). Similarly, RNAi can be used
in plants to express dsRNA derived from genes outside the
parental plant. Virus-resistant and insect-resistant crops obtained
using RNAi have been approved for cultivation, including
plums (Prunus salicina), soybeans (Glycine max), maize (Zea
mays), Cassava (Manihot esculenta), and apples (Malus pumila).1

The public’s concerns mainly focus on potential risks to
the environment and human health, contributing to delayed
commercialization of GE products in many countries (Li et al.,
2020). Therefore, before any new GE products have been allowed
to enter the market, rigorous safety assessment research was
crucial, the purpose of which was to identify and avoid risks.

The potential risks of GE crops have been separated into two
broad categories: intended and unintended changes (Ladics et al.,
2015). The assessment of intended changes uses measurement
indicators such as molecular and biological characteristics and
crop phenotypes, while there is no uniform standard for the
measurement of unintended changes (Ladics et al., 2015). We
can obtain specific biological traits or expected phenotypic traits
by transferring specific exogenous genes into recipient crops
using GE technology, however, we cannot guarantee that the
exogenous gene will be integrated into the specific location of
the recipient genome, which may lead to unintended integration,
such as undesirable integration location, copy number, etc. This
unintended integration often causes the final phenotypic change,
but the trace compounds that caused the phenotypic change
may not be detected downstream of the breeding process, which
these trace amounts of compounds may affect nutrition and
quality, even related to allergic and toxic effects (Zhao and Wolt,
2017). Based on this, two unintended risk assessment strategies
have been suggested. The first strategy is to collect data on the

1https://www.isaaa.org/gmapprovaldatabase/default.asp

phenotypic characteristics of GE crops including measuring the
overall phenotype of crops and the composition of principal
tissues, transcriptome, proteome, and metabolome (Ladics et al.,
2015). Unintended changes are identified by comparing these
data between GE crops and their counterparts (Bregitzer et al.,
1998; Harrigan et al., 2010). The second strategy uses targeted
sequencing and non-targeted omics data analysis of possible
unintended omics data changes (Ladics et al., 2015). The latter
approach considers risk assessment to be a hypothesis-driven
test more comprehensively and scientifically reflecting differences
between GE crops and their comparable counterparts (Ladics
et al., 2015). Guided by relevant legislation and regulation (Evans
et al., 2006), risk assessment experts determine the possible
unintended effects and establish a series of scenarios that may
be caused by specific events, excluding extreme and scientifically
unreliable assumptions after the fact, determine the probability
of these events and their frequency or magnitude, and collect
data to test these hypotheses and characterize risks, including
unintended effects (Ladics et al., 2015). The risk assessment
based on tests and hypotheses can minimize unintended risks
in GE crops (Ladics et al., 2015). Transcriptome, proteomics,
and metabolomics have been used to evaluate the unintended
effects of GE crop breeding at the mRNA, protein, and metabolite
levels (Ricroch et al., 2011). Most such studies use one or two
omics techniques to investigate the unintended effects, focusing
on the comparison between GE lines and parental line, revealing
some degree of variation. These studies cannot entirely and
clearly establish whether the detected variation comes from
insertion of exogenous gene or from the environment or genetic
background or if they are attributed to normal variation in
conventional breeding lines (Wang et al., 2019). At present,
some have proposed that omics evaluation experiments on
GE plants should not only establish parental control lines but
also should use conventional breeding lines as controls for
comparative analysis, which is a highly recognized approach
(Klumper and Qaim, 2014).

Many things can induce unintended effects, which may
emerge at any stage of the GE plant development process,
including random mutations, somatic mutations, gene sequence
insertions, positional effects, inductive effects, mutations in
the tissue culture process, and pleiotropy (Weng et al., 2019).
However, RNAi-based GE crops have remarkable molecular
characteristics compared with conventional GE crops. If siRNAs
were highly matched with non-target sequences to produce
inhibitory effects, they may have unintended off-target effects
although non-target species may include the GE plants
themselves. The possible impact of siRNAs on plant genomes
has not been clarified. The European Food Safety Agency’s GE
management team believes that the relevant safety assessment
content provided by research and development (R&D) applicants
must be as detailed as possible and emphasize the importance
of bioinformatics in the process of off-target effect analysis
(Papadopoulou et al., 2020).

Maize, one of the most important food, feed, and energy
crops in the world, is damaged by pests, and diseases bring
massive losses to farmers (Li et al., 2020). The data show that
the four countries with the most GE crops have planted large
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areas of GE maize (International Service for the Acquisition
of Agri-biotech Applications [ISAAA], 2021). In the context
of increased resistance to individual Bacillus thuringiensis
(Bt) target pests, GE plants expressing dsRNA represent
a new generation of GE plants, but there has been little
research on safety assessments of the unintended effects of
RNAi-based GE crops (Casacuberta et al., 2015; Mamta and
Rajam, 2017). In this study, RNAi-based GE lines (DTS_108,
DTS_123, DTS_127) resistant to Apolygus lucorum (Meyer-Dür)
(Hemiptera: Miridae) (reference patent No. US9944948B2), the
parental line (TJ806), and conventional breeding lines (AR02 and
AR03) were used to compare and evaluate unintended effects. We
compared biological variations among the six maize lines at the
siRNA, mRNA, and metabolite levels (Figure 1). The research
constructed the datasets using omics-based systems biology
methods, including siRNA sequencing, transcriptomics using
RNA-seq, and metabolomics using high-performance liquid
chromatography mass spectrometry (HPLC-MS). Based on these
results, the potential unintended effects caused by two different
plant breeding methods were analyzed comparably.

