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Corn seed materials of different quality were imaged, and a method for defect detection
was developed based on a watershed algorithm combined with a two-pathway
convolutional neural network (CNN) model. In this study, RGB and near-infrared (NIR)
images were acquired with a multispectral camera to train the model, which was
proved to be effective in identifying defective seeds and defect-free seeds, with an
averaged accuracy of 95.63%, an averaged recall rate of 95.29%, and an F1 (harmonic
average evaluation) of 95.46%. Our proposed method was superior to the traditional
method that employs a one-pathway CNN with 3-channel RGB images. At the same
time, the influence of different parameter settings on the model training was studied.
Finally, the application of the object detection method in corn seed defect detection,
which may provide an effective tool for high-throughput quality control of corn seeds,
was discussed.

Keywords: corn seed defect, multispectral image, object detection, watershed segmentation algorithm,
convolutional neural network

INTRODUCTION

Corn is one of the most important crops in the world (Afzal et al., 2017), which is widely planted
around the Earth. Its output and trade volume have kept increasing in recent years. In the process
of circulation, appearance quality is a critical factor that influences corn seed price. Corn seeds
are vulnerable to damage and mildew during storage and transportation, and phenotypic defect is
an important index of seed quality evaluation. At present, seed quality detection still relies on the
method of traditional manual identification, which employs low efficiency and strong subjectivity.
With the development of computer vision technology (Rehman et al., 2018; Gutiérrez et al., 2019;
Keiichi et al., 2019; Azimi et al., 2020; Arunachalam and Andreasson, 2021), image processing
methods based on machine learning are applied to seed quality classification and have achieved
good results. Kiratiratanapruk and Sinthupinyo (2012) proposed a method to classify more than
10 levels of seed quality by using color and texture features with a support vector machine (SVM)
classifier. Ke-Ling et al. (2018) proposed a method of high-quality pepper seed screening based
on machine vision, which could be used to predict the germination rate of seeds effectively, and
therefore provided a guide for seed quality selection. Ali et al. (2020) discussed the feasibility of
the machine learning method in corn seed classification. While the traditional machine learning
methods normally require extracting the features manually, which are usually not comprehensive
enough, the recognition accuracy, therefore, is limited.
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In recent years, as a representative of deep learning
technology, convolutional neural networks (CNNs) develop
rapidly and are widely used for image recognition (Afonso et al.,
2019; Altuntaş et al., 2019; Gao et al., 2020; Zhang C. et al., 2020).
Compared with traditional machine learning technology, CNNs
are naturally embedded with a feature learning part through the
combination of low-level features to form more abstract high-
level features. Many researchers have applied CNNs to the field
of agriculture. Laabassi et al. (2021) proposed a CNN model
to classify wheat varieties, and the accuracy of classification
was between 85.00 and 95.68%. Pang et al. (2020) developed a
method for rapid estimation and prediction of corn seed vigor
using a hyperspectral imaging system with deep learning. The
recognition accuracy of the 1D-CNN model reached 90.11%, and
the recognition accuracy of the 2D-CNN model reached 99.96%.
Sj et al. (2021) proposed a method to extract the characteristics
of corn seeds by using a deep CNN and then classifying the
varieties. The results showed that CNNs were effective in corn
seed classification.

In this article, RGB and NIR images (Kusumaningrum et al.,
2018) collected by a multispectral camera were used to train a
CNN model. To solve the problem of corn seed adhesion and seed
location during the recognition process, a watershed algorithm
(Lei et al., 2019; Sta et al., 2019; Zhang et al., 2021) combined
with a two-way CNN (Zhang J. J. et al., 2020) was proposed to
detect corn seed defects. The results revealed that this method
is with high accuracy, and the targets can be accurately located
and classified. This method may provide a theoretical basis for
the subsequent development of a seed quality control device.

MATERIALS AND METHODS

Experimental Material and Instruments
In this experiment, 2,365 corn seeds from three different
varieties (Zhengdan 985, Keshi 982, Jiyu 517) were adopted
as experimental materials. Some seeds were defect-free in
appearance, and the other seeds were with defects, including
mold, insect or mechanical damages, and discoloration. A 4-
channel (RGB + NIR) multispectral camera (LQ-200CL, JAI,
Denmark) was used for image acquisition, with 8 bits for each
channel and a resolution of 1,296 ∗ 964. A white LED ring light,
coupled with a near-infrared ring light, and a white backlight
panel were used to enhance the image contrast. The image
acquisition platform is shown in Figure 1. At the same time, to
prevent the seeds from overlapping, the vibration module was
placed under the backlight panel (shown in Figure 2). The motor
voltage is 12 V. The rotational speed of the motor is 8,000 rpm.
The size of the vibrating head is 3.5 cm. It is found that the
vibration module shows a very good effect in restraining seed
overlap and shielding.

