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Grapevine is one of the economically most important quality crops. The monitoring of

the plant performance during the growth period is, therefore, important to ensure a high

quality end-product. This includes the observation, detection, and respective reduction

of unhealthy berries (physically damaged, or diseased). At harvest, it is not necessary

to know the exact cause of the damage, but rather if the damage is apparent or not.

Since amanual screening and selection before harvest is time-consuming and expensive,

we propose an automatic, image-based machine learning approach, which can lead

observers directly to anomalous areas without the need to monitor every plant manually.

Specifically, we train a fully convolutional variational autoencoder with a feature perceptual

loss on images with healthy berries only and consider image areas with deviations from

this model as damaged berries. We use heatmaps which visualize the results of the

trained neural network and, therefore, support the decision making for farmers. We

compare our method against a convolutional autoencoder that was successfully applied

to a similar task and show that our approach outperforms it.

Keywords: autoencoder, deep learning, anomaly detection, viticulture, disease detection

1. INTRODUCTION

The constant and regular monitoring of plant performance is important in agriculture to ensure
efficient and sustainable production and a reduction of yield losses caused, e.g., by diseases or
pests. Especially in viticulture, this is a crucial aspect due to the ongoing climate change, which
causes more extreme and on average higher temperatures, an increase in water and drought stress,
higher CO2 amounts in the atmosphere, and changing abundance of pests (Jones, 2007). To ensure
a high quality end-product it is important to reduce the number of damaged berries before harvest
(Charters and Pettigrew, 2007), in many cases without the need to know the reason for the damage.
This, however, is a labor-intensive task that is still mainly carried out by experts in the field
during the harvest (Bramley et al., 2005). To ease this process, research focuses on objective and
automated approaches for machine-driven high-throughput phenotyping in agriculture (Kamilaris
and Prenafeta-Boldú, 2018) and viticulture (Tardaguila et al., 2021). For this purpose, imaging
sensors are widely used due to their affordability and their ability to provide a suitable data basis
for analysis and interpretation (Kamilaris and Prenafeta-Boldú, 2018; Ma et al., 2019).
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Since 2012, especially convolutional neural networks (CNNs)
have proven to be a powerful approach, as they can recognize
spatial structures in images and capture typical characteristics of
objects (Schmidhuber, 2015). The identification and localization
of plant diseases using CNNs can be achieved with several
task formulations which are mostly trained in a supervised
manner (Bah et al., 2018; Kamilaris and Prenafeta-Boldú, 2018;
Kaur et al., 2019). This includes classification, object detection,
and segmentation, which all require costly annotations. Many
studies focus on the detection of diseases on leaves (Khirade
and Patil, 2015), e.g., Yadhav et al. (2020) perform a multi-class
classification with a shallow CNN to detect diseases. To detect
damaged berries, Bömer et al. (2020) propose a CNN which
performs a supervised classification to create heatmaps for grape
bunches, where the heatmap values are meant to indicate the
severity of berry damage.

In contrast to many supervised classification approaches
that distinguish between healthy and well-defined diseases and,
therefore, require labels for both classes, there are approaches
that are fully unsupervised or work only with information
about the healthy plants or plant parts. The general idea
of these approaches is to learn a representation of healthy
samples and define deviations from this representation as an
anomaly (Pang et al., 2021). The main advantage is that no
manual annotation and labeling of anomalies, such as specific
diseases, is required, thus bypassing the expensive collection of
these labels and the required guidance of an expert to label
them correctly and accurately. It also avoids a full capture
of the variability of anomalies, such as all possible plant
diseases, that would be necessary to learn a representative
classifier.