MATERIALS AND METHODS

Materials
In this study, we used a total of six maize lines, including
three RNAi-based GE lines (DTS_108, DTS_123, DTS_127), one
parental line (TJ806), and two conventional breeding lines (AR02
and AR03). Three RNAi-based GE lines resistant to A. lucorum
were different transformants containing the same exogenous
inverted repeat sequences and transformed from the same
parental line TJ806 (Figures 1A,B and Supplementary Table 1).
Three RNAi-based GE lines have completed the intermediate
test stage of biosafety evaluation and were about to enter the
stage of environmental release. AR03 was a derivative line of
AR02, among which AR02 was the hybrid parent of AR03.
The genetic relationship between these two lines was similar,
and both have been cultivated in China for several years. The
parental line TJ806 has no genetic relationship with conventional
breeding lines AR02 and AR03. We set up the comparison
between the RNAi-based GE lines and parental line, including
DTS_108/TJ806, DTS_123/TJ806, and DTS_127/TJ806, which
belong to group 1. We also set up the comparisons between
parental line and conventional breeding lines, including
AR02/TJ806, AR03/TJ806, and AR02/AR03, which belong
to group 2. The comparisons were also set up between GE
lines, including DTS_108/DTS_123, DTS_108/DTS_127,
and DTS_123/DTS_127, which belong to group 3. The
comparisons between GE lines and conventional breeding lines,
including DTS_108/AR02, DTS_123/AR02, DTS_127/AR02,
DTS_108/AR03, DTS_123/AR03, and DTS_127/AR03, were set
up, which belong to group 4. A total of 15 pariwise comparisons
were set up as shown in Figure 1B. In order to make the analysis
more clear, we divided the 15 pariwise comparisons into four
groups, which represent the differences between RNAi-based
GE lines and parental line (group 1), the differences between
conventional breeding lines and parental line (group 2), the
differences between GE lines (group 3), and the differences

FIGURE 1 | Genetic relations among the studied maize lines and grouping
comparison design for the analyses. (A) Genetic relations among the studied
maize lines. (B) Experimental design for pairwise comparisons of short
interfering RNA (siRNA) expression, gene expression, and metabolite
accumulation between different maize lines. Group 1, comparisons between
RNA interference (RNAi)-based genetic engineering (GE) lines and parental
line. Group 2, comparisons between conventional breeding lines and the
non-GE parental line. Group 3, comparisons between RNAi-based GE lines
with the same parents. Group 4, comparisons between RNAi-based GE lines
and conventional breeding lines. DTS_108, DTS_123, and DTS_127 were
RNAi-based GE lines transformed using the conventionally bred maize line
TJ806. Maize lines with green, orange, and purple colors represent the
RNAi-based GE lines, parental line of RNAi-based GE lines, and conventional
bred maize lines, respectively.

between GE lines and conventional breeding lines (group 4)
(Figures 1A,B and Supplementary Table 1). All materials were
contributed by Dabeinong Biotechnology Co., Ltd (Haidian,
Beijing, China).

Plant Growth Conditions and Tissue
Sampling
The surface-sterilized rice seeds were germinated on half-
strength MS medium. After a week, we transplanted the seedlings
into individual plastic pots and placed all potted plants in a
cement pool maintained in a glasshouse (28± 2◦C RT, 65± 10%
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RH, 16 h light/8 h dark). After 5 weeks, from each plant, we
sampled a leaf section (approximately 2 cm) from the middle part
of the second leaf blade from the top. The samples from six plants
were pooled as one biological replicate, and three replicates were
collected for each maize line. The leaf samples were immediately
frozen in liquid nitrogen and stored at−80◦C.

Small RNA Extraction, Library
Preparation, and Small RNA Sequencing
To construct libraries for small RNA sequencing, we extracted
and purified small RNA from maize leaves using RNAi-so
Plus system and BioAnalyser 2100. The cDNA synthesis was
carried out using small RNA with linkers as a template, and
the small RNA library was constructed by cDNA after 15 PCR
cycles. Library sequencing is based on the method of sequencing
by synthesis using Illumina HiSeq 2000. We generated the
original fastq file data using primers and vector sequences,
subjected them to quality inspection and length screening of the
sequenced fragment bases, and finally selected reliable small RNA
sequencing fragments with lengths of 18–30 nt.

Mock Library Construction, Sequence
Alignment, and Verification of Gene
Expression Level
The inverted repeat sequence with a length of 876 bp mainly
derived from A. lucorum was used for library construction. We
used Jellyfish (v.2.2.5) software to cut candidate sequences from
different starting positions (first, second, etc.) of the dsRNA
sequence, assembling a 21–24 bp kmer sequence library, and used
Bowtie (v.1.1.0) software to compare it with maize transcripts
to determine the start and end positions of each kmer. The
mismatch parameter was set to within two bases.

First, we compared the siRNA in the mock library to the maize
transcript (B73 RefGen_v4). The alignment setting allows two
gaps to obtain specific maize transcripts (the potential off-target
genes in maize). Second, we constructed the siRNA library by
comparing actual small RNA sequencing to dsRNA sequence.
To ensure that the analyzed siRNAs were all derived from
the inverted repeat sequence inserted from an external source,
we set the alignment threshold to 0 gaps. The results of the
two comparisons can be combined to obtain the number of
genes that siRNA has compared to the maize transcript. Base
preference was profiled with WebLogo (Crooks et al., 2004).
In addition, the distribution of siRNAs highly enriched on the
dsRNA was determined with Grahprism7.0 software. These genes
were used as potential off-target genes for further analysis, and
their expression levels were measured using qRT-PCR calculated
by 2−11Ct method. The experiment was designed in three
parallels, and the significance between gene expression levels was
tested using a student t-test (p < 0.05).