The experiment was based on Windows 10, a 64-bit operating
system with CUDA 10.0, and python programming language,
along with TensorFlow and Keras deep learning framework. The
computer used for the experiment employed a GeForce GTX
1660 graphics card, with 6G memory, and an Intel (R) Core (TM)
i5-9400f processor with the main frequency of 2.90 GHz.

Data Acquisition
A total of 50 samples of corn seed with no defects (1,066 single
seeds overall) and fifty seed samples with different appearance
defects (1,042 single seeds overall) were imaged. The images of
another 10 samples with both defective and defect-free seeds
were also acquired for the verification of the final model, with
an overall 257 single seeds. Each sample was captured in one
image deck, which contained RGB and NIR images, with a size
of 1,296 × 964. The images acquired are shown in Figure 3.
To solve the issue of adhesion among seeds in the images, a
watershed algorithm was applied to each image, and all individual
seeds were segmented. Eventually, each seed was extracted from
the original image to form a new image, which was resized to
224× 224 with bilinear interpolation.

To improve the performance of the model, data augmentation
was implemented for image decks of individual seeds. The
enhancement methods (Huang et al., 2019; Tiwari et al., 2021)
included brightness adjustment, rotation, applying Gaussian
noise, etc. The images of defect-free seeds were labeled as
“good,” and the images of defective seeds were labeled as “bad.”
Eventually, there were 3,913 images (RGB + NIR) of defect-
free seeds and 3,913 images of defective seeds, respectively. The
training set and the testing set were divided by 4:1, and therefore,
5,869 images with single seed were used for training, and 1,957
images were used for testing.

Watershed Algorithm
Every single seed in the image deck was segmented using the
watershed algorithm. First, the original 4-channel image was
converted to a grayscale image. By comparing the four layers
(R, G, B, and NIR), the results showed that the B-channel
image was the best to use for binarization. Binarization was then
performed, and any noise in the binary image was removed by
a morphological open operation. An expansion operation was
then applied to the binary image, and a distance transforming
algorithm was used to obtain the central region of each seed. The
edge of the seed was the dilational image subtracted from the
central regions. The central region of each seed was then naturally
separated from each other. Finally, the watershed algorithm was
used to extract the edge of the seeds, and each seed was segmented
in the image by position coordinates. The segmentation processes
are shown in Figure 4. The NIR images were then segmented
using the position coordinates from the segmented RGB images.
The combination of the RGB image and NIR image of each seed
was used for training or detection processes.

Corn-Seed-Net Model Structure
Every single seed was separated by the watershed algorithm, and
the position coordinates were obtained. The CNN model was
then used to detect the quality of the corn seeds. The detection
results were marked in the image according to the position
coordinates. In this article, a two-pathway CNN, Corn-seed-Net
(shown as Figure 5), was designed combining VGG16 (Simonyan
and Zisserman, 2015) and ResNet50 (He et al., 2016). The model
was used to extract deep features of 4-channel corn seed images
and then classify them.
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FIGURE 1 | Image acquisition platform. (A) Support, (B) camera, (C) circular
white light source, (D) circular near-infrared light source, and (E) white
backlight.

To reduce the number of parameters, continuous convolution
kernels of 3 × 3 were used in the VGG16. Thirteen convolution
layers were used to extract deeper image features and increase
the fitting capacity and the expressive capacity of the model.
However, as the number of network layers increases, the
gradient of the model disappears or explodes, which makes
the performance of the model plummet. However, the residual
structure was added in the ResNet50, the input of the convolution
layer was directly added to the output of the convolution layer,
and it solves the degradation problem of deep CNN. Therefore,
the advantages of both VGG16 and ResNet50 were combined in
the Corn-seed-Net.

In this article, the VGG16 branch was optimized. The number
of parameters of the last two fully connected layers of the
original models was tremendous. To avoid feature information
redundancy, a convolution layer of 7 × 7 was applied to the final
max-pooling layer, with 512 channels, and two fully connected
layers composed of 512 feature vectors were added. In this
way, the number of parameters was reduced. For the ResNet50
branch, after the global average pooling layer, a fully connected
layer composed of 512 feature vectors was added. The two
branches were then fused with the final fully connected layer,
and the vectors of the generated features were 1,024. Finally, the
classification was completed through the Softmax layer, with the
category number set to 2.

