AUTHOR=Weih Martin , Adam Eveline , Vico Giulia , Rubiales Diego TITLE=Application of Crop Growth Models to Assist Breeding for Intercropping: Opportunities and Challenges JOURNAL=Frontiers in Plant Science VOLUME=13 YEAR=2022 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.720486 DOI=10.3389/fpls.2022.720486 ISSN=1664-462X ABSTRACT=
Intercropping of two or more species on the same piece of land can enhance biodiversity and resource use efficiency in agriculture. Traditionally, intercropping systems have been developed and improved by empirical methods within a specific local context. To support the development of promising intercropping systems, the individual species that are part of an intercrop can be subjected to breeding. Breeding for intercropping aims at resource foraging traits of the admixed species to maximize niche complementarity, niche facilitation, and intercrop performance. The breeding process can be facilitated by modeling tools that simulate the outcome of the combination of different species’ (or genotypes’) traits for growth and yield development, reducing the need of extensive field testing. Here, we revisit the challenges associated with breeding for intercropping, and give an outlook on applying crop growth models to assist breeding for intercropping. We conclude that crop growth models can assist breeding for intercropping, provided that (i) they incorporate the relevant plant features and mechanisms driving interspecific plant–plant interactions; (ii) they are based on model parameters that are closely linked to the traits that breeders would select for; and (iii) model calibration and validation is done with field data measured in intercrops. Minimalist crop growth models are more likely to incorporate the above elements than comprehensive but parameter-intensive crop growth models. Their lower complexity and reduced parameter requirement facilitate the exploration of mechanisms at play and fulfil the model requirements for calibration of the appropriate crop growth models.