Total RNA Extraction, Library
Preparation, and RNA Sequencing for
Transcriptome
Total RNA per samples was extracted using NEBNext R© UItraTM

RNA Library Prep Kit for Illumina R© (NEB, United States). In

total, 18 cDNA libraries, which were sequenced using Illumina
HiSeq 4000 platform, were constructed. The clean reads were
aligned to the reference genome AGPv4 using Bowtie2 software.2

The expression levels of all transcripts from the six leaves were
quantified as the fragments per Kb per million reads (FPKM)
(Trapnell et al., 2010) using the omicshare platform.3 The DEGs
were identified using Benjamini and Hochberg’s approach with
an adjusted P-value less than 0.05 and a fold change ≥2 or
≤0.5. The verification method of DEGs was same as described in
Section “Mock Library Construction, Sequence Alignment, and
Verification of Gene Expression Level.” The heatmap of relative
expression level of the DEGs was plotted using the omicshare
platform. Gene ontology (GO) and Kyoto encyclopedia of
genes and genomes (KEGG) pathway enrichment analyses were
performed using omicshare platform and MetaboAnalyst 4.0
(Chong et al., 2018) with a false discovery rate (FDR) adjusted
P-value < 0.05 (hypergeometric test).

Metabolite Profiling
Metabolites Extraction Process
After grinding six maize samples with liquid nitrogen, we added
400 µl of precooled methanol/acetonitrile/water solution (4:4:2,
v/v) to the samples (Mix, stand at−20◦C for 60 min, centrifuged
at 14,000g at 4◦C for 20 min). We vacuum dried the supernatant,
added 100 µL of acetonitrile aqueous solution (acetonitrile:
water = 1:1, v/v) to reconstitute during mass spectrometry,
vortexed, centrifuged at 14,000g at 4◦C for 15 min, and took 2 µL
of supernatant for sample analysis.

High-Performance Liquid Chromatography and
Electrospray Ionization-Q trap-MS/MS Running
Conditions
The samples were separated using an Agilent 1290 Infinity LC
Ultra HPLC system (UHPLC) (HILIC column temperature 25◦C,
flow rate 0.3 mL/min, injection volume 2 µL) following the
manufacturer’s instructions. The sample was placed for the entire
analysis process in the autosampler at 4◦C. We adopted a random
order for continuous analysis of the samples.

We used electrospray ionization (ESI) positive ion and
negative ion modes for detection. We separated the samples
using UHPLC and analyzed them with a Triple TOF 6600
mass spectrometer (AB SCIEX) following the manufacturer’s
instructions from Hoogen biotech Co., Ltd (Minhang, Shanghai,
China).

Acquiring Metabolic Data
The original data to mzXML format using Proteo Wizard
then used the XCMS program for peak alignment, retention
time correction, and peak area extraction. The metabolite
structure identification uses accurate mass matching (<25 ppm)
and secondary spectrum matching methods and searches the
laboratory’s self-built database. For the data extracted by XCMS,
ion peaks with missing values >50% were deleted in the group.
The application software SIMCA-P 14 (Umetrics, Umea, Sweden)

2http://tophat.cbcb.umd.edu/
3https://www.omicshare.com/
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was used for pattern recognition and the data were preprocessed
by Pareto-scaling for multidimensional statistical analysis.

Data Analysis
According to the variable weight value, variable importance for
the projection (VIP), obtained by the orthogonal partial least
squares discriminant analysis (OPLS-DA) model, the influence
intensity and explanatory power of the expression pattern for
each metabolite can be measured. Those with fold change
(FC) > 2.0 and P-value < 0.05 were used as differential
cumulative metabolites. Using qualitatively significant differences
in metabolite expression levels for each group of samples, the
clustering (hierarchical clustering) helps us to accurately screen
marker metabolites and use the KEGG public database to conduct
pathway analysis of differential metabolites.

RESULTS

Evaluating Omic Data Derived From
Leaves From Six Maize Lines
We conducted siRNA-seq, RNA-seq, and metabolite analysis
to investigate unintended effects in RNAi-based maize. For
siRNAs, we constructed a total of 18 small RNA libraries
resulting in approximately 15.84–23.80 million raw reads per
library and 10.34–11.98 million clean reads per library being
cleated. The rate of clean reads ranged from 50.54 to 83.51%.
The percentage of bases with a Phred value greater than
30 compared to total bases was between 95.73 and 97.50%
(Supplementary Table 2). For transcriptome analysis, the 18
RNA-seq libraries were constructed, resulting in approximately
51–56 million clean reads per library being cleated. Using
the Zey_mays AGPv4 as a reference genome, 92.05–96.75%
of the clean reads were mapped. The percentage of bases
with a Phred value greater than 30 compared to total bases
was between 94.06 and 94.55% (Supplementary Table 3). We
profiled metabolic changes in the six maize lines. We detected
a total of 1,954 metabolites (Supplementary Table 4). The
majority of these metabolites belonged to different ontologies,
i.e., diterpenoids, phenolic glycosides, and alpha amino acids and
derivatives (Supplementary Table 4). These results suggest that
the datasets generated from these six maize lines were sufficient
for further analyses.