The Softmax function was used to calculate the probability of
classification, and the calculation formula is as follows:

yim =
ezim∑k
k=1 ezik

(1)

In the formula, yim is the prediction probability that the ith
sample belongs to class m, k is the number of categories, zim is the
product of the output vector of the ith sample and the parameter

FIGURE 2 | The vibration module.

vector of class m, and zik is the product of the output vector of the
ith sample and the parameter vector of class k.

Categorical cross-entropy was used to calculate the loss
function of the model, and the formula is given as follows:

L = −
n∑

i=1

ŷim lg yim (2)

In the formula, L is the loss function, n is the number of images in
each batch, and yim is the expected probability that the ith sample
belongs to class m.

Parameter Set
To achieve the best result, the model was trained by setting
different parameters. The momentum used in the final model
was 0.9, and the initial value of the learning rate was set as
0.001. Stochastic gradient descent (SGD) (Samik and Sukhendu,
2018) algorithm was used with 100 epochs for the training.
In the process of training, when the loss of the test set no
longer decreased, the learning rate was reduced by half. Other
parameters were set to default. The accuracy of the final training
set was 100.00%, and the accuracy of the test set was 96.90%.

Hand-Crafted Feature Extraction
In this article, five hand-crafted feature extraction methods
were used to extract the features of a single seed segmented
by watershed algorithm, and then an SVM classifier was used
for seed classification. The feature extraction methods were as
follows:

(1) Morphological characteristics (MC) (Zhang L. et al., 2020)
were used to binarize each seed’s image. The ratio of the
perimeter of the seed area, the diameter of the circle with
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FIGURE 3 | The original image of (A) good quality corn seeds, (B) disfigured corn seeds, and (C) both situations.

FIGURE 4 | Image processing procedures. (A) Segmentation processes and (B) segmentation results.

the same area, the eccentricity of the fitted ellipse, the ratio
of the major axis to minor axis, and the ratio of area to
bounding box area from a connected domain were then
extracted. A total of five morphological features were used
as feature vectors.

(2) Color features have little dependence on image size and
position. In this article, the parameters related to color
(RGB) histogram were extracted as feature vectors.

(3) Local shape information can be well captured by histogram
of gradient (HOG) (Dalal, 2005), and it is relatively stable
to the change of geometry and optics. In this article,
the gradient information of the image was extracted as
feature vectors.

(4) Gray-level co-occurrence matrix (GLCM) (Haralick et al.,
1973) is a method of texture feature extraction based on
statistics. The statistics constructed in this article include

contrast, dissimilarity, homogeneity, energy, correlation,
and angular second moment. These six characteristic
parameters were used as feature vectors.

(5) Local binary pattern (LBP) (Ojala et al., 2002) features have
the advantages of gray invariance and rotation invariant.
In this article, the LBP value of the image was extracted
and used to represent the texture information of the region.
Finally, the statistical histogram of LBP features was used as
the feature vectors.

Evaluation Index
In this article, to evaluate the accuracy and stability of the training
model for seed quality identification, the precision and recall
ratios were used to evaluate the model, and the F1 value was used

Frontiers in Plant Science | www.frontiersin.org 4 February 2022 | Volume 13 | Article 730190

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-730190 February 17, 2022 Time: 16:40 # 5

Wang et al. Corn Seed Defect Detection CNN

FIGURE 5 | Corn-seed-Net network architecture.

FIGURE 6 | The accuracy of the five models for the test set.

Frontiers in Plant Science | www.frontiersin.org 5 February 2022 | Volume 13 | Article 730190

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-730190 February 17, 2022 Time: 16:40 # 6

Wang et al. Corn Seed Defect Detection CNN

TABLE 1 | Training results of Corn-seed-Net with different model parameters.

Initial learning
rate

Training
algorithm

Epoch
time/s

Training
accuracy/%

Validation
accuracy/%

0.001 Adam 180 100.00 94.23

0.0001 Adam 180 100.00 95.80

0.001 SGD 165 100.00 96.90

0.0001 SGD 165 99.98 94.59

as the average evaluation of them. The evaluation formulas are
given as follows:

p =
nTP

nTP+ nTF
× 100% (3)

R =
nTP

nTP+ nFN
× 100% (4)

F1 =
2PR
P + R

× 100% (5)

where nTP is the number of corn seeds correctly identified, nFP is
the number of misidentified corn seeds, and nFN is the number of
unrecognized corn seeds.