Recent studies in this field propose the use of autoencoders
(AEs), variational autoencoders (VAEs), or generative adversarial
networks (GANs), which can be trained on non-anomalous
data without defining the characteristics of specific anomalies.
Studies such as the one of Picetti et al. (2018) use a
convolutional autoencoder (CAE) to detect buried landmines in
ground penetrating radar (GPR) observations without making
assumptions about the size or shape of the detected objects.
As a close-range application, Akçay et al. (2018) use a CAE
with three different losses (contextual, encoder, and adversarial
loss) to detect anomalies in in-flight luggage. Another prominent
example is the detection of anomalies in surveillance videos. The
study presented in Zhao et al. (2017) uses CAEs while (Chong
and Tay, 2017) use spatio-temporal autoencoder (AE). More
examples of CAE to detect anomalies can be found in Chalapathy
et al. (2017), Ke et al. (2017), Baur et al. (2019), andMesquita et al.
(2019). Other studies use AE as feature extractors and make use
of a subsequent classifier, often Support Vector Machine (SVM).
In the context of precision agriculture, Pardede et al. (2018) use
a CAE as a feature extractor for an SVM-classification algorithm
to detect plant diseases.

An and Cho (2015) proposed an anomaly detection method
using variational autoencoder (VAE). In contrast to CAE which
often uses the reconstruction error to detect anomalies, VAE
reason via the reconstruction probability. This allows for more
principled and objective decisions (An and Cho, 2015).

TABLE 1 | Overview of images showing healthy plants.

Variety BBCH75 BBCH89 Sum

Regent 200 0 200

Felicia 76 79 155

Riesling 156 105 261

Furthermore, many attempts aim to improve the performance
of VAE including attribute-conditioned VAE (Yan et al., 2016).
However, a high improvement was achieved by using diverse
loss functions, considering the shortcomings of pixel-wise losses
(Snell et al., 2017). Snell et al. (2017) proposed a structural
similarity index (SSIM) between reconstructed and real data
and demonstrated that human perceptual judgment is a better
measure of image quality.

Hou et al. (2017) use a perceptual loss to encourage the VAE
to learn a more meaning-full representation in the latent space.
The same observation was made by Shvetsova et al. (2021), they
used a CAE trained with a perceptual loss to detect anomalies in
medical images.

In our study, we detect anomalous grapevine berries in images
utilizing a VAE with a feature perceptual loss (FPL). Since
image data from healthy plants are much easier to acquire than
image data from damaged berries in their full variability, we
present an approach that learns only with healthy berries and
does not require labels from damaged berries. Specifically, our
contributions are:

• The formulation of a VAE that is trained with a perceptual
loss using only images of healthy plant material to capture
the characteristics of healthy plants and identify anomalous
patterns of damage and diseases.

• A framework that can identify anomalous patterns in images
of grapevine in the field.

• A visualization of anomalies with heatmaps indicating
diseased and damaged areas.

2. MATERIALS AND METHODS

We use a dataset that was acquired in the field at the Julius
Kühn-Institut Geilweilerhof located in Siebeldingen, Germany
(49◦21.7470 N, 8◦04.6780 E) containing images of grapevine
plants taken with a field phenotyping platform.

2.1. Sensor System
The field phenotyping platform called Phenoliner (Kicherer
et al., 2017) consists of a modified grapevine harvester from
ERO Gerätebau (Niderkumbd, Germany), namely the ERO-
Grapeliner SF200. After the removal of the harvesting equipment,
including the shaking unit and destemmer, a camera system
with artificial lightning and a diffuse background was installed
in the “tunnel”. The camera is a red green blue (RGB) camera
(DALSA Genie NanoC2590, Teledyne DALSA Inc., Waterloo,
ON, Canada) with a 5.1-megapixel sensor and a 12 mm lens,
where each image has a size of 2, 592 × 2, 048 pixels. Due to
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FIGURE 1 | Examples from the dataset consisting of healthy plants without damaged berries, including different varieties and growth stages.

the restricted space inside the tunnel, we have an approximate
distance of 0.75 m between camera and plant, leading to a real
world resolution of 0.3 mm.