Features of Short Interfering RNAs of Six
Maize Lines
We analyzed the lengths of highly enriched siRNAs, base
preferences, and their distributions on the dsRNA sequence
(Figure 2 and Supplementary Tables 2–4). The lengths of highly
enriched siRNAs were concentrated at 21 nt in all maize lines
(Supplementary Table 5). The siRNA size distribution shown
in Figure 2A was comparable with previous observations in
Arabidopsis that the 21 nt long siRNA is the predominant
antiviral silencing component. Robust guanine and cytosine (GC)
bias (52.75%) was observed for all siRNAs highly enriched in the
maize transcriptome. The adenine or uracil (A/U) content of five
bases at the 5′ end of siRNAs was higher than the A/U content of

other positions (Figure 2B and Supplementary Table 6), related
to the binding stability of the siRNA targeting mRNA and one
of the conditions for effective siRNA silencing. We analyzed the
distribution of siRNAs and noted the positions of their first bases
in the dsRNA sequence, with specific distribution characteristics
present in six maize lines, although the distribution trend of
siRNAs was similar (Figure 2C and Supplementary Table 7).
Notably, the number of reads of siRNAs in RNAi-based GE
lines was approximately 20,000 times greater than in non-
GE maize lines.

Verification of Potential Off-Target Gene
Expression Levels Using RT-qPCR
We obtained 35 transcripts identified as potential off-target genes
of maize. One gene (Zm00001d014294) was mapped to the
transcriptome of maize when a 1 bp mismatch was set. Thirty-five
genes were mapped to the transcriptome of maize when a 2 bp
mismatch was set (Supplementary Table 6). Using zssIIb as an
internal reference gene, RT-qPCR was used to analyze the relative
expression of potential off-target genes, as shown in the heatmap
(Figure 2D). The expression levels of the Zm00001d001906 and
Zm00001d007394 genes in AR02 were significantly lower than
those in DTS_127. The genes whose expression levels in AR02
were higher than those in AR03, DTS_123, TJ806, and DTS_127
were Zm00001d014451, Zm00001d015139, Zm00001d027839,
and Zm00001d034588, respectively. The expression level of
Zm00001d048703 in AR03 was significantly lower than in
DTS_123. The expression patterns of these genes in specific
strains were completely consistent with the expression patterns
of DEGs in the transcriptome. In addition, compared with
the parental line, the expression of genes Zm00001d000055
and Zm00001d000295 decreased in DTS_123. Although the
expression levels of these potential off-target genes were lower
than those in TJ806, this did not appear in all RNAi-based GE
lines (Figure 2D).

Analyzing Gene Expression Through
RNA-Sequencing
The RNA-seq dataset was normalized to FPKM values to
quantify the levels of gene expression, including 28,852 genes
(Supplementary Table 8). The principal component analysis
(PCA) was performed on all 18 transcriptomic datasets. As shown
in Figure 3A, the first two principal components (PCs) explain
53.8% (PC1) and 17.7% (PC2) of total variance. PC1 revealed a
clear separation between conventional breeding lines and RNAi-
based GE lines compared with the parental line. However, the first
two PCs failed to separate the GE lines from the parental line.
Consistently, RNAi-based GE lines and conventional breeding
lines were hierarchically clustered in the respective classes. Three
RNAi-based GE lines had a closer genetic relationship with
parental line (Figure 3B).

Subsequently, differentially expressed genes (DEGs) of the
six maize lines based on different grouping comparisons as
described in Figure 1 were screened, showing distinct differences
in gene expression among the lines. A total of 8–4765 DEGs
were detected among the 15 pairwise comparisons (Figure 3C
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FIGURE 2 | The features of siRNAs highly enriched in maize and expression of potential off-target genes. (A) The number of siRNA types with lengths of 21–24 nt
highly enriched in six maize lines. (B) The distribution of the first base of siRNAs in double-stranded RNA (dsRNA) sequences in six maize lines. The abscissa
indicates the base position of the dsRNA sequence. The ordinate indicates that the number of siRNA reads was highly enriched in six maize lines. (C) The base
preference of siRNAs with a length of 21 nt highly enriched in three RNAi-based GE lines. The abscissa indicates the base position of siRNAs with a length of 21 nt.
The ordinate indicates the proportion of bases (A/U/G/C) in each base position. Larger bases represent a higher frequency of bases. (D) Heatmap of the expression
levels of 35 potential off-target genes in six maize lines. Gene names colored red indicates that a gene was expressed differentially in maize lines (t-test, p < 0.05).

and Supplementary Table 9). The number of DEGs between
RNAi-based GE lines and parental line was less than between
conventionally breeding lines. The number of DEGs between

RNAi-based GE lines and parental line was within the normal
variation of gene expression changes in conventionally breeding
lines. The number of DEGs between RNAi-based GE lines
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FIGURE 3 | Overall description of transcriptome data. (A) Principal component analysis (PCA) of gene expression levels in the leaves of six maize lines. Score plot of
the first two principal components with the explained variance. (B) Hierarchical clustering of six maize lines using the total detected gene expression data. In the
heatmap, each maize line is visualized in a single column and each gene is represented by a single row. Gene expression levels are shown in different colors, where
red indicates high abundance and low relative expression is shown in blue (color key scale right of the heatmap). (C) Pairwise comparisons of DEGs between
different maize lines. (D) Venn diagrams depicting the unique and shared DEGs between lines obtained by RNAi-based genetic modification and conventional
breeding methods.

and conventionally breeding lines was similar to that between
parental line and conventionally breeding lines except for
AR02/AR03, which is far more than the number of DEGs
between RNAi-based GE lines and parental line, suggesting that
different genetic backgrounds may bring more changes in gene
expression (Figure 3C).