RESULTS AND DISCUSSION

The Selection of Corn-Seed-Net Model
Structure
To select an optimal model structure, the 4-channel
images (RGB + NIR) were used for training five CNN
models [e.g., VGG16, ResNet50, MobileNet, DenseNet121
(Huang et al., 2016), and Xception (Chollet, 2017)]. The weights
trained on the ImageNet dataset were used for parameter
initialization, and the same dataset was trained for the model;
the accuracy of the test set is shown in Figure 6. The number
of input channels for the model was set to 4, but the number of
convolution layers was unchanged. The number of parameters
for convolutional layers was the same as the original model,
and therefore, the pre-trained weights from ImageNet were
used in this study. The five models converged after 50 epochs,
and the accuracy stabilized at a high value. For the five models,
the ResNet50 model had the highest accuracy of 96.63%. The
VGG16 model converged most rapidly. The DenseNet model
achieved the characteristics of dense connection through
repeated splicing, but the running memory consumption was
large and the convergence time was long. The MobileNet model
possessed a smaller amount of parameters but the accuracy was
low. Deep separable convolution and residual connection were

FIGURE 7 | The accuracy of Corn-seed-Net with different model parameters.
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TABLE 2 | Test results of single seed with different models.

Model Classes Predict classes Model performance

Good Bad Accuracy/% Averaged accuracy/% Detection time/ms

VGG16 Good 99 1 99 99.00 45.5

Bad 1 99 99

ResNet50 Good 100 0 100 99.00 41.7

Bad 2 98 98

MobeliNet Good 97 3 97 98.00 22.9

Bad 1 99 99

DenseNet121 Good 97 3 97 97.50 58.0

Bad 2 98 98

Xception Good 98 2 98 97.50 41.0

Bad 3 97 97

Corn-seed-Net Good 100 0 100 100.00 68.0

Bad 0 100 100

FIGURE 8 | (A) The original image and (B) object detection results.

used in the Xception model, and the accuracy was also relatively
low. Considering the accuracy and convergence, VGG16 and
ResNet50 were combined to construct the final model.

The Selection of Corn-Seed-Net Model
Parameters
To obtain faster training speed and better convergence
performance of the model, the same 4-channel images were
used to train the model, and two branches of Corn-seed-Net
were initialized with the weights trained using the ImageNet
dataset. The influences of different initial learning rates and
different optimization algorithms on the model were tested (as
shown in Table 1). Figure 7 shows that the SGD algorithm

converged faster, and the Adam algorithm was unstable in the
first half of the training process. Therefore, the SGD optimization
algorithm was used in the experiment, and the initial learning rate
was set to 0.001.

Test Results of the Corn-Seed-Net Model
on a Single Seed
To verify the classification accuracy of the Corn-seed-Net
model for 4-channel images of a single seed, 100 corn
seeds without any defects in appearance and another
100 seeds with defected appearance were selected in this
experiment. At the same time, other one-pathway CNN
models were compared, and the results are shown in
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TABLE 3 | Comparison of model performance combined with watershed algorithm.

Model Classes Precision/% Recall/% Averaged precision/% Averaged recall/% F1/% Detection time/ms

VGG16 Good 90.91 96.55 93.05 94.71 93.87 139.5

Bad 95.19 92.86

ResNet50 Good 94.00 97.24 94.69 94.60 94.64 122.5

Bad 95.37 91.96

MobeliNet Good 93.85 94.48 91.96 93.22 92.59 95.95

Bad 91.96 91.96

DenseNet121 Good 91.45 95.86 92.43 92.13 92.27 136.75

Bad 93.40 88.39

Xception Good 94.48 94.48 93.26 93.67 93.46 133.85

Bad 92.03 92.86

Corn-seed-Net good 94.08 98.62 95.63 95.29 95.46 149.55

bad 97.17 91.96

TABLE 4 | Comparison of model performance combined with watershed algorithm using RGB images.

Model Classes Precision/% Recall/% Averaged precision/% Averaged recall/% F1/% Detection time/ms

RGB VGG16 Good 90.13 94.48 91.67 90.10 90.87 69.92

Bad 93.20 85.71

RGB ResNet50 Good 95.56 95.86 94.54 93.02 93.77 98.83

Bad 93.52 90.18

RGB Corn-seed-Net Good 93.33 96.55 93.80 92.47 93.13 117.63

Bad 94.28 88.39

RGB + NIR Corn-seed-Net Good 94.08 98.62 95.63 95.29 95.46 149.55

Bad 97.17 91.96

Table 2. The averaged accuracy of the Corn-seed-Net
model for each single seed classification is up to 100%,
which was better than other one-pathway models. The
averaged detection time for a single seed was 68 ms,
which indicated that the two-pathway model is suitable for
seed classification.