2.2. Data
We observed plants trained in the Vertical Shoot Positioned
(VSP) system with the Phenoliner. The main characteristic of
this training system is that only one main branch remains
over the years, the rest of the canopy regrowth each season.
The main berry region is at the lower part of the canopy
and many leaves are removed to ensure optimal growth
conditions. Furthermore, different varieties, namely Riesling,
Felicia, and Regent, were observed during different growth
stages, called Biologische Bundesanstalt, Bundessortenamt und
Chemische Industrie (BBCH) stages. These stages include the
stages BBCH75, with pea sized berries, and BBCH89, which is
shortly before harvest.

We collected 616 images of healthy plants (see Table 1),
showing the lower part of the canopy where most of the berries
are located. For the red variety Regent, we only selected images
at the early BBCH stage, since we focus on green berries in this
study. The berries change their color at a later stage, during the
veraison. All observed plants were healthy and show no damaged
berry regions. Examples from the training dataset can be seen in
Figure 1.

Additional 46 images showing damaged or diseased grapes
(see Table 2) were selected for evaluation purposes. Since many
damages occur during later stages and diseases develop during
the season, we selected more images from the later BBCH
stage. Two examples can be seen in Figure 2, the damaged
grape regions are highlighted. The damages range from color
variations to fully withered berries. For the images showing

TABLE 2 | Overview of images showing damaged berries.

Variety BBCH75 BBCH89 Sum

Regent 6 0 6

Felicia 1 24 25

Riesling 3 12 15

damaged grapevine berries, we provide manual annotations of
the damaged regions.

2.3. Pipeline
We propose a full pipeline for the detection of anomalous
grapevine berries in images. As a pre-processing step, we use
a CNN classifier to yield a semantic segmentation mask of
grapevine berries and background with the goal to identify
image regions containing bunches of berries (so-called regions
of interest). For more details regarding this network architecture
and performance, we refer the reader to Zabawa et al. (2020).
Hereby, we assume, that anomalous berries occur mainly in close
vicinity to healthy ones and the pre-processing result can be used
to discard a majority of background information that is not in the
focus of our application. For further analysis, 130 × 130 image
patches are extracted from the original image within the region
of interests. We chose this patch size to ensure that a certain
number of berries is visible in each patch. This is the case for a
patch size of 130 pixels leading to around 6 to 10 berries in each
patch. Furthermore, the extracted patches are non-overlapping.
Before the patches are fed into the VAE, the patches are resized to
64 × 64 pixels to enable faster image processing. The core of our
pipeline is a VAE, which operates on the extracted image patches.
A detailed description of the VAE is presented in Section 2.3.1.
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FIGURE 2 | Examples from the images showing damaged grapevine berries. Damaged regions are highlighted with pink boxes. The blue masks in the image patches

are the result of the pre-processing step of our proposed pipeline (refer to Section 2.3). The red areas in the patches are the manual damage annotations.

As a final step, we compute heatmaps highlighting areas with
damaged grapevine berries. An overview of the whole proposed
pipeline can be seen in Figure 3.

2.3.1. Variational Autoencoder

The core of our network is a VAE, a neural network that performs
a stochastic mapping of an input image I ∈ R

H,W,C to a latent
representation of smaller dimension Z ∈ R

Zh ,Zw ,Zc , also called
bottleneck layer, and back to the output image Î ∈ R

H,W,C

with the same dimension as the input. Since we use image
data, all our variables are third order tensors, representing the
height H, width W, and channels C of a single image. The
mapping is done by amulti-layer AE (Hinton and Salakhutdinov,
2006) reformulated in a probabilistic fashion. This has been
presented by the VAE implementation (Kingma and Welling,
2013) consisting of an encoder network E and a decoder network
D (Schmidhuber, 2015). While the encoder E is able to embed an
input image X in a latent representation z, the decoder D restores
the original data by retaining the initial information. The low-
dimensional embedding can be formulated as finding the best
encoder/decoder pair.