We calculated the distribution of DEGs for each comparison
and present them in Venn diagrams (Figure 3D). This
distribution was genotype-specific. As shown in Figure 3D, we

analyzed the distribution of DEGs between three GE lines and
parental line. The results showed that there were 35, 25, and 41
unique DEGs in DTS_108, DTS_123, and DTS_127, respectively.
At the same time, three GE lines shared 18 DEGs compared with
parental line (Figure 3D). Although a large number of DEGs
were detected in pairwise comparisons, they still shared 83 DEGs
between group 1 and group 2. There were 57 and 5753 unique
DEGs in group 1 and group 2 representing the different breeding
lines, respectively (Figure 3D). The number of unique DEGs in
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each RNAi-based GE line compared with group 2 was similar
and was significantly less than that in group 2 (Supplementary
Figure 1). These results suggest that both conventional and
GE breeding methods can change the expression of non-target
genes. We verified the expression levels of 20 DEGs from the
shared and unique collection described above using RT-qPCR. As
shown in the Supplementary Figure 1, which were RNA-seq and
qPCR data, respectively. The results of heatmap showed that the
expression trend of DEGs was consistent with the transcriptome
sequencing data, indicating that the transcriptome sequencing
results were accurate and credible.

Functional Enrichment Analysis of
Differentially Expressed Genes
Gene ontology pathway enrichment analyses of the DEGs in
a total of 15 pairwise group comparisons were conducted
(Supplementary Table 10). No significantly enriched biological
process GO terms were found in comparisons between RNAi-
based GE lines and parental line (Supplementary Table 10).
Different biological process terms were enriched in specific
comparisons, with hydrolase activity acting on glycosyl bonds
as the most popular pathway terms in the group 2, group
3, and group 4. We performed GO pathway enrichment
analyses of the unique and shared DEGs of comparisons (not
attached). Interestingly, there were zero and 43 significantly
enriched GO terms of unique DEGs in group 1 and group 2,
respectively. Only cytoskeletal terms were significantly enriched
GO terms of unique DEGs in the comparisons of DTS-123/TJ806
when compared with group 2 and none of those in DTS-
108/TJ806 and DTS-127/TJ806. The performances of the three
RNAi-based maize lines were similar, with the number of
enrichment pathways of unique DEGs far less than those in group
2 (not attached).

Similarly, the KEGG enrichment analyses indicated that there
were no significantly enriched pathways for the comparisons
between RNAi-based GE lines and parental line except for the
eukaryotic ribosome biogenesis pathway in the comparison
of DTS_123/TJ806. In addition, there were some pathways,
such as ABC transporters, Diterpenoid biosynthesis, Flavonoid
biosynthesis, Monoterpenoid biosynthesis, Phenylpropanoid
biosynthesis, and Plant hormone signal transduction, which
were significantly enriched in the comparisons between
conventionally breeding lines with a high enrichment
score. There were Photosynthesis, Flavonoid biosynthesis,
Cyanoamino acid metabolism, Starch and sucrose metabolism,
Ribosome biogenesis in eukaryotes, and Phenylpropanoid
biosynthesis that were significantly enriched in the comparisons
between the RNAi-based GE lines and conventionally breeding
lines (Table 1).

Metabolomic Differences in Leaves
Among Maize Lines
A PCA plot for metabolite accumulation was constructed and
shown in Figure 4A, where the abscissa and the ordinate
represent the scores of PC1 and PC2, respectively. The first two
PCs explain 87.5 and 3.9% of the total variance, respectively.
PC1 showed a clear separation between maize lines with

different genetic backgrounds. For specific maize lines, the first
two PCs could not separate the GE lines from the parental
line. Consistently, clustering analysis of the metabolites from
the six maize lines showed that the conventional breeding
lines and RNAi-based GE lines were clustered into distinct
groups (Figure 4B).

The differentially accumulated metabolites (DAMs) in leaves
among different maize lines were identified. A total of 6–129
DAMs were identified, ranging from 0.31 to 6.60% of the total
detected metabolites in each of the 15 comparisons (Figure 4C
and Supplementary Table 11). In addition, the number of
DAMs between RNAi-based GE lines and parental line were,
in all cases, less than those between RNAi-based GE lines and
conventional breeding lines (Figure 4C and Supplementary
Table 11). We constructed a venn diagram for qualitative analysis
of the metabolites. The number of unique DAMs in DTS_108,
DTS_123, and DTS_127 were 8, 36, 16, respectively, when
compared with parental line (Figure 4D). It was noticed that
there was no shared DAMs in three RNAi-based GE lines
compared with parental line. Group 1 and group 2 shared six
metabolites, with 59 and 160 unique metabolites, respectively
(Figure 4D). Similar to the transcriptome results, the numbers of
unique DAMs in the three RNAi-based maize lines were similar
and far less than those in group 2 (Figure 4D).

The KEGG pathway enrichment analysis showed that
no pathways were significantly enriched in the DAMs of
group 1 and group 3. In contrast, some pathways were
significantly enriched in the DAMs of group 2, including
glycerolipid metabolism, selenocompound metabolism, galactose
metabolism, alanine, aspartate and glutamate metabolism,
aminoacyl-tRNA biosynthesis, and vitamin B6 metabolism.
We found vitamin B6 metabolism to be enriched in DAMs
between conventionally bred lines and the parental line of
group 4 (Table 2). We profiled KEGG pathway enrichment
analysis of significantly enriched shared or specific DAMs of
comparisons of group 1 and group 2. Five KEGG pathways
were significantly enriched in the unique DAMs of group 2
when compared with group 1, including vitamin B6 metabolism,
ubiquinone and other terpenoid-quinone biosynthesis, nicotinate
and nicotinamide metabolism, pyrimidine metabolism, and
tyrosine metabolism. There was no significant enrichment of
metabolites specific to group 1 or any metabolites specific to
RNAi-based GE maize.