Detection Results of the Corn-Seed-Net
Model Combined With the Watershed
Algorithm
To accurately locate each seed with the quality rating, the
watershed algorithm was adopted and combined with the
Corn-seed-Net model on 4-channel images of corn seed
(Figure 8A). The conglutinated seeds were segmented using the
watershed algorithm, and meanwhile, the position coordinates of
each seed were also obtained. The detection results are shown in
Figure 8B.

To evaluate the performance of this method, 10 groups of
images were used for verification. At the same time, other one-
pathway CNNs were compared, and the results are shown in
Table 3. It showed that the watershed algorithm combined with
the Corn-seed-Net model had the highest precision and recall
rate on average, and the F1 value was 95.46%. Due to the addition
of the operation of the watershed segmentation during image
detection, there was an increase in the detection time, and the
averaged detection time for a single seed was 149.55 ms. The
results appeared that the model performance improves when

the watershed algorithm was adopted and combined with two-
pathway CNN.

RGB Images Detection Results
To investigate whether using 4-channel images (RGB + NIR)
is superior to 3-channel images (RGB) in seed classification,
RGB images of the same dataset were used in the experiment,
with watershed algorithm combined with Corn-seed-Net
model, and the results are shown in Table 4. It is shown
that the extra information carried with the NIR band
improved the model performance on both precision and
recall rate, compared with the models obtained with RGB
images only.

To fully evaluate the performance of the watershed algorithm
combined with the Corn-seed-Net model, the watershed
algorithm combined with the traditional feature extraction
method was also studied, and SVM was used to classify

TABLE 5 | Comparison of object detection results.

Model Average precision/% Average recall/% F1/%

GLCM + SVM 22.05 48.11 30.24

Color + SVM 60.97 58.74 59.83

HOG + SVM 64.30 64.07 64.18

MC + SVM 68.64 68.17 68.40

LBP + SVM 74.28 73.73 74.00

Corn-seed-Net 95.63 95.29 95.46
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the corn seeds based on their quality. The results are shown in
Table 5, and it indicates that the precision, recall, and F1 of the
method we have proposed were all significantly higher than those
of the traditional methods, as more deep image features were
extracted in CNN.

DISCUSSION

At present, some studies have been devised in seed classification
using imaging technology combined with machine learning
and deep learning (Huang et al., 2019; Kozowski et al., 2019;
Ansari et al., 2021). However, most of the studies were based
on RGB imaging technology rather than using four-channel
multispectral images. Moreover, there are few studies on seed
quality detection using the current typical object detection
algorithm. This article designed an end-to-end object detection
model, and high accuracy was achieved in seed quality detection.

In this article, RGB and NIR images of corn seeds were
obtained using a multispectral camera, and the watershed
algorithm combined with the Corn-seed-Net model was used to
predict the quality of corn seeds. The watershed algorithm is used
to segment every single seed and obtain the precise location of the
seed. At the same time, while the 4-channel image data with both
RGB and NIR bands were used as the inputs of the Corn-seed-
Net model, the accuracy of the model was better than that with
RGB images only.

The Corn-seed-Net model combines the advantages of
VGG16 and ResNet50, and deeper information could be
extracted by deep networks. It employs a residual network
structure, and the effect of degradation of the deep network is
eliminated. With the optimized model, 200 single corn seeds were
used for verification and compared with other single-pathway
models, and the results revealed that the average classification
accuracy of the Corn-seed-Net model reached 100.00%.

To evaluate the corn seed defect detection performance of
the watershed algorithm combined with the Corn-seed-Net
model, we compared the detection results with RGB images and
traditional feature extraction methods. The experimental results
showed that the proposed method in this article had the best
performance, with an average precision of 95.63%, an average
recall rate of 95.29%, and an F1 value of 95.46%.

CONCLUSION

In this study, an end-to-end corn seed object detection model was
proposed, which combined watershed segmentation algorithm
and CNNs. In comparison with mainstream object detection
models (e.g., Faster-RCNN, SSD, and YOLO), our method uses a
watershed segmentation algorithm to obtain more accurate target
positions, which also reduces the complexity of the network at
the same time. In addition, this method eliminates the manual
annotation of the image and reduces the workload of dataset
preparation. In the future, this method can be further optimized
by simplifying the network structure, which may shorten the
calculation time while ensuring the classification accuracy, to
provide a basis for the subsequent development of a quality
detection device.
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