E
∗,D∗ = argmin

E ,D = L rec(X− D (E(X))), (1)

where L rec(.) is an error function defining the reconstruction
error between the real and the reconstructed data. During
training, a VAE aims to optimize the marginal log-likelihood of
each observation (pixel) in dataset X. The VAE reconstruction
loss L rec is the negative expected log-likelihood of the
observations in X:

Lrec = −Eq(z|X)[logp(X|z)]. (2)

In addition to the reconstruction error, an additional property
of a VAE is the conditional distribution of z. The distribution
q(z|X) of the latent vector z is given using the encoder network
E , q(z|X) : = E(X, ǫ). Here, ǫ is an auxiliary noise variable
ǫ ∼ N (0, 1) used to control the probabilistic distribution of

z. The distribution of the latent vector z is enforced to be
an independent random variable following a Gaussian normal
distribution z ∼ N (0, 1). The difference between the q(z|X)
and N (0, 1) is quantified by using the Kullback-Leibler (KL)-
Divergence:

LKL = DKL(q(z|X) ‖N (0, 1)) (3)

A reparameterization trick is used to sample from the domain of
latent vectors Z , allowing direct backpropagation (Kingma and
Welling, 2013). The VAE is trained by simultaneously optimizing
the reconstruction loss (L rec) and the KL-Divergence (LKL):

LVAE = L rec + LKL (4)

For more detailed information, we refer the reader to Kingma
and Welling (2013).

Our overall approach is based on the framework proposed by
Hou et al. (2017) containing three main sub-networks, namely
an encoder network E , a decoder network D , and a pre-trained
CNN δ which is used to calculate the loss function in deep feature
space (refer to Figure 4). The pre-trained CNN δ is a network
from the Visual Geometry Group (VGG), called a VGGNet
(Simonyan and Zisserman, 2014), to compare the hidden layer
representations by measuring the difference, termed as FPL L rec
between input image X and the reconstructed image X̂. We only
update E and D during training while fixing δ. In addition, a KL-
Divergence loss LKL is used to ensure that the latent vector z is an
independent random variable.

2.3.2. Feature Perceptual Loss

Instead of comparing the input image with the reconstructed
output image by using a pixel-wise loss, we feed both the input
image and the reconstructed image into a pre-trained CNN
(Simonyan and Zisserman, 2014) to measure the difference
between the hidden layer representations with an FPL. The
measured FPL is intended to report important perceptual quality
features and small differences in the hidden representation and,
thus, can provide a better quality of the reconstructed image
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FIGURE 3 | Proposed pipeline for the identification of anomalous grapevine berries using a VAE. Input images are segmented using a CNN (Zabawa et al., 2020)

classifier which provides a semantic segmentation of berries and background. The resulting segmentation masks represent regions of interest containing bunches of

berries. In these regions, we extract patches and feed them into a VAE. The deviation between reconstructed and input image is measured pixel-wise using a defined

metric and used to calculate heatmaps highlighting anomalous image regions considered as damaged berries.

FIGURE 4 | The architecture of our VAE is realized by two neural networks (Hinton and Salakhutdinov, 2006), namely an encoder network E , and a decoder network

D . While D embeds the input data X with dimensionality M in a latent representation z of dimensionality m (where m≪M), D is able to restore the data X̂ given the

latent representation z. Both X and X̂ are fed into a VGGNet (Simonyan and Zisserman, 2014) to calculate the reconstruction loss L rec. In addition, a KL-Divergence

loss LKL is calculated.

compared to pixel-wise losses (Hou et al., 2017). The FPL loss is
defined as L rec = L1 +L2 +L3 + ...+Ll, where Ll is the feature
loss at the lth hidden layer. At the lth layer, the representation of

the input image X is given by δ(X)l with lth ∈ R
Hl ,W l ,Cl

. Here, Cl

represents the number of filters in the pre-trained CNN at the lth

layer with widthW l and height Hl. We define the FPL L lrec at the
lth layer between the input image X and the reconstructed image
X̂ by the squared Euclidean distance in each channel:

Llrec =
1

2ClW lHl
=

Cl∑

c=1

W l∑

w=1

Hl∑

h=1

(δ(X)lc,h,w − δ(X)lc,h,w). (5)

The total loss of overall hidden layers is given as the sum of
different layers in the CNN network:

L rec =
∑

l

L
l
rec. (6)

The final objective includes a KL-Divergence loss, leading to the
following loss function:

L = αLKL + λL rec, (7)

where the weighting between both loss terms is controlled with
the hyper-parameters α and λ.
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2.4. Experimental Setup
2.4.1. Training Details

We train our pre-processing network with the publicly available
berry segmentation dataset presented in Zabawa and Kicherer
(2021). Our AEs are trained on patches of healthy berries
which have an original size of 130 × 130 and which are
resized to 64 × 64 pixels, showing a good compromise between
computation time and accuracy. The patch extraction process
was described in detail in Section 2.3. Our dataset contains a total
size of 5,041 patches, where the patches show healthy berries of all
varieties, namely Riesling, Felicia, and Regent of different BBCH
stages. We create a balanced data set with respect to the variety
and growth stage. This is important since the expressed color is
a major determining factor and should be properly learned by
a model. From the healthy patches, we split 20% for the test set.
We add 858 patches from the images showing damaged grapevine
berries, resulting in a balanced test set containing 1,866 patches
from healthy and damaged berries. We train with a batch size
of 64 using the Adam optimization algorithm as a respective
optimizer (Kingma and Ba, 2014). We use early stopping to avoid
over-fitting with an initial learning rate of 0.0005. For validation,
a batch size of 16 is used. These initial settings are used for all
trained models to allow a fair comparison.

2.4.2. Architecture

First, we briefly present the network architecture of the CNN,
which we use to identify the regions of interest. Then, we describe
the AEs, which were investigated in detail in our study, including
our proposed VAE and an AE. The latter is presented to analyze
the potential of our method in comparison to existing methods.

CNN: The semantic segmentation network has a classical
U-shaped encoder-decoder structure. The encoder backbone is
a MobileNetV2 (Sandler et al., 2018), and the decoder used
is the DeepLabV3+ (Chen et al., 2018). The combination of
encoder and decoder results in a fully convolutional semantic
segmentation network. The framework is based on an open-
source implementation by Milioto et al. (2019) and was
successfully used for berry segmentation by Zabawa et al. (2020).
For more details about the motivation of the design choices and
training details, we refer the reader to Zabawa et al. (2020).

VAE: We based our VAE on the architecture which was
proposed by Hou et al. (2017). The encoder consists of 4
convolutional layers, each with 4 × 4 kernels. To achieve
spatial downsampling, a stride of 2 is chosen instead of a pooling
operation. After each convolutional layer, we apply a batch
normalization and Leaky Rectified Linear Unit (ReLU) activation
layer. The center part of the VAE features two fully connected
layers which are used to compute the KL-divergence loss. The
two fully connected layers represent the mean and variance.
The decoder also consists of 4 convolutional layers, but with
3 × 3 kernels and a stride of 1, and replication padding.
To ensure that the output and input have the same resolution,
upsampling is performed using the nearest neighbormethodwith
a scale of 2. To stabilize the training, batch normalization and
LeakyReLU activation are applied as well. We use the 19-layer
VGGNet (Simonyan and Zisserman, 2014) to compute the FPL.

In the following, we refer to our network as FPL-VAE, for more
information, we refer the reader to Hou et al. (2017).

AE: As a baseline architecture, we use an AE inspired by
Strothmann et al. (2019). We use four convolutional encoder and
decoder layers, each with 3 × 3 kernels, padding of 1, and a
stride of 1. We use LeakyReLU as an activation function. After
each convolutional layer, we apply batch normalization. We test
two types of loss functions. We first analyze an SSIM (Wang
et al., 2004). We refer to this network as SSIM-AE. Following
our approach, we analyze the same network architecture but use
the same 19-layer VGGNet (Simonyan and Zisserman, 2014) to
compute an FPL. We refer to this network as FPL-AE.