DISCUSSION

In the 2000s, new methodologies were developed to allow,
in theory, a holistic search for alterations in GE crops at
different biological levels (transcripts, proteins, metabolites)
(Ricroch et al., 2011). However, research on the assessment
of unintended effects in RNAi-based GE crops, including off-
target effect analysis, was little enough that their risk assessment
has not been well-understood (Auer and Frederick, 2009). We
attempted to determine the amount of variation among RNAi-
based GE lines resistant to A. lucorum by establishing parental
controls and conventional breeding lines using siRNA, mRNA,
and metabolite data analysis.
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TABLE 1 | Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis of significantly DEGs.

Group Comparisons Id Term ListHits ListTotal PopHits PopTotal pval padj Enrichment_score

Group 1 DTS_108/TJ806 -

DTS_123/TJ806 path:zma03008 Ribosome biogenesis in
eukaryotes

2 44 49 6694 0.0040 0.0287 6.2096

DTS_127/TJ806 -

Group 2 AR02/TJ806 path:zma00500 Starch and sucrose
metabolism

26 771 112 6694 0.0001 0.0146 2.0155

path:zma02010 ABC transporters 2 44 15 6694 0.0001 0.0033 20.2848

path:zma00902 Monoterpenoid
biosynthesis

4 771 7 6694 0.0003 0.0201 4.9613

AR03/TJ806 path:zma00500 Starch and sucrose
metabolism

26 771 112 6694 0.0001 0.0146 2.0155

path:zma00941 Flavonoid biosynthesis 2 63 27 6694 0.0020 0.0098 7.8707

path:zma00940 Phenylpropanoid
biosynthesis

5 63 145 6694 0.0023 0.0098 3.6639

path:zma00480 Glutathione metabolism 21 809 74 6694 0.0000 0.0042 2.3481

AR02/AR03 path:zma00904 Diterpenoid biosynthesis 2 63 16 6694 0.0004 0.0058 13.2817

path:zma04075 Plant hormone signal
transduction

6 63 202 6694 0.0027 0.0098 3.1561

Group 3 DTS_108/DTS_123 -

DTS_108/DTS_127 -

DTS_123/DTS_127 -

Group 4 DTS_108/AR02 path:zma00940 Phenylpropanoid
biosynthesis

8 100 145 6694 0.0003 0.0050 3.6932

DTS_123/AR02 path:zma00196 Photosynthesis - antenna
proteins

3 100 24 6694 0.0004 0.0050 8.3675

DTS_127/AR02 path:zma00460 Cyanoamino acid
metabolism

3 100 34 6694 0.0015 0.0100 5.9065

path:zma00941 Flavonoid biosynthesis 2 63 27 6694 0.0020 0.0098 7.8707

DTS_108/AR03 path:zma00500 Starch and sucrose
metabolism

5 63 112 6694 0.0006 0.0058 4.7435

DTS_123/AR03 -

DTS_127/AR03 path:zma03008 Ribosome biogenesis in
ryeukaotes

2 63 49 6694 0.0108 0.0251 4.3369

path:zma00500 Starch and sucrose
metabolism

7 100 112 6694 0.0002 0.0050 4.1838

Consistent with research on matching siRNA and target
sequences, 21 nt siRNAs accounted for a large proportion of
all siRNAs to be analyzed, indicating that among the 21–24 nt
siRNAs, 21 nt siRNAs played a major role when siRNAs and
non-target sequences were matched (Papadopoulou et al., 2020;
Figure 2A). Interestingly, some potential off-target genes in
RNAi-based GE lines with expression levels lower than those
in the parental line were not common in all the three RNAi-
based GE lines (Figure 2D). These results suggest that no off-
target phenomenon was found by molecular experiments at the
gene expression level. In fact, the gene expression levels are
affected by many factors such as environment, weather, and
varieties, possibly resulting in differences in gene expression and
phenotypic changes (Zhang et al., 2017). The high abundance
of siRNA in the maize genome did not possess an obvious
inhibitory effect. This result is supported by previous studies
showing that the off-target suppression effect does not solely
depend on the abundance of siRNAs (Praveen et al., 2010;
Papadopoulou et al., 2020). Whether off-target occurs other

important factors must be considered such as the concentration
of siRNAs in plant cells, the amount of siRNA loaded with
AGO protein, and the binding energy between siRNA and its
target mRNA. In the end, off-target effects should be verified
by biological experiments (Ma et al., 2006; Papadopoulou
et al., 2020). Therefore, the relationship among gene expression
differences, phenotypic changes, and off-target effects should be
explained carefully (Casacuberta et al., 2015; Ladics et al., 2015;
Arpaia et al., 2020). Obviously, using bioinformatics to predict
off-target genes is only a basic auxiliary approach, while the
application of bioinformatics can provide a reference for off-
target effects analysis (Ahmed et al., 2020; Papadopoulou et al.,
2020).

Both PCA and hierarchical cluster analyses of the datasets
showed a distinct separation between samples with different
genetic backgrounds at both the transcriptome and metabolome
levels. Specifically, there was a distinct separation between
conventional breeding maize lines and RNAi-based GE
lines (including parental line), but there was no separation
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FIGURE 4 | Overall description of metabolome data. (A) Principal component analyses (PCA) of metabolite accumulation levels in leaves of six maize lines. Score
plot of the first two principal components with the explained variance. (B) Hierarchical clustering of six maize lines using the total detected metabolite accumulation
data. In the heatmap, each maize line is visualized in a single column and each metabolite is represented by a single row. Metabolite accumulation levels are shown
in different colors, where red indicates high abundance and low relative expression is shown in blue (color key scale right of the heatmap). (C) Pairwise comparisons
of DAMs between different maize lines. (D) Venn diagrams depicting the unique and shared DAMs between lines obtained by RNAi-based genetic modification and
conventional breeding methods.

trend between RNAi-based maize lines and the parental line
(Figures 3A,B, 4A,B). This result was consistent with previous
studies showing that different background varieties are clearly
distinguishable but no distinction is seen between GE lines and
parental line. Natural variation in plants is very common at
the transcriptional and metabolic levels (Batista et al., 2008).
These current results and previous studies suggest that intrinsic

differences in genetic background bring much greater variation to
the plant transcriptome and metabolome than the introduction
of foreign genes by genetic manipulation or conventional
breeding methods (Ladics et al., 2015; Wang et al., 2018).

As expected, pairwise comparisons reveal differences between
the GE lines and parental line with respect to gene expression and
metabolite accumulation, as reported previously for GE maize
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TABLE 2 | Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis of significantly DAMs.

Group Pairwise comparison KEGG pathway Total Expected Hits Raw p

Group 1 DTS_108/TJ806 -

DTS_123/TJ806 -

DTS_127/TJ806 -

Group 2 AR02/AR03 Glycerolipid metabolism 16 0.021 1 0.0209

Selenocompound metabolism 20 0.0263 1 0.0261

Galactose metabolism 27 0.0355 1 0.0352

AR02/TJ806 Alanine, aspartate, and glutamate metabolism 28 0.0368 1 0.0365

Ubiquinone and other terpenoid-quinone biosynthesis 9 0.0296 1 0.0293

AR03/TJ806 Vitamin B6 metabolism 9 0.0946 2 0.00357

Group 3 DTS-108/DTS-123 -

DTS-108/DTS-127 -

DTS-123/DTS-127 -

Group 4 DTS_108/AR02 Vitamin B6 metabolism 9 0.0237 1 0.0235

DTS-123/AR02 Ubiquinone and other terpenoid-quinone biosynthesis 9 0.0296 1 0.0293

DTS-127/AR02 -

DTS_108/AR03 Vitamin B6 metabolism 9 0.0591 2 0.00137

DTS_123/AR03 -

DTS_127/AR03 Vitamin B6 metabolism 9 0.065 2 0.00166

Thiamine metabolism 7 0.0506 1 0.0496

and soybeans (Liu et al., 2020). However, the number of DEGs
and DAMs observed when comparing GE maize lines and the
parental line were significantly less than those present when
comparing conventional breeding lines and the parental line
(Figures 3C, 4C; Wang et al., 2018). However, the number of
DEGs in the transcriptome was not always consistent with the
number of DAMs in the metabolome (Wang et al., 2019; Liu et al.,
2020). Specifically, the number of DEGs between the parental line
and the conventional breeding lines was close to the number of
DEGs between the RNAi-based GE lines and the conventional
bred lines but the performance of DAMs was different, indicating
that genetic changes commonly occur during the plant breeding
process whether done by GE or by conventional breeding, and
the extent of those changes seems not always relevant to the
extent of metabolomic changes in maize (Wang et al., 2019).
The detection of DEGs and DAMs in RNAi-based GE plants
was carried out under specific developmental or environmental
conditions, which could yield unintended effects upon analysis.
Assessment of unintended effects during specific developmental
periods and conditions often ignores other factors, especially
because these differences can affect gene transcription in GE
plants (Herman and Price, 2013; Olmos et al., 2019). Therefore,
it has been recommended that the unintended effects evaluation
of GE plants should include a combination of omics to provide
a parameter platform easier to understand and analyze (Ricroch
et al., 2011; Liu et al., 2020).

We found that the number of shared DAMs between three GE
lines and parental line was zero when we contacted the DEGs
and DAMs between three GE lines and parental line indicating
that we could not analyze whether there were common changes
between the GE lines and parental line from the transcriptome
and metabolome level. We therefore have tried to perform an
association analysis on the unique DEGs and DAMs in group

1 and group 2, such as looking for DEGs that participated
in expression regulation and can produce specific DAMs that
belong to group 1 or group 2. Unfortunately, our analysis
did not yield meaningful data. We thus analyzed the possible
reasons for this result as follows. First, the number of DEGs
and DAMs obtained by analyzing were too relatively small to
support association strategy. Second, we did find some DEGs
and DAMs between transgenic plants and parental line at the
transcriptome level and metabolome level, respectively. However,
these differences cannot be correlated from the transcriptome to
the metabolome, which showed that none of the pathway from
gene expression to metabolic regulation significantly altered; this
result was consistent with the published research results (Ricroch
et al., 2011). In addition, we found that these unique DEGs and
DAMs have no same KEGG enrichment pathway. We speculate
that the possible reason is that it is difficult to identify a pathway
that significantly changes from gene expression to metabolic
regulation, because it requires a lot of work to verify the key genes
and their functions involved in the relevant biological pathways
(Ricroch et al., 2011).