3. RESULTS

In the following, we will discuss the main experiments which
were conducted in this study. In the first one, we explore
the general application of our method to detect anomalies
in grapevine berries. We extensively evaluate the results on
the available dataset, first with the image-wise metric for all
used species, and second with the pixel-wise heatmaps. The
experiments are based on the field-based grapevine dataset and
explore the potential of the automatic heatmap generation for the
identification of damaged grapevine berries.

3.1. Qualitative Image Reconstruction
Figure 5 illustrates example results for image reconstructions
using our proposed FPL-VAE model. We show examples of
two different varieties from two different phenotypic stages. The
images show that the colors are well preserved independent of
the grapevine color. In addition, the shapes are faithful to the
reference image. This is especially apparent in the upper patches,
where the background is visible. Although we use a stochastic
model, reconstructions are similar to the input regarding the
number and shape of berries as well as the position and color.
However, we notice that the reconstructed images appear to be
slightly more blurred compared to the original images.

3.2. Loss Functions and Architectures
In this section, we compare our proposed FPL-VAE with an AE
which was proposed by Strothmann et al. (2019) and successfully
applied to anomaly detection in grapevine. We investigate the
model accuracy with respect to the loss function which is used to
train the networks and explore which loss is best suited to detect
anomalies. In detail, we investigate the (ℓ1), the mean squared
error (MSE), and the binary cross entropy (BCE) losses for the
detection of anomalies.

In Figure 6, we display the summed loss scores for the test
data calculated with the different metrics. The figure shows that
we have a significant difference between images showing healthy
and anomalous berries for all metrics. In all cases, the loss takes
mainly small values for the patches showing healthy berries.
Therefore, the histogram for this class is narrow. In contrast to
this, the loss obtained for patches with anomalous berries takes a
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FIGURE 5 | Images and image reconstructions of non-anomalous grapevine image patches using our proposed FPL-VAE. The original image patches are displayed

on the left side, and the corresponding reconstructions are displayed on the right. The upper patches show berries in the BBCH75 stage, and the lower ones shortly

before harvest in the BBCH89 stage.

FIGURE 6 | Histograms of different losses, namely ℓ1, MSE, and BCE. Losses are computed for all test patches containing healthy and anomalous berries.
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TABLE 3 | Model accuracy for anomaly detection based on different loss maps

and network structures.

L1 Loss MSE Loss BCE Loss

SSIM-AE 0.859 0.852 0.856

FPL-AE 0.860 0.869 0.901

FPL-VAE 0.923 0.914 0.883

The bold number indicates the network yielding the best result.

TABLE 4 | Model accuracy for different BBCH stages.

Joint BBCH75 BBCH89

FPL-VAE 0.923 0.903 0.938

wide variety of values. The histogram is broad and has no clearly
identifiable maximum.

In Table 3, we show the detection accuracy of anomalous
grapevine berries for three different network architectures and
three different losses. The accuracy is based on the loss score.
An iterative optimization technique is used to find the best
threshold for all approaches. The threshold is used to decide
about the damaged state of the berries, and the results are used
to calculate the accuracy. The table shows that our proposed
FPL-VAE outperforms the other two networks. Especially the
combination of the FPL-VAE and the ℓ1 loss yield the best result.
Only for the BCE-loss does the FPL-AE performs better than our
FPL-VAE.

3.3. Training Systems
We further analyze the model performance concerning the
different BBCH growing stages. We restrict the experiment to the
evaluation of the best performing model, namely the FPL-VAE
model using an ℓ1 loss term.

Table 4 shows that the accuracy for the later growth stage
is higher compared to the earlier one. However, the damage
expressed in BBCH89 is more severe than in BBCH75 resulting
in a not entirely fair comparison.