We did find some unique DEGs and DAMs in RNAi-based
GE lines, although the number was significantly less than those
in conventional breeding lines compared with the parental line
(Figures 3D, 4D and Supplementary Tables 9, 11). This result
implies that the process of GE may bring different stresses to
the host genome relative to conventional breeding, indicating
that the two plant breeding processes may result in variations
in genes and metabolites at different levels (Hoekenga, 2008;
Liu et al., 2020). Notably, there were more DEGs and DAMs
in plants produced by conventional breeding than by genetic
modification, possibly implying that the conventional breeding
requires multiple crosses between two or more breeding lines,
thus causing more variation at both genotypic and phenotypic
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levels. We used the substantial equivalence standard to assess
the safety of food or feed produced by GE (Schiemann et al.,
2019). We found some DAMs in the comparisons between RNAi-
based GE plants and their parental counterparts, and these
DAMs are also found in conventional breeding lines. Since these
conventional breeding lines are considered to have a long history
of use and safety, a control consisting of conventional breeding
lines should be implemented when evaluating unintended effects
(Chen et al., 2014). The European Food Safety Agency’s genetic
modification management team has pointed out that the safety
evaluation of GE plants includes GE near-isogenic control and
reference commercial variety control (Eckerstorfer et al., 2019;
Papadopoulou et al., 2020).

Based on the experimental data and results of siRNA,
transcriptome, and metabolome, it can be concluded that
RNAi-based GE maize is essentially equivalent to conventional
breeding. The differences brought by GE breeding were not
as obvious as those caused by conventional breeding, although
conventional breeding also has some difference that cannot be
explained clearly so far (Ricroch et al., 2011). It was important
to keep in mind that the standard proposed by the OECD/Food
and Agriculture Organization of the United Nations/WHO was
substantial equivalence rather than total equivalence and that
there was no specific statistical or biological basis to define
“substantial” (Hoekenga, 2008). In other words, no “limits of
concern” have been defined regarding differences. In order
to make the conclusions more reliable, we considered the
following points that may affect the data and even affect the
risk assessment results of GE crops. One of the factors we
need to pay attention to was the selection of experimental
materials. We used leaves for testing mainly because RNAi-
based GE maize was resistant to A. lucorum, which mainly
damages leaves, that is, siRNA from A. lucorum plays a vital
role in leaves. Meanwhile, the existing literatures have studied
the unintended effects of GE crops using leaves (Wang et al.,
2018; Liu et al., 2020). Furthermore, the gene expression and
metabolism of plant leaves are active, which is very conducive to
the collection of transcriptome and metabolome data. However,
as grains of maize are the edible part, we should consider
that the analysis of them may obtain more meaningful data.
The leaves and grains or other reasonable research sample
tissues should be considered in the future research. The second
factor we considered was the number of samples. The prior
probability refers to the probability obtained based on inference
and observations when using omics technology to evaluate
the unintended effects of GE crops. Increasing the number of
test samples was a prerequisite for ensuring a higher prior
probability (Ricroch et al., 2011). To obtain more accurate
results, we set up three biological replicates of each of six
maize lines to compare differences in gene expression and
metabolite accumulation levels and each biological replicate is
a mixture of 10 individual plant samples. We have chosen
different omics methods to evaluate the unexpected effects
of genetically modified crops such as siRNA, transcriptome,
and metabolome since sample selection, sample numbers, and
sampling location may affect the results of omics data. We found
highly enriched siRNAs in the RNAi-based GE lines; however,

we did not find that there were generally reduced potential off-
target genes in all three RNAi-based GE lines during qPCR test.
We note that not only eukaryotic ribosome biogenesis but also
starch and sucrose metabolism, phenylpropanoid biosynthesis,
and flavonoid biosynthesis were significantly enriched in the
comparison of conventionally breeding maize lines and RNAi-
based GE lines, indicating that the GE process resulted in DEGs
and DAMs at the transcriptome and metabolome levels (Liu
et al., 2020), but these pathways enriched in DEGs and DAMs
were within the range of comparisons between conventional
breeding lines and parental line (Wang et al., 2019; Liu et al.,
2020). These results may thus suggest that the GE processes
do not have unique effects on plant pathways compared with
conventional breeding lines (Tables 1, 2 and Supplementary
Table 12; Wang et al., 2019; Liu et al., 2020). If we can find
some DEGs associated with DAMs in the transcriptome, the
results will be easier to interpret, but this was not easy to
achieve, although this was an ideal result. Thus, we propose a
combination of multiple omics analysis, which can avoid the
differences in the analysis of single omics data and explore as
much as possible a metabolic pathway that regulated from gene
expression to metabolites.

CONCLUSION

In conclusion, we successfully employed siRNA-seq, RNA-seq,
and HPLS-MS technology to investigate the changes in siRNA
and gene expression and metabolite accumulation in six maize
lines developed by RNAi-based GE or conventional breeding. We
did find that the inverted repeat gene sequence from A. lucorum
produced highly enriched siRNAs in GE maize lines. However,
qRT-PCR and transcriptome data analysis showed that the
decline in gene expression levels of these potential off-target
genes was not universal in the three transgenic lines, meaning
that the siRNA targeted for A. lucorum did not occur detectable
gene suppression in maize, indicating that bioinformatics analysis
can be used to determine which genes in non-target organisms
have a certain degree of sequence homology with target genes.
The current results showed that both GE and conventional
breeding method can result in potential changes at transcriptome
and metabolome levels and the GE does not cause unintended
effects that go beyond conventional breeding. There was no
pathway that significantly altered from gene expression to
metabolic regulation involved in the study, suggesting that a
comprehensive and comparative multi-omics sharing platform
should be established to improve the effective utilization of data
when assessing the unintended effect of GE crops.
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