3.4. Anomaly Detection With Heatmaps
We use the proposed FPL-VAE model to detect anomalous
grapevine berries. In addition, we suggest heatmaps to highlight
anomalous regions within the reconstructed image. We measure
the pixel-wise difference and propose an MSE to be the best
metric for our use case since anomalous regions are penalized
more compared to non-anomalous regions by taking the pixel-
wise squared error.

Figures 7, 8 show the heatmaps obtained from the pixel-
wise MSE between reconstructed and input images which are
used to detect anomalous grapevine regions. The images in
Figure 7 exhibit varying degrees of damage and thus underline
the potential of the proposed framework to detect the most
infected regions. The results comprise different varieties at

FIGURE 7 | Results for pixel-wise anomaly detection obtained by an FPL-VAE

for damaged patches. The original images are displayed in the upper row. A

corresponding heatmap of loss values is displayed in the middle, red color

represents anomalies, and dark blue indicates non-anomalies. The darker the

color, the more certain the network is, that a berry is damaged or healthy. In

the third row, the red color highlights the manual annotations of anomalous

berry regions.

FIGURE 8 | Results for pixel-wise anomaly detection obtained by an FPL-VAE

for healthy patches. The original images are displayed in the upper row. A

corresponding heatmap of loss values is displayed in the lower row, where a

red color represents anomalies and dark blue indicates non-anomalies.

different BBCH stages and various types of defects such as berry
rot, sun burn, atrophy, or malformation. Not all damages are
detected with the same confidence, which is especially apparent
in the middle patch. The big grape in the center is not detected
with high confidence, but the overall patch is correctly identified
as damaged. On the other hand, even a small anomaly, like the
small stem in the second example from the left, is highlighted in
the heatmap.

We also provide examples of heatmaps for healthy image data
in Figure 8. All loss maps show high confidence that the patch
is healthy. Only in the 4th image is the border area between the
berries and background falsely marked as an anomalous region.
This indicates a drawback of the proposed framework. At border
regions, the reconstruction will be inaccurate and, therefore, may
result in false positive detections.

We further show the first results for heatmaps on the grape
bunch level (refer to Figure 9). We can see that most areas
containing damaged berries are correctly identified by our
proposed method. Good examples are presented in the extracted
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FIGURE 9 | Results for a whole grape bunch. On the left, the applied mask can be seen, which is provided by the CNN. The mask is not perfect but as assumed the

damaged areas are in close vicinity to healthy berries. In the middle, we see the predictions of our FPL-VAE in red. we extracted patches and show them in detail on

the right side.

patches a and b in Figure 9. In patch c we can also see, that
a damaged leaf region was detected. In patch d on the other
hand, we can see that light reflections were falsely detected as
anomalies. Overall, the results show that the proposed method is
able to distinguish between healthy and anomalous berries and to
detect small and large anomalous regions, underlining the broad
applicability of the approach.

4. DISCUSSION

We trained our network on images showing grapevine plants.
The images were acquired under real world conditions in the
field using a phenotyping platform. Since it is challenging to
evaluate the quality of reconstructed images objectively, we
show several examples of patches showing healthy berries, which
are determined by our FPL-VAE (refer to Figure 5). Although
the network was trained on different varieties, at different
BBCH stages under varying illumination, we showed that the
reconstructions preserve the characteristics of each group. This
includes the berry color and number, the shape of the whole
area as well as single grapes, and the occurring background
and lightning differences. The reconstructed images only appear
slightly more blurry in comparison with the original image.

The next step went from the reconstructed patches to the
differentiation of patches showing healthy and damaged berries
with an iteratively optimized threshold of the loss values. We
showed the histograms for the two different classes with respect
to the different loss maps. All losses showed promising results
for the classification between healthy and damaged patches.
The histograms for the healthy class were narrow with a clear
maximum, indicating that a healthy phenotype can be learned
successfully. The histograms for the anomalous class on the
other hand show large variations in the loss values and no clear
maximum. This wide variation of loss values is in line with

various degrees of damage, which are apparent in the patches,
as well as a highly inhomogeneous appearance depending on the
damage cause.

We also compare our proposed FPL-VAE network with an
AE proposed by Strothmann et al. (2019), which was successfully
applied to anomaly detection in grapevine. Furthermore, we also
include an FPL into the AE to ensure a fair comparison of our
approach. We showed that our network outperformed the other
two, with 92.3% model accuracy compared to 90.1% for the
best AE network. Furthermore, we can see an increase in model
performance for the AE when the FPL is used. This underlines
the potential of an FPL in contrast to the widely used pixel-wise
losses and is in line with the findings of Hou et al. (2017).

Furthermore, we evaluate the potential of generated heatmaps
for the detection of anomalies. We show example patches
with damaged (refer to Figure 7) and healthy berries (refer
to Figure 8). For the healthy examples, the loss maps show
mainly low values, only in the 4th example in Figure 8 does
the heatmap indicate anomalous regions. This occurs mainly at
the border between the grape bunch and the background. Here,
the network struggles to perfectly align the reconstruction with
the original image. This could be seen as a drawback of our
proposed method. However, as we extract patches from regions
containing berries, we deliberately encourage the network to
focus on the reconstruction of berries. Since the false positive
detection occurs only in a very thin area around the grape bunch,
the incorporation of knowledge regarding grape edges could filter
out comparable false positive detections. In Figure 7, on the other
hand, we can see that most regions containing damaged berries
are correctly identified. Even very small artifacts like the stem in
the 4th example are highlighted in the heatmap and correspond
well with the manual annotations which can be seen in the
bottom row.

Figure 9 shows a whole bunch of grapes. We show the mask
which was used to extract the regions of interest. The mask does
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not cover the whole grape, but our assumption is that damaged
grapes appear mostly in close vicinity to healthy ones. This is
supported by this example. We can see that in the middle of
the grape bunch damaged berries were successfully identified
(refer to Figure 9 patch a, b). Another interesting observation
is that in Figure 9 c, an anomalous leaf area is also identified
by our method. The leaf shows signs of Esca, a grapevine trunk
disease. One of the most prominent symptoms of this disease is
color changes on the leaves, starting with yellow-brown colors
along the leaf veins. In Figure 9 d, we see small examples of
false positive detections on berries with strong light reflections.
The detected anomalies are only a few pixels large and could be
prevented by discarding small singular detections, favoring larger
areas. Overall we can see that most anomalous plant regions
(including berries and a small portion of the leaf) can be correctly
identified with our proposed method.

Currently, the application of our system is not possible in real-
time. Nevertheless, the inference time per image is a fewminutes,
making a realistic near real-time application possible.

5. CONCLUSION

The constant monitoring of grapevine plants is a labor-intensive
task that has to be performed by skilled experts with many
years of experience. The importance of phenotyping perennial
plants will become even more relevant in the next years due
to climate change, which will introduce new diseases and
challenges. Therefore, we propose an automatic and objective
end-to-end method using VAE with an FPL to detect diseased
and damaged berries, which can help to identify regions that
require action or closer monitoring. One of the main advantages
is that our network is trained only on image patches showing
healthy plant material. We do not need to extensively annotate
data on an object or even pixel level. We show the capability
of our VAE to detect unhealthy berries in a real-world field
dataset with complex structures collected with a phenotyping

platform. Our approach is especially suited for practical use
since it is easy and fast to adapt to new vineyards or varieties

without time-consuming annotation work. Furthermore, the
growing market for Unmanned Aerial Vehicles (UAVs) makes
our approach also more relevant since data can be acquired
easily and fast. This is especially interesting due to the rapid
development of UAVs, enabling ground-sampling distances of
approximately 1mm

pix (Gogoll et al., 2020; Weyler et al., 2022),

which would be sufficient for the berry level detection. When
large amounts of data are available, it is important to provide fast
and reliant results, which can guide a human observer to areas
that need more monitoring